JPH024539B2 - - Google Patents
Info
- Publication number
- JPH024539B2 JPH024539B2 JP57076347A JP7634782A JPH024539B2 JP H024539 B2 JPH024539 B2 JP H024539B2 JP 57076347 A JP57076347 A JP 57076347A JP 7634782 A JP7634782 A JP 7634782A JP H024539 B2 JPH024539 B2 JP H024539B2
- Authority
- JP
- Japan
- Prior art keywords
- rod
- glass
- optical fiber
- glass rod
- preform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011521 glass Substances 0.000 claims description 57
- 239000013307 optical fiber Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 14
- 230000010287 polarization Effects 0.000 claims description 12
- 238000005253 cladding Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01225—Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
- C03B37/0124—Means for reducing the diameter of rods or tubes by drawing, e.g. for preform draw-down
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/12—Non-circular or non-elliptical cross-section, e.g. planar core
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/30—Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Glass Melting And Manufacturing (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の詳細な説明】
本発明は単一偏波光フアイバ用プリフオームロ
ツドの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a preform rod for a single polarization optical fiber.
シングルモード伝送型の単一偏波光フアイバ
は、そのモードのうち、1つの偏波面(偏光面)
の光のみを伝送する機能をそなえたものであり、
この光フアイバはセンサへの応用やコヒーレント
な光通信などに有望視されている。 A single-mode transmission type single-polarization optical fiber has one polarization plane (plane of polarization) among its modes.
It has the function of transmitting only the light of
This optical fiber is seen as promising for applications in sensors and coherent optical communications.
上記において偏波面の保存特性をよくするた
め、光フアイバ断面内における複屈折現象を大き
く発現させることはすでに知られており、これの
具体策として光フアイバのコアを楕円形、四角
形、ダンベル形などとすることも、すでに提案さ
れている。 In order to improve the preservation characteristics of the plane of polarization in the above, it is already known that the birefringence phenomenon within the cross section of the optical fiber is greatly expressed.As a concrete measure for this, the core of the optical fiber can be shaped into an elliptical, square, or dumbbell shape. It has already been proposed that
もちろんこうした構造形状はプリフオームロツ
ド(光フアイバ用母材)の段階からそなわつてお
り、該ロツドを紡糸することにより上記コア形状
をもつ単一偏波光フアイバが得られる。 Of course, such a structural shape is provided from the stage of the preform rod (base material for optical fiber), and by spinning this rod, a single polarization optical fiber having the above-mentioned core shape can be obtained.
したがつて単一偏波光フアイバはそのプリフオ
ームロツド段階での加工が難事といえる。 Therefore, it is difficult to process a single polarization optical fiber at the preform rod stage.
現在のところ、単一偏波光フアイバについては
各種のものが案内されているが、上記のごとき特
殊形状のコアをもつ単一偏波光フアイバのプリフ
オームロツドについて、これらを如何に簡易に製
造するかといつた技術開示は殆どなく、ガラス切
断法、ガラス堆積法、ロツドインチユーブ法など
を適宜に組み合わせている現状では当該ロツドの
加工に難度や手段が伴い、偏波特性のものを製造
する際の能率も低下している。 At present, various types of single-polarized optical fibers have been proposed, but it is difficult to easily manufacture preform rods for single-polarized optical fibers that have a specially shaped core as described above. There are almost no detailed technical disclosures, and at present, the glass cutting method, glass deposition method, rod incubation method, etc. are appropriately combined, and the processing of the rod is difficult and difficult, making it difficult to manufacture products with polarization characteristics. Efficiency in doing so has also declined.
本発明は上記の問題点に鑑み、所望のコア形状
をもつ単一偏波光フアイバ用プリフオームロツド
が簡易にしかも精度よく製造できる新規な方法を
提供せんとするもので、以下その具体的方法を図
示の実施例により説明する。 In view of the above problems, it is an object of the present invention to provide a new method for easily and accurately manufacturing a preform rod for a single-polarized optical fiber having a desired core shape. will be explained with reference to illustrated embodiments.
第1図におけるガラス棒1はVAD法、内付ま
たは外付CVD法などを介してつくられた中実の
ものであり、この中実のガラス1棒は同心状のコ
ア用ガラス層2およびクラツド用ガラス層3を備
えているとともに加工前における両ガラス層2,
3はいずれも断面円形となつている。 The glass rod 1 in Fig. 1 is a solid one made by VAD method, internal or external CVD method, etc., and this solid glass rod 1 has a concentric core glass layer 2 and a cladding layer. Both glass layers 2 before processing,
3 has a circular cross section.
