JPS58193361A - Plasma chemical vapor deposition apparatus - Google Patents

Plasma chemical vapor deposition apparatus

Info

Publication number
JPS58193361A
JPS58193361A JP7358082A JP7358082A JPS58193361A JP S58193361 A JPS58193361 A JP S58193361A JP 7358082 A JP7358082 A JP 7358082A JP 7358082 A JP7358082 A JP 7358082A JP S58193361 A JPS58193361 A JP S58193361A
Authority
JP
Japan
Prior art keywords
plasma discharge
electrode
common electrode
discharge field
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7358082A
Other languages
Japanese (ja)
Inventor
Saburo Shimoi
下井 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP7358082A priority Critical patent/JPS58193361A/en
Publication of JPS58193361A publication Critical patent/JPS58193361A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Abstract

PURPOSE:To form an amorphous thin film with good quality within a short time, by a method wherein electrodes forming plural plasma discharge fields due to glow discharge are provided in a reduced pressure space and a stock material gas is supplied to these plasma discharge fields. CONSTITUTION:A plasma CVD apparatus is constituted from a reduced pressure chamber 2 having a reduced pressure space 1 formed to the interior thereof, a common electrode 3 having gas permeability arranged in said container 2, a first electrode 4 arranged to a part opposed to one surface of the common electrode 3 and forming a first plasma discharge field 11 in the space with the common electrode 3, a second electrode 5 arranged to a part opposed to the other surface of the common electrode 3 and forming a second plasma discharge field 12 in the space with the common electrode 3, a substrate 13 arranged to the side of the first electrode 4 so as to oppose the film forming surface 13a thereof to the first plasma discharge field 11 and a gas supply line 16 for supplying a stock material gas to the second plasma discharge field 12.

