JPS58193428A - Apparatus for measuring temperature of product in annealing furnace - Google Patents

Apparatus for measuring temperature of product in annealing furnace

Info

Publication number
JPS58193428A
JPS58193428A JP57077077A JP7707782A JPS58193428A JP S58193428 A JPS58193428 A JP S58193428A JP 57077077 A JP57077077 A JP 57077077A JP 7707782 A JP7707782 A JP 7707782A JP S58193428 A JPS58193428 A JP S58193428A
Authority
JP
Japan
Prior art keywords
rotary disk
optical
optical fibers
furnace
side end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57077077A
Other languages
Japanese (ja)
Other versions
JPH0350209B2 (en
Inventor
Susumu Togawa
進 戸川
Manabu Kurotobi
黒飛 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP57077077A priority Critical patent/JPS58193428A/en
Publication of JPS58193428A publication Critical patent/JPS58193428A/en
Publication of JPH0350209B2 publication Critical patent/JPH0350209B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0022Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0044Furnaces, ovens, kilns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0808Convex mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0818Waveguides
    • G01J5/0821Optical fibres

Abstract

PURPOSE:To grasp the history of annealing temperature accurately, by providing a rotary disk at the other ends of a plurality of optical fibers, whose incident and surfaces are arranged along a product conveying path, and detecting the temperatures by an optical thermometer. CONSTITUTION:Pipes 3 are placed on a furnace bed 2, which is driven from an input side A to an output side B in an annealing furnace 1. Light from the pipes 3 is received by incident side end surfaces 51-55 of optical fibers 41-45, which are arranged on the ceiling part of the furnace 1 with an equal interval. Output side end surfaces 71-75 of the optical fibers 4 are connected to a rotary disk 6 at every specified angle in the circumferential direction of the rotary disk 6. The rotary disk 6 is driven and rotated by a pulse motor 8, and the light from the optical fibers 4 is sequentially sent to an optical thermometer 9. An analog signal corresponding to the temperature of the detected light from the thermometer 9 is stored in a memory 13.

Description

【発明の詳細な説明】 本発明は焼鈍炉の中を搬送される製品の温度変化を測定
する測温装置に関し、その目的は炉中の複数位置におい
て連続移動する各製品の温度を測定し、各製品の焼鈍温
度履歴の把握、炉の温度制御に利用できるものを提供す
ることにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature measuring device for measuring temperature changes of products conveyed in an annealing furnace, and its purpose is to measure the temperature of each product continuously moving at a plurality of positions in the furnace, The objective is to provide something that can be used to understand the annealing temperature history of each product and control the furnace temperature.

従来、バイ1生産設備の中の焼鈍炉の工程においては、
作業員が付きっきりで炉中の所定位置の雰囲気を検出し
て、各パイプの焼鈍温度履歴の把握に利用されている。
Conventionally, in the annealing furnace process in the Bi1 production facility,
A worker is present at a specific location in the furnace to detect the atmosphere and is used to understand the annealing temperature history of each pipe.

しかしこのような測定方法では次のような問題点が発生
している。
However, this measurement method has the following problems.

0 作業員の作業環境が悪い。0 The working environment for workers is poor.

0 多数の測定ポイントをカバーするには限界がある。0 There is a limit to covering a large number of measurement points.

0 個人誤差が出やすい。0 Individual errors are likely to occur.

0 雰囲気管理のため、パイプの実際の焼鈍温度It歴
を正確に把握できない。
0 Due to atmosphere control, the actual annealing temperature It history of the pipe cannot be accurately determined.

0 データの格理に時間がかかり、生産ラインでのV埋
に適さない。
0 Data processing takes time, making it unsuitable for V-embedding on a production line.