本発明の方法では第1図のごとく中実のガラス
1棒をヒートゾーンHに通して加熱し、さらに当
該加熱により軟化された同棒1を次段の成形ゾー
ンFで変形させるのであり、図示の場合、上記ヒ
ートゾーンHにはカーボン抵抗炉、高周波炉など
の加熱炉4が配置され、成形ゾーンFにはカーボ
ンローラ等のローラ5,5が配置されている。 In the method of the present invention, as shown in FIG. 1, a solid glass rod is heated by passing it through a heat zone H, and the rod 1, which has been softened by the heating, is further deformed in the next forming zone F, as shown in the figure. In this case, a heating furnace 4 such as a carbon resistance furnace or a high frequency furnace is arranged in the heat zone H, and rollers 5, 5 such as carbon rollers are arranged in the forming zone F.
したがつて第1図の場合、ガラス棒1は加熱炉
4により加熱軟化されるとともにその直後、ロー
ラ5,5からの外力(押圧力)を受けて変形さ
れ、これにより該ガラス棒1は第2図イのごとき
楕円形となる。 Therefore, in the case of FIG. 1, the glass rod 1 is heated and softened in the heating furnace 4, and immediately thereafter is deformed by receiving external force (pressing force) from the rollers 5, 5, thereby causing the glass rod 1 to become It becomes an oval shape as shown in Figure 2 A.
もちろんこの際のガラス変形状態は、ローラ5
の数、そのローラ形状により任意にできるのであ
り、例えば第2図ロのごとく4つのローラ5,
5,5,5を用いた場合には菱形の変形状態が得
られ、さらに第2図ハのごとくローラ幅の小さい
1対のローラ5,5を用いた場合にはダンベル形
の変形状態が得られる。 Of course, the state of glass deformation at this time is
The number of rollers 5 and the shape of the rollers can be determined arbitrarily; for example, as shown in Fig. 2B, four rollers 5,
When rollers 5, 5, 5 are used, a diamond-shaped deformed state is obtained, and furthermore, when a pair of rollers 5, 5 with a narrow roller width as shown in Fig. 2 (c) is used, a dumbbell-shaped deformed state is obtained. It will be done.
上記のようにして変形されたガラス棒1はコア
用ガラス層2およびクラツド用ガラス層3がとも
に変形しているが、つぎの工程では当該ガラス棒
1の外形を円形に加工する。 In the glass rod 1 deformed as described above, both the core glass layer 2 and the cladding glass layer 3 are deformed, but in the next step, the outer shape of the glass rod 1 is processed into a circular shape.
つまり、変形状態にあるクラツド3の外周に外
付CVD法を介してガラス層(クラツド3と同一
組成)を堆積させるとか、あるいはクラツド3を
研削するとか、さらにはガラス堆積、ガラス研削
の両方を採用するなどして、ガラス棒1の外形を
円形にする。 In other words, a glass layer (same composition as the cladding 3) may be deposited on the outer periphery of the cladding 3 in a deformed state via external CVD, or the cladding 3 may be ground, or both glass deposition and glass grinding may be performed. The outer shape of the glass rod 1 is made circular by, for example, adopting
こうして得られたプリフオームロツドはクラツ
ドガラス層3が円形であるのに対し、コア用ガラ
ス層2は第2図イ,ロ,ハで示した変形状態を保
持している。 In the thus obtained preform rod, the cladding glass layer 3 is circular, while the core glass layer 2 maintains the deformed state shown in FIG. 2A, B, and C.
例えば第2図イの状態から得られたプリフオー
ムロツド6は第3図のようになり、コア用ガラス
層2が楕円形のままとなつている。 For example, the preform rod 6 obtained from the state shown in FIG. 2A becomes as shown in FIG. 3, with the core glass layer 2 remaining elliptical.
上記のプリフオームロツド6はその外周に石英
系ジヤケツト管が被せられた状態で紡糸され、こ
れにより単一偏波光フアイバとなる。 The above-mentioned preform rod 6 is spun with a quartz jacket tube wrapped around its outer periphery, thereby forming a single polarization optical fiber.
もちろんこうして得られた単一偏波光フアイバ
は、そのコアが真円でない特殊形状となつている
ため、これに依存した単一偏波光特性を有してい
る。 Of course, the single-polarized optical fiber thus obtained has a special shape whose core is not a perfect circle, and therefore has single-polarized optical characteristics depending on this.
なお、上記ヒートゾーンHにおける加熱炉4は
これを酸水素バーナに代えてもよく、また、成形
ゾーンFに配置すべきローラ5,5……もガス噴
射器に代えてよい。 The heating furnace 4 in the heat zone H may be replaced with an oxyhydrogen burner, and the rollers 5, 5, . . . to be arranged in the forming zone F may also be replaced with gas injectors.
このガス噴射器としては偏平な噴射口を備えた
ものがよく、そして該噴射口を上記ローラ5と同
様、ガラス棒1の周囲に配置してガス噴射圧(外
力)により軟化状態の同棒1を変形させればよ
い。 This gas injector is preferably equipped with a flat injection port, and like the roller 5, the injection port is placed around the glass rod 1, and the glass rod 1 is softened by the gas injection pressure (external force). All you have to do is transform it.