Description

【発明の詳細な説明】 本発明は、例えば、基板の表面にアモルファス(非晶質
)シリフッII(以下「a−8i膜」と称す)などを生
成させて太陽電池等を製造する場合に適用されるプラズ
マCVDt分装置#11こ関するものであるっ 従来、この種のプラズマCVD1lとして、減圧空間内
101種、または数種類の原料ガスを連続的に導入し、
この原料ガスを前記減圧空間内奢こ形成したプラズマ放
電場を通過させてプラズマ分解し、その分解したガスを
加熱した基板の成膜面に導いて該成膜l1iIこ非晶薄
膜を生成させるようにしたものがある。ところが、従来
は、原料ガスを単一のプラズマ放電場を通過させた後、
直ちに基板の成膜面へ導(ようIこしているので、比較
的大形の基板1こ良質の非晶質薄膜を短時間に生成させ
るのが難しいという問題がある。すなわち、前述した従
来の装置としては、第1図あるいは第2図に示すものが
知られている。第1図着こ示すものは、内部に減圧空間
aを形成する減圧容器すのF半部b+の外側Iこ対をな
す電極c、dを対向配置して該下半部b+内にプラズマ
放電場Cを形成するとともに、前記減圧容器すの1半部
b!内に、成膜面を前記プラズマ放電場eに対向せた基
板fと、この基板fの背面iこ添接させた受熱板gと、
この受熱板gを介して前記基板fを加熱する加熱板りと
を配役し1こものである。そして、前記減圧容器すの下
端から該減圧容器す内lこ導入した原料ガス;を前記プ
ラズマ放電場eを通して前記基板りの成膜面へ導くこと
ができるようになっている。ところがこのような構成の
ものは、減圧容器すを大形化すると、それに伴って電極
C%d8の距離が大きくなるため、均一な放電を行なわ
せることが難しくなる。そのため、基板の大形化に対応
できないという問題がある。−万、第2図に示す装置は
、減圧容器i/)j3に対をなす電極C′、d′を略平
行に対向配置してこれら両電極C11d′闇Eこプラズ
マ放電場6/を形成し、−万の電極CI側に加熱板h’
+zより加熱される基板flを配置するとともに他方の
電極d7を通気性を有した形態のもの薯こしている。そ
して前記減圧容器b′内に導入した原料ガスi′を前記
電極dIを透過させてプラズマ放電場C′内に導き、こ
のプラズマ放電場e′を通過させること1こよりプラズ
マ分解させたカスを前記基板fIの成膜向に供給するよ
う磨こなっている。しかして、このような構成のもので
あれば、前記両電極を大きくすること醗こよってプラズ
マ放電場e′の広大化を図ることができるので、基板の
大形化Eこ対処することができるが、各部均一な放電状
態を確保するため1こは前記画電llIC/ 1d/間
の距離をあまり太き(できない。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable, for example, to the production of solar cells etc. by producing amorphous silicon film II (hereinafter referred to as "a-8i film") on the surface of a substrate. Conventionally, in this type of plasma CVD, 101 types or several types of raw material gases are continuously introduced into a reduced pressure space.
This raw material gas is passed through a plasma discharge field formed in the reduced pressure space to undergo plasma decomposition, and the decomposed gas is guided to the film formation surface of the heated substrate to form an amorphous thin film. There is something I did. However, conventionally, after passing the raw material gas through a single plasma discharge field,
Since the film is immediately directed to the film-forming surface of the substrate, there is a problem in that it is difficult to form a high-quality amorphous thin film on a relatively large substrate in a short time. As an apparatus, the one shown in Fig. 1 or Fig. 2 is known. Electrodes c and d are placed opposite each other to form a plasma discharge field C in the lower half b+, and a film forming surface is placed in the plasma discharge field e in the first half b! of the reduced pressure vessel. A substrate f facing each other, a heat receiving plate g attached to the back surface i of the substrate f,
A heating plate that heats the substrate f via this heat receiving plate g is used. The raw material gas introduced into the vacuum vessel from the lower end of the vacuum vessel can be guided to the film-forming surface of the substrate through the plasma discharge field e. However, with such a configuration, when the reduced pressure vessel is increased in size, the distance between the electrodes C%d8 increases accordingly, making it difficult to perform uniform discharge. Therefore, there is a problem that it cannot cope with an increase in the size of the substrate. -10, The device shown in Fig. 2 has a pair of electrodes C' and d' disposed in a reduced pressure vessel i/)j3 in a manner substantially parallel to each other to form a plasma discharge field 6/. Then, a heating plate h' is placed on the -10,000 electrode CI side.
A substrate fl heated by +z is disposed, and the other electrode d7 is made of a type having air permeability. Then, the raw material gas i' introduced into the reduced pressure vessel b' is passed through the electrode dI and guided into the plasma discharge field C', and the plasma-decomposed scum is passed through the plasma discharge field e'. It is polished so as to be supplied in the film forming direction of the substrate fI. With such a configuration, it is possible to enlarge the plasma discharge field e' by increasing the size of both electrodes, so that it is possible to cope with the increase in the size of the substrate E. However, in order to ensure a uniform discharge state in each part, the distance between the picture electrodes llIC/1d/ cannot be made too thick.

そのため、プラズマ放電場e′の厚みの増大化には一定
の限界がある。したがって、原料ガスの前記プラズマ放
電場61に対する通過距離を十分1こ確保することが難
しく、プラズマ分解の不十分なガスが基板に供給されが
ちとなる。その結果、生成膜に含まれる不純物の量が多
くなるとともに、膜の生成に長時間を要することになる
という問題がある。このように、従来の装置は、いずれ
の形式の場合にも、一定の不都合があり、比較的大形の
基板に良質の非晶質薄膜を短時間に生成させ得るように
したいという要求を同時に満足させることができない。
Therefore, there is a certain limit to increasing the thickness of the plasma discharge field e'. Therefore, it is difficult to ensure a sufficient distance for the source gas to pass through the plasma discharge field 61, and gas that is insufficiently plasma decomposed tends to be supplied to the substrate. As a result, there are problems in that the amount of impurities contained in the produced film increases and that it takes a long time to produce the film. As described above, conventional apparatuses, regardless of their type, have certain disadvantages, and at the same time, there is a need to be able to produce a high-quality amorphous thin film on a relatively large substrate in a short time. I can't satisfy you.