本発明は、焼鈍炉中の製品搬送経路に沿って入射一端面
が配同された複数本の光ファイバーを設け、前記複数本
の光ファイバーの出射側端面が周方向に所定の回動角度
間隔をもって接続されたり一タリーディスクを設け、前
記ロータリーディスクに接続された出射側端面の検出光
のうち前記口−タリーディスクの所定位置の光ファイバ
ーの検出光を測定する光学温度計を設け、前記ロータリ
ーディスクを前記製品の搬送に同期して所定の回動角度
で往復回動させるパルスモータを設は九ことを特徴とし
、光ファイバーの入射側端面で製品から出る光を検出し
て温度検出するため、雰囲気の温度を測定していた従来
のもの(比べて焼鈍温度を正確に把握でき、1つの光学
温度計に検出光を順に導いて測定するため、多数の測定
ポイントを十分にカバーすることができ、従って1つの
パイプについての焼鈍温度履歴を正確に把握でき、ま次
光ファイバーで検出光を所定位置まで導くため、作業員
を悪い作業環境から解放できる効果が得られる。
The present invention provides a plurality of optical fibers having one input end face arranged along a product conveyance path in an annealing furnace, and the output side end faces of the plurality of optical fibers are connected at predetermined rotation angle intervals in the circumferential direction. A rotary disk is provided, and an optical thermometer is provided for measuring the detected light of the optical fiber at a predetermined position of the rotary disk among the detected light of the output side end face connected to the rotary disk. It is characterized by a pulse motor that rotates back and forth at a predetermined rotation angle in synchronization with the conveyance of the product, and the temperature is detected by detecting the light emitted from the product at the input end of the optical fiber. The annealing temperature can be grasped more accurately compared to conventional methods, which measure Since the annealing temperature history of each pipe can be accurately determined and the detection light is guided to a predetermined position using a linear optical fiber, it is possible to relieve workers from a bad working environment.

以下本発明の一実施例を第1肉と第2図に基ついて説明
する。、 (1)は焼鈍炉で、炉入口[(A)から炉出
口@ 131 K向って連続駆動される炉床(2)を有
し、炉入口1IlI囚で炉床(2)上に載置された製品
としてのパイプ(3)は、炉中tc+を経て炉出口[田
)へ搬送される。(41)〜(45)は光ファイバーで
、各入射側端面(51)〜(55)ij前記焼鈍炉(1
)の天井部に炉入口8(A)から炉出口側[F])に向
けて等間隔lおき配設され、各入射側端1IIi(5,
)〜(55)はパイプ(3)からの光を受光するように
前記炉床(2)(対向して取付けられている。(6)は
ロータリーディスクで、周方向に沿って一定角度θおき
に前記光ファイバー(4,)〜(45)回動駆動される
。(9) Fi光学温度計としての2色温度計で、前記
ロータリーディスク(6)の周方向を1時〜12時の1
2等分した場合に第1図では前記光ファイバー(4,)
〜(45)のうちの出射側端面が12時の位置にある光
ファイバーと光軸が一致して、その検出光の温度に耐じ
たアナログ信号が出力される。
An embodiment of the present invention will be described below with reference to the first material and FIG. 2. , (1) is an annealing furnace, which has a hearth (2) that is continuously driven from the furnace inlet [(A) to the furnace outlet @131K, and is placed on the hearth (2) at the furnace inlet 1IlI. The pipe (3) as a finished product is conveyed to the furnace outlet via tc+ in the furnace. (41) to (45) are optical fibers, each of which has an end face on the incident side (51) to (55) ij said annealing furnace (1
) are arranged at equal intervals l from the furnace inlet 8 (A) to the furnace outlet side [F]), and each entrance side end 1IIi (5,
) to (55) are installed opposite the hearth (2) so as to receive light from the pipe (3). The optical fibers (4,) to (45) are rotationally driven.(9) A two-color thermometer serving as an Fi optical thermometer is used to rotate the rotary disk (6) in the circumferential direction from 1 o'clock to 12 o'clock.
In Fig. 1, the optical fiber (4,) is divided into two equal parts.
The output side end face of (45) coincides with the optical axis of the optical fiber located at the 12 o'clock position, and an analog signal that withstands the temperature of the detected light is output.