つぎに具体例を述べる。 Next, a specific example will be described.
ガラス棒1としてはコア用ガラス層2の組成が
GeO2―SiO2、クラツド用ガラス層3の組成が
SiO2、そしてガラス層2:ガラス層3の外径比
が1:6、ガラス層3の外径が30mmであるものを
採用し、第2図イに示す楕円形のタイプをつくる
こととした。 As for the glass rod 1, the composition of the core glass layer 2 is
GeO 2 -SiO 2 , the composition of the glass layer 3 for the cladding is
We decided to use SiO 2 and the outer diameter ratio of glass layer 2:glass layer 3 of 1:6, and the outer diameter of glass layer 3 was 30 mm, to create the oval type shown in Figure 2 A. .
この際、加熱炉4はカーボン抵抗炉(1800℃)
とし、2つのローラ5はカーボン製20mm幅のもの
とした。 At this time, heating furnace 4 is a carbon resistance furnace (1800℃)
The two rollers 5 were made of carbon and had a width of 20 mm.
ガラス棒1の移動速度は20mm/min、両ローラ
5,5による押圧力は1Kg/cm2である。 The moving speed of the glass rod 1 is 20 mm/min, and the pressing force by both rollers 5 is 1 kg/cm 2 .
上記の条件で加工されたガラス棒1はクラツド
用ガラス層3の長径および短径がそれぞれ40mm、
22mm、コア用ガラス層2の長径および短径がそれ
ぞれ6.7mm、3.7mmであり、ほヾ楕円形であつた。 The glass rod 1 processed under the above conditions has a long axis and a short axis of the glass layer 3 for cladding of 40 mm, respectively.
The core glass layer 2 had a major axis and a minor axis of 6.7 mm and 3.7 mm, respectively, and was almost elliptical.
その後、上記ガラス棒1を外径22mmとなるよう
に研削してプリフオームロツド6とし、その外周
に石英系ジヤケツト管を被せて紡糸することによ
り外径125μmの単一偏波光フアイバを得た。 Thereafter, the glass rod 1 was ground to have an outer diameter of 22 mm to form a preform rod 6, and a quartz jacket tube was placed around the outer circumference of the preform rod 6, and a single polarized optical fiber with an outer diameter of 125 μm was obtained by spinning. .
この楕円コア単一偏波光フアイバは良好な偏波
面保存性を示した。 This elliptical core single polarization optical fiber showed good polarization preservation.
以上説明した通り、本発明に係る単一偏波光フ
アイバ用プリフオームロツドの製造方法は、コア
用ガラス層とその外周のクラツド用ガラス層とを
備えた中実のガラス棒を加熱により軟化させると
ともに、該軟化状態のガラス棒をその外周から加
えた外力により変形させた後、当該ガラス棒の外
形を円形に加工することを特徴とする。 As explained above, the method for manufacturing a preform rod for a single polarized optical fiber according to the present invention involves heating and softening a solid glass rod having a core glass layer and a cladding glass layer around the core. In addition, the method is characterized in that the softened glass rod is deformed by an external force applied from its outer periphery, and then the outer shape of the glass rod is processed into a circular shape.
したがつて本発明方法の場合、通常の光フアイ
バ用としてつくられている既製のプリフオームロ
ツド(ガラス棒)を上記の手段の手段により変形
させるだけで所望のコア形状が得られることとな
り、あとは簡易な外部加工により棒外形を円形に
するだけであるから、これも難度なく実施できる
こととなり、総じて単一偏波光フアイバ用プリフ
オームロツドが高能率、高精度をもつて製造でき
ることとなる。 Therefore, in the case of the method of the present invention, the desired core shape can be obtained simply by deforming a ready-made preform rod (glass rod) made for ordinary optical fibers by the above-mentioned means. All that is left to do is to make the outside shape of the rod circular through simple external processing, so this can be done without difficulty, and as a whole, preform rods for single-polarized optical fibers can be manufactured with high efficiency and precision. .
第1図は本発明方法の1実施例を示した略示説
明図、第2図イ,ロ,ハはガラス棒の各種変形例
を示した断面図、第3図はガラス棒の円形加工状
態を示した断面図である。
1……ガラス棒、2……コア用ガラス層、3…
…クラツド用ガラス層、4……加熱炉、5……ロ
ーラ、6……プリフオームロツド、H……ヒート
ゾーン、F……成形ゾーン。
Fig. 1 is a schematic explanatory diagram showing one embodiment of the method of the present invention, Fig. 2 A, B, and C are cross-sectional views showing various modifications of the glass rod, and Fig. 3 is a state in which the glass rod is processed into a circular shape. FIG. 1...Glass rod, 2...Glass layer for core, 3...