したがって、従来の装置では、非晶質 11ンリコノ太
謁電池等の製品を能率よく大量1こ生産することが難し
いという問題がある。
Therefore, with conventional equipment, there is a problem in that it is difficult to efficiently produce large quantities of products such as amorphous 11-inch solar cells.

本発明は、このような事情に着目してなされたもので、
減圧空間内響こグロー放電による複数のプラズマ放電場
を形成するよう電極を設け、原料ガスをこれらのプラズ
マ放電場に供給することによって、比較的大形の基板ま
たは比較的広範囲に配置された複数の基板等に良質の非
晶質薄膜を短時間1ζ生成させることができるようにし
たプラズマCVD装置を提供するものである。
The present invention was made with attention to such circumstances, and
By providing electrodes to form multiple plasma discharge fields by echo-glow discharge within a reduced-pressure space and supplying raw material gas to these plasma discharge fields, it is possible to The purpose of the present invention is to provide a plasma CVD apparatus capable of producing a high-quality amorphous thin film in a short period of time on a substrate or the like.

以下、本発明の一実施例を第3図を参照して説明する。An embodiment of the present invention will be described below with reference to FIG.

!@8図は、本発明に係るプラズマCVD装置の概略断
面図である。この装置は、内部に減圧空間lを形成する
減圧容器2を設け、この減圧容器2内の中段位置に網ま
たはくし状の通気性を有した共通電極8を略水平に配置
している。また、前記減圧容器2内の前記共通電極8の
上面gこ対向する部位に1lilの電極4を設けるとと
もに、前記共通電極8の下面に対向する部位−こ第2の
電極5を配設している。そして、前記共通電極8を高周
波電源6に接続するととも暑こ、前記第1、第2の電極
4.5をそれぞれ所定の直流![諒7.8tこ接続し、
前記第1の電極4と前記共通電極8との間着こ第1のプ
ラズマ放電場11を形成するとともに、前記第2の電極
5と前記共通電極8との闇1こ第2のプラズマ放電場1
2を形成している。前記第1の電極4は、受熱板を兼ね
る良伝熱材製のもので該電極4の下(iHこ基板18が
添接させである。そして、この基板18と前記電極4と
はホルダー14によって前記共通電極3と略平行に保持
されている。また、前記電極4の上万近patこは、該
[極4を介して前記基板13を加熱するための加熱板1
5が配設されている。−万、第2の電極5は、多数の小
孔6aを穿設してなる多孔板状のもので、原料ガスGが
該電極5を透過し得るようlこなっている。
! @8 Figure is a schematic cross-sectional view of a plasma CVD apparatus according to the present invention. This device is provided with a reduced pressure container 2 that forms a reduced pressure space 1 therein, and a common electrode 8 having air permeability in the form of a net or comb is disposed approximately horizontally at a middle position within the reduced pressure container 2. Further, a 1 liter electrode 4 is provided at a portion opposite to the upper surface of the common electrode 8 in the decompression vessel 2, and a second electrode 5 is provided at a portion opposite to the lower surface of the common electrode 8. There is. Then, when the common electrode 8 is connected to the high frequency power source 6, the first and second electrodes 4.5 are connected to a predetermined direct current. [7.8 tons are connected,
The space between the first electrode 4 and the common electrode 8 forms a first plasma discharge field 11, and the space between the second electrode 5 and the common electrode 8 forms a second plasma discharge field. 1
2 is formed. The first electrode 4 is made of a good heat conductive material and serves as a heat receiving plate, and a substrate 18 is attached below the electrode 4 (iH).The substrate 18 and the electrode 4 are connected to a holder 14. The electrode 4 is held substantially parallel to the common electrode 3 by a heating plate 1 for heating the substrate 13 via the electrode 4.
5 are arranged. - The second electrode 5 is in the form of a perforated plate having a large number of small holes 6a, and is arranged so that the raw material gas G can pass through the electrode 5.