01は増幅′a0を介して入力された前記2色温度計(
9)出力信号をデジタル変換するアナログ・デジタル変
換器、(6)に中央処理装置で、炉床(2)の前記連縦
移送に同期して前記パルスモータ(8)に駆動用の !
パルスを送ると共にアナログ−デジタル変換器α0を介
して収り込んだ2色温度計(9)出力データの処理が実
行される。(至)Fi2色温度計(9)からの出力デー
タを記憶するメモリで、前記中央処理袋Wt(6)はこ
のメモリ(至)からデータを読み出して所定のデータ処
理が゛実行される004Fi出力装置で、CRTディス
プレー、プリンタ等から成る。
01 is the two-color thermometer (
9) an analog-to-digital converter for digitally converting the output signal; and (6) a central processing unit for driving the pulse motor (8) in synchronization with the continuous vertical transfer of the hearth (2).
Processing of the output data of the two-color thermometer (9), which is received via the analog-to-digital converter α0 while sending pulses, is executed. (To) A memory that stores output data from the Fi2 color thermometer (9).The central processing bag Wt (6) reads data from this memory (To) and performs predetermined data processing.004Fi output The device consists of a CRT display, printer, etc.

なお、各パイプ(3)は等間隔L=//2に配置されて
炉床(2)が速度Vで連続移動する場合を例(挙げて説
明する。また、先ず、前記ロータリーディスク(6)は
光ファイバー(41)の光軸と2色温度計(9)の光軸
とが一致する状態にあって、ロータリーディスク(6)
は第2図fclのパルスで時計方向に1パルスで角度θ
だけ回動し、第2図fd)のパルスで反時計方向に1パ
ルスで角度θだけ回転するよう構成されている。第2図
falはCPU 02のクロックパルスを表わす。
The pipes (3) are arranged at equal intervals L=//2 and the hearth (2) moves continuously at a speed V as an example. The optical axis of the optical fiber (41) and the optical axis of the two-color thermometer (9) are aligned, and the rotary disk (6)
is the pulse of fcl in Figure 2, and the angle θ is one clockwise pulse.
It is configured to rotate by an angle θ per pulse in the counterclockwise direction according to the pulse shown in FIG. 2 (fd). FIG. 2 fal represents the clock pulse of the CPU 02.

CPU tlJのデータ読み込みルーチンでは、例えば
、パイプ(3)のうちの特定パイプ(3o)が光ファイ
バー(41)の入射側端面(5,)の真下に来た時、/
=2Lに設定されているため、光ファイバー(42)〜
(45)の各入射ll1II端面(52)〜(55)の
真下にもバイ1(3)が米ている。この時、前記中央処
理装置〔以下、CPUと称す〕(2)から第2図(b)
温度情報数り込みパルスデジタル変換器α1を介してデ
ジタル変換された特定パイプ(3゜)の温度情報が、メ
モ!I CA3へ格納される。これが終Yすると同時に
、第2図(clの時計方向送りパルスC4がCPU U
からパルスモータ(8)に出力されてロータリーディス
ク(6)がθだけ回動し、光ファイバー(42)の光軸
が2色温度計(91の光軸と一致する。これが終了する
と同時にパルスB2が出力されて光ファイバー(42)
からの温度情報が先程と同様な経路でメモリQ3に格納
される。以下、同様ニ、パルレスC2−パルスB、〔光
ファイバ(4s )ノ情報格納J−パルスC3−パルス
B4〔光ファイツク−(44)の情報格納〕−パルスC
4−パルスB5〔光ファイバー(45)の情報格納〕が
実行され、これが終了すると頓に反時計方向送りパルス
D + + D21 D 5 + D4がパルスモータ
(8)に出力されて、ロータリーディスク(6)が4θ
だけ反時計方向に回動し、再び光ファイバー(4,)の
光軸と2色温度肚(9)の光軸とが一致した状態に復帰
して次の測定に備える。
In the data reading routine of the CPU tlJ, for example, when a specific pipe (3o) of the pipes (3) comes directly under the input side end face (5,) of the optical fiber (41), /
= 2L, so the optical fiber (42) ~
Bi1 (3) is also located directly below each of the incident end faces (52) to (55) of (45). At this time, from the central processing unit (hereinafter referred to as CPU) (2) to FIG. 2(b)
The temperature information of a specific pipe (3°) converted into digital data via the temperature information counting pulse digital converter α1 is a memo! Stored in ICA3. At the same time as this ends, the clockwise feed pulse C4 of cl (see Fig. 2) is sent to the CPU U.
is output to the pulse motor (8), the rotary disk (6) rotates by θ, and the optical axis of the optical fiber (42) coincides with the optical axis of the two-color thermometer (91).At the same time as this ends, pulse B2 is output. Output to optical fiber (42)
The temperature information from is stored in the memory Q3 through the same route as before. Hereinafter, similarly 2, pulseless C2-pulse B, [optical fiber (4s) information storage J-pulse C3-pulse B4 [optical fiber (44) information storage]-pulse C
4-Pulse B5 [storage of information in optical fiber (45)] is executed, and as soon as this is completed, a counterclockwise feed pulse D + + D21 D5 + D4 is output to the pulse motor (8), and the rotary disk (6 ) is 4θ
The optical axis of the optical fiber (4,) and the optical axis of the two-color temperature sensor (9) are returned to coincide with each other again in preparation for the next measurement.