...Glass layer for cladding, 4...Heating furnace, 5...Roller, 6...Preform rod, H...Heat zone, F...Forming zone.
Claims (1)
ス層とを備えた中実のガラス棒を加熱により軟化
させるとともに、該軟化状態のガラス棒をその外
周から加えた外力により変形させた後、当該ガラ
ス棒の外形を円形に加工することを特徴とする単
一光フアイバ用プリフオームロツドの製造方法。 2 ガラス棒に外力を加える手段として、ガラス
棒の外周にローラを接触させる特許請求の範囲第
1項記載の単一偏波光フアイバ用プリフオームロ
ツドの製造方法。 3 ガラス棒に外力を加える手段として、ガラス
棒の外周にガスを吹きつける特許請求の範囲第1
項記載の単一偏波光フアイバ用プリフオームロツ
ドの製造方法。 4 変形後のガラス棒の外形を円形に加工する手
段として、ガラス研削法、ガラス堆積法のいずれ
か一方または両方を採用する特許請求の範囲第1
項記載の単一偏波光フアイバ用プリフオームロツ
ドの製造方法。[Claims] 1. A solid glass rod having a core glass layer and a cladding glass layer on its outer periphery is softened by heating, and the softened glass rod is deformed by an external force applied from its outer periphery. 1. A method for manufacturing a preform rod for a single optical fiber, which comprises processing the glass rod into a circular shape. 2. A method for manufacturing a preform rod for a single polarized optical fiber according to claim 1, wherein a roller is brought into contact with the outer periphery of the glass rod as means for applying an external force to the glass rod. 3 Claim 1 in which gas is blown onto the outer periphery of the glass rod as means for applying external force to the glass rod
A method for manufacturing a preform rod for a single polarization optical fiber as described in . 4. Claim 1 which employs either or both of the glass grinding method and the glass deposition method as a means for processing the outer shape of the deformed glass rod into a circular shape.
A method for manufacturing a preform rod for a single polarization optical fiber as described in .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57076347A JPS58194752A (en) | 1982-05-07 | 1982-05-07 | Production of preform rod for optical fiber for single-phase polarized light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57076347A JPS58194752A (en) | 1982-05-07 | 1982-05-07 | Production of preform rod for optical fiber for single-phase polarized light |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58194752A JPS58194752A (en) | 1983-11-12 |
JPH024539B2 true JPH024539B2 (en) | 1990-01-29 |
Family
ID=13602818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57076347A Granted JPS58194752A (en) | 1982-05-07 | 1982-05-07 | Production of preform rod for optical fiber for single-phase polarized light |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58194752A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57188426A (en) * | 1981-05-15 | 1982-11-19 | Fujitsu Ltd | Manufacture of optical fiber |
-
1982
- 1982-05-07 JP JP57076347A patent/JPS58194752A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57188426A (en) * | 1981-05-15 | 1982-11-19 | Fujitsu Ltd | Manufacture of optical fiber |
Also Published As
Publication number | Publication date |
---|---|
JPS58194752A (en) | 1983-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4184859A (en) | Method of fabricating an elliptical core single mode fiber | |
AU655693B2 (en) | Method of making fluorine/boron doped silica tubes | |
US4529426A (en) | Method of fabricating high birefringence fibers | |
US4834786A (en) | Method of manufacturing a preform for asymmetrical optical fiber | |
JPH0581543B2 (en) | ||
GB2043623A (en) | Process for the production of glass fibres | |
CN116081939A (en) | Preparation method of elliptical core polarization-maintaining optical fiber | |
JPS627130B2 (en) | ||
JPH024539B2 (en) | ||
JPS591221B2 (en) | Method for manufacturing rod-shaped base material for optical transmission fiber | |
JPS6365615B2 (en) | ||
JPH06235838A (en) | Production of polarization maintaining optical fiber | |
JPS6212626A (en) | Production of optical fiber of constant polarized electromagnetic radiation | |
JPS6218492B2 (en) | ||
JPS58135141A (en) | Preparation of single polarized optical fiber | |
JPS6243932B2 (en) | ||
JPS6140834A (en) | Preparation of parent material for optical fiber | |
JP2015151328A (en) | Method of manufacturing multicore optical fiber preform | |
JPS593029A (en) | Manufacture of preform for optical fiber retaining plane of polarization | |
JPS598634A (en) | Preparation of base material for optical fiber having retained plane of polarization | |
JPH0475174B2 (en) | ||
JPS6350291B2 (en) | ||
JPH01257149A (en) | Production of stress imparted constant polarization optical fiber | |
JPS58115403A (en) | Multicore constant polarization optical fiber and its manufacture | |
JPH0210093B2 (en) |