そして、前記減圧容器2の下端部にガス供給系路16を
接続するととも1c1JH端部lこ真空ポンプ17を含
む排気系路18を接続している。
A gas supply line 16 is connected to the lower end of the decompression vessel 2, and an exhaust line 18 including a vacuum pump 17 is connected to the 1c1JH end.

次いで、本発明に係るプラズマCVD装置の作動を説明
する。
Next, the operation of the plasma CVD apparatus according to the present invention will be explained.

まず、真空ポツプ17を作動させて減圧容器2内をl 
Q   Torr  程度以下の圧力にした後減圧容器
2への原料ガスの流入流出バルブの調節iζよりl T
orr  内外の圧力および必要なガス流速を維持する
とともlこ、加熱板15内のヒータに通電して第1の電
極4の下面にセットした基板13を加熱しておく。また
、各電極8.4.5tζ所定の電圧を印加して、第1の
電極4と共通l!極3との間、および、第2の電極5と
共通電極3との間にそれぞれグロー放電を起させ、前記
共通電極8を介してt1下Eこ隣接する第1のプラズマ
放電場11と第2のプラズマ放電場12とを形成する。
First, operate the vacuum pop 17 to reduce the inside of the vacuum container 2.
After reducing the pressure to below Q Torr, adjust the inflow and outflow valves for the raw material gas into the decompression vessel 2 from iζ to l T
While maintaining the internal and external pressures and the necessary gas flow rate, electricity is supplied to the heater in the heating plate 15 to heat the substrate 13 set on the lower surface of the first electrode 4. Also, a predetermined voltage is applied to each electrode 8.4.5tζ, and the common l! A glow discharge is generated between the pole 3 and between the second electrode 5 and the common electrode 3, and the adjacent first plasma discharge field 11 and the first plasma discharge field 2 plasma discharge fields 12 are formed.

この軟部で、ガス供給系路16から前記減圧容器2内−
、モノンラン(8iL(4)等を含む原料がスGを逐次
供給すると、この原料がスGが、第2の電極5の小孔5
a・・・を通して第2のプラズマ放電場12+こ流入し
、しかる後、共通電極8を透過して第1のプラズマ放電
場11+こ導入される。しかして、この原料がスGは、
前記各プラズマ放電場12.11を順次に通過する際l
こプラズマ分解されることとなり、その分解されたガス
が加熱した基板13の成膜面13aに逐次供給されて該
成膜面18a+こa −S i膜等の非晶質薄膜が生成
される。そして、不用となったガスは排気系路18を通
して。1記鐘叱谷器2外へ排出される。
This soft part connects the gas supply line 16 to the inside of the reduced pressure vessel 2.
, monolan (8iL(4), etc.) When the raw material containing soot G is sequentially supplied, the soot G from this raw material flows into the small hole 5 of the second electrode 5.
The second plasma discharge field 12+ flows in through a, and then passes through the common electrode 8 and is introduced into the first plasma discharge field 11+. However, this raw material is
When sequentially passing through each of the plasma discharge fields 12.11,
This is plasma decomposed, and the decomposed gas is successively supplied to the film-forming surface 13a of the heated substrate 13, thereby producing an amorphous thin film such as the film-forming surface 18a+Co-Si film. Then, the gas that is no longer needed is passed through the exhaust system line 18. 1. The bell is discharged outside.