次の測定までの間隔τは、f−にで、5点の連続測定に
要する時間TrIi、T=(1点当りの温度情報の読み
込みに要する時間)X’N+(ロータリーディヌクの角
度θの回動に要する時間)×(N−1)で求められ、こ
こでN#i測定点数である。理想的には、入射側端面(
51)〜(55)の軸がパイプ゛(3)の中心上にある
ことが望ましいが、若干はずれていても差支えない。こ
の許容誤差をΔXとすると、v−T≦ΔX なる条件を満せば測定可能である。なお、通常、速度υ
は非′確に小さいので、何ら問題はない。
The interval τ until the next measurement is f-, the time required for continuous measurement of 5 points TrIi, T = (time required to read temperature information per point) It is determined by (time required for rotation) x (N-1), where N#i is the number of measurement points. Ideally, the input side end face (
It is desirable that the axes of 51) to 55 are on the center of the pipe (3), but there is no problem even if they are slightly offset. Assuming that this allowable error is ΔX, measurement is possible if the condition v-T≦ΔX is satisfied. Note that normally the speed υ
is extremely small, so there is no problem.

CPU(2)のデータ処理ルーチンでは、焼鈍炉(1)
の炉出口11HB)Kバイア°(3)が現われる度に1
そのパイプ゛(3)が尤ファイバー(4,)〜(45)
の入射側端面(5,)〜(55)の下方の測定ポイント
を通過した際の温す情報をメモIJ Q3から読み出し
て、焼鈍f(1)を通過した順番を表わすパイプ六ンバ
ーと共に各測定ポイントの温度情報が焼鈍温度lit埜
として出力装置Q4を介して出力される。
In the data processing routine of the CPU (2), the annealing furnace (1)
Furnace outlet 11HB) 1 each time K via ° (3) appears.
The pipe ゛(3) is a special fiber (4,)~(45)
The heating information when passing through the measurement points below the entrance side end face (5,) to (55) of is read out from the memo IJ Q3, and each measurement is carried out along with the pipe number 6 indicating the order in which it passed through the annealing f(1). Temperature information at the point is outputted as the annealing temperature via the output device Q4.

このように構成した九め、各パイプ(3)が測定ポイン
トを通過した際の焼鈍湿度を、バイ1(3)毎の*mと
して即座KR埋することができ、生産ラインの管理に適
する。光ファイバー(41)〜(45)とロータリーデ
ィスク(6)を介して測定するため、測定ポイントが多
くてもこれを容易にカバーすることができると共に、a
敗の測定ポイントに対して同一の2色温度計(9)、増
幅器Ql)  アナログ・デジタル髪換′actoで済
む九め、各測定ポイント間における1呉等もなく、正確
な測定が0T矩である。従来のような雰囲気管理では、
パイプ(3)の径や厚さによへて測定温度と実際の焼鈍
m度との間にばらつきがあったが、この測ffl装置に
よると光ファイバー(4I)γ(45)と2色温度計(
9)によって焼鈍中のパイプ(3)の実際の温度を測定
できる次め、正確な温度管理を実施できる。・ □ 上記実施例では、炉床(2)が連続移送されるものとし
て説明したが、これは間欠移送された場合であ。でも同
様に実施可能でおって、この場合に#′i連続移送の場
合に叱べて各種の制釣条什が緩和される。
Ninthly, with this configuration, the annealing humidity when each pipe (3) passes the measurement point can be immediately filled in KR as *m for each bye 1 (3), which is suitable for production line management. Since the measurement is carried out via the optical fibers (41) to (45) and the rotary disk (6), even if there are many measurement points, it is possible to easily cover them.
The same two-color thermometer (9), amplifier Ql) for each measurement point. Analog-to-digital hair replacement is the 9th point, and there is no need for 1 minute between each measurement point, making accurate measurement possible with 0T rectangle. be. With conventional atmosphere management,
There were variations between the measured temperature and the actual annealing degree depending on the diameter and thickness of the pipe (3), but according to this ffl measurement device, the optical fiber (4I) γ (45) and the two-color thermometer (
9), the actual temperature of the pipe (3) during annealing can be measured, and then accurate temperature control can be carried out.・□ In the above embodiment, the hearth (2) was explained as being continuously transferred, but this is a case where it is being transferred intermittently. However, it can be implemented in the same way, and in this case, in the case of #'i continuous transfer, various fishing restrictions can be alleviated.

上記実施例では、各パイプ“(3)の間隔りがl/2、
速度υとして説明したが、パイプ(3)の間隔りと間隔
lがこの関係以外の場合であってもCPU(6)のソフ
トウェアを変更することで対処できる。また、光ファイ
バーの故が変っても同様にソフトウェアの変更で対処で
きる。
In the above embodiment, the interval between each pipe "(3) is 1/2,
Although the speed υ has been explained, even if the interval between the pipes (3) and the interval l are not in this relationship, it can be handled by changing the software of the CPU (6). Additionally, even if the nature of the optical fiber changes, it can be dealt with by changing the software.

以上説明のように本発明によると、光ファイバーの入射
側端面で製品から出る光を検出して温度検出するため、
焼鈍炉内の雰囲気温度全測定していた従来のものに比べ
て焼鈍温度を正確に:lS定できる。各測定ポイントの
検出光を順に同一の光学温度計に導いて測定するため、
各測定ポイント相即間の誤差が少なくなると共に従来に
比べて多数の測定ポイントを十分にカバーすることがで
き、従って1つのパイプについての焼鈍温度履歴を正偏
に把握でき、また光ファイバーで検出光を所定位iIi
まで導くため、作業員を悪い作業環境から解放すること
ができるものである。
As explained above, according to the present invention, the temperature is detected by detecting the light emitted from the product at the input side end face of the optical fiber.
The annealing temperature can be determined more accurately than the conventional method, which measures the entire ambient temperature inside the annealing furnace. Since the detection light from each measurement point is guided to the same optical thermometer in order,
The error between each measurement point is reduced, and a large number of measurement points can be sufficiently covered compared to the conventional method. Therefore, the annealing temperature history of one pipe can be accurately determined, and the detection light can be detected using an optical fiber. Predetermined position ii
It can free workers from bad working environments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図fal〜t
dlは第1図の湯部タイミング図である。 (1)・−・焼鈍炉、(2)・・・炉床、(3)・・・
パイプ゛〔製品〕、(41)〜(45)・・−光ファイ
バー、(5,)〜(55)・・・入射側4[ti、16
)・・・ロータリーディスク、(8)・−・ノ(ルスモ
ータ、(9)・・−2色温度計〔光学温度計〕、αQ・
−・アナログ・デジタル変換器、@・・・中央処理装置
、(2)・・・メモリ、(ロ)・・・出力装置 代理人   森  本  櫨  弘
Fig. 1 is a configuration diagram of an embodiment of the present invention, Fig. 2 fal to t
dl is the timing diagram of the hot water part in FIG. (1)...Annealing furnace, (2)...Hearth, (3)...
Pipe [product], (41) to (45)...-Optical fiber, (5,) to (55)...Incidence side 4 [ti, 16
)...Rotary disk, (8)...-(Russ motor, (9)...-2 color thermometer [optical thermometer], αQ...
−・Analog-to-digital converter, @...Central processing unit, (2)...Memory, (B)...Output device agent Hiroshi Morimoto

Claims (1)

【特許請求の範囲】[Claims] 1、焼鈍炉中の製品搬送経路に沿って入射側端面が配列
された複数本の光ファイバーを設け、前記複数本の光フ
ァイバーの出射側端面が周方向に所定の回動角度間隔を
もうて接続されたロータリーディスクを設け、前記ロー
タリーディスクに接続された出射側端面の検出光のうち
前記ロータリーディスクの所定位置の光ファイバーの検
出光を測定する光学温度計を設け、前記ロータリーディ
スクを前記製品の搬送に同期して所定の回動角度で往復
回動させるパルスモータを設けた焼鈍炉における製品測
温装置。
1. A plurality of optical fibers whose input side end faces are arranged along the product conveyance path in the annealing furnace are provided, and the output side end faces of the plurality of optical fibers are connected at predetermined rotation angle intervals in the circumferential direction. an optical thermometer for measuring the detected light of an optical fiber at a predetermined position of the rotary disk among the detected light of the output side end face connected to the rotary disk, and the rotary disk is used for transporting the product. Product temperature measuring device in an annealing furnace equipped with a pulse motor that rotates reciprocatingly at a predetermined rotation angle in synchronization.
JP57077077A 1982-05-07 1982-05-07 Apparatus for measuring temperature of product in annealing furnace Granted JPS58193428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57077077A JPS58193428A (en) 1982-05-07 1982-05-07 Apparatus for measuring temperature of product in annealing furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57077077A JPS58193428A (en) 1982-05-07 1982-05-07 Apparatus for measuring temperature of product in annealing furnace

Publications (2)

Publication Number Publication Date
JPS58193428A true JPS58193428A (en) 1983-11-11
JPH0350209B2 JPH0350209B2 (en) 1991-08-01

Family

ID=13623716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57077077A Granted JPS58193428A (en) 1982-05-07 1982-05-07 Apparatus for measuring temperature of product in annealing furnace

Country Status (1)

Country Link
JP (1) JPS58193428A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190023A (en) * 1984-10-09 1986-05-08 Fuji Electric Co Ltd Temperature detecting device for billet
US4760225A (en) * 1986-03-10 1988-07-26 Alps Electric Co., Ltd. Push button switch having a frame member for preventing solder penetration of switch contacts
JPH01124727A (en) * 1987-11-10 1989-05-17 Matsushita Electric Ind Co Ltd Heating device
JPH02120040U (en) * 1988-11-30 1990-09-27
JP2007323971A (en) * 2006-06-01 2007-12-13 Seiko Epson Corp Switch mechanism of electronic equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190023A (en) * 1984-10-09 1986-05-08 Fuji Electric Co Ltd Temperature detecting device for billet
US4760225A (en) * 1986-03-10 1988-07-26 Alps Electric Co., Ltd. Push button switch having a frame member for preventing solder penetration of switch contacts
JPH01124727A (en) * 1987-11-10 1989-05-17 Matsushita Electric Ind Co Ltd Heating device
JPH02120040U (en) * 1988-11-30 1990-09-27
JP2007323971A (en) * 2006-06-01 2007-12-13 Seiko Epson Corp Switch mechanism of electronic equipment

Also Published As

Publication number Publication date
JPH0350209B2 (en) 1991-08-01

Similar Documents

Publication Publication Date Title
CA1087733A (en) Position coordinate determination device
US3428817A (en) Length measurer with plurality of photocells which are sequentially gated
US3868643A (en) Conveyor memory system
JPH08504734A (en) Method and apparatus for belt conveyor load tracking
JPS58193428A (en) Apparatus for measuring temperature of product in annealing furnace
JPS6097207A (en) Method and device for leading out position and/or size of specimen to be inspected
JPS6210696B2 (en)
KR850001282B1 (en) Method of making coordinate measurements with movable probe
US3798424A (en) Industrial control system utilizing high speed digital computer
JPH06171731A (en) Black box work quantity detection device
SU1188770A1 (en) Device for checking position and counting rolled articles
SU1397713A1 (en) Device for measuring diameters of large-size articles
US3255458A (en) Data handling
Goody et al. Physical basis for climate change models
SU1326535A1 (en) Device for measuring the radius of wound reel
SU986721A1 (en) Apparatus for controlling multicycle feed of work by measured length
SU604001A1 (en) Moving registration device
SU1402800A1 (en) Method and apparatus for measuring linear dimensions of objects of bodies of revolution type
SU842878A1 (en) Device for counting objects being moved on production line
JPS6142099Y2 (en)
SU1412819A1 (en) Apparatus for checking and sorting ball articles by external sizes
SU1552023A1 (en) Method and apparatus for determining disbalance of rotors
SU963023A1 (en) Device for registering closed conveyer capacity
JPS63163110A (en) Method for measuring center line profile
JPS5847719A (en) Assortment controller