このようIこしで、基板13の成膜dr+13a+こ所
望の非晶質″isyを生成させることができるゎl、t
であるが、本発明1こ係るプラズマCVD装置は、電極
の対向面間lこグロー放電を起さ・すてプラズマ放電場
11.12を形成させるよう1こしtこものであるため
、放電が不均−lこなるという不都合を招くことなし1
こプラズマ族[1ulL12の広大化を図ることができ
る。すなオ〕ち、基板18の拡大1こ伴って各電極の面
積を大きくすれば、伺らの不都合もなしEζ基板13の
大形止着こ対処することができる。しかも、プラズマ放
電場を多段着こ設は、原料ガスGをこれら各プラズマ放
電場11.12+c順次1こ導くよう磨こしているので
、該ガス0を1分にプラズマ分解することが可能であり
、不純物の少ない良質の非晶質薄膜を短時間1こ生成さ
せることが可能となる。
In this way, the desired amorphous film dr+13a+isy of the substrate 13 can be produced.
However, since the plasma CVD apparatus according to the present invention is designed to cause a glow discharge between the opposing surfaces of the electrodes and form a plasma discharge field 11.12, the discharge does not occur. No inconvenience caused by uniformity 1
This plasma family [1ulL12] can be expanded. That is, if the area of each electrode is increased in accordance with the enlargement of the substrate 18, the large size of the Eζ substrate 13 can be dealt with without the above inconvenience. Moreover, in the multistage plasma discharge field arrangement, the raw material gas G is guided through each of these plasma discharge fields 11.12+c sequentially, so it is possible to plasma decompose 0 of the gas in 1 minute. , it becomes possible to produce a high-quality amorphous thin film with few impurities in a short time.

また、通気性を自した共通電極8を挾んで2つのプラズ
マ放電場11.12をサンドイッチ状−こ形成し、原料
ガスGをこれら各プラズマ放電場11.12に供給する
ようにしているので、簡単でしかも最少の構成部品を用
いてプラズマCVDを確実に実施することができるもの
である。また電極8.4.5と基板18とを本装置のよ
うに組み合せると、放電領域が有効範囲に限定できるの
で、節電を図ることができるとともlこ、非晶質薄膜の
無効付着範囲を減少させることが可能でゐC生5’0 
t lこ比し装置の小形化を図ることができる。
In addition, two plasma discharge fields 11.12 are sandwiched between the common electrode 8, which has air permeability, and the raw material gas G is supplied to each of these plasma discharge fields 11.12. Plasma CVD can be performed easily and reliably using a minimum number of components. Furthermore, when the electrode 8.4.5 and the substrate 18 are combined as in the present device, the discharge area can be limited to the effective range, so power can be saved. It is possible to reduce the
By comparison, the device can be made smaller.

また、本装置の場合、電極間距離(すなわち、共通電極
3と第1のWli4との間、共通電極8と第2の電極5
との間のいずれか、または両方)を電源導入部の設置電
位部への絶縁距離(片万接抱電源の場合)または、その
2倍(両出力浮上i!緑の場合)lこそれぞれ近い寸法
より小さく設定すれば電源導入部1こおける無効(また
は、有害)放電を防止することもできる。
In addition, in the case of this device, the distance between the electrodes (i.e., the distance between the common electrode 3 and the first Wli 4, the distance between the common electrode 8 and the second electrode 5),
(or both of the If it is set smaller than the size, it is also possible to prevent invalid (or harmful) discharge in the power introduction section 1.

f、cJ−、s、本Q明1こ系るプラズマcvp装置1
こおいては、各プラズマ放電場は、連続構成品である板
状のWCa+こより形成されtコものlこ限らず、複数
に分IiJされた単位ft極の集合体lこより形成され
たものであってもよい。
f, cJ-, s, this Qmei 1 series plasma cvp device 1
In this case, each plasma discharge field is formed not only from a plate-shaped WCa+ which is a continuous component, but also from an aggregate of unit ft poles divided into a plurality of parts. There may be.

また、前記実施例1こ限定されないのは勿論であり、例
えば、第4図、第5図、第6図1こ・」〈すような変形
例が考えられる。rなオ〕ち、第4図ja)、(b)、
(C)は、共通電極および第1.第2の110接続する
喧fli+こ関する変形例を示したもので、図中21は
高同波電源と直流電源とを慢合しfコ屯綜である。また
、第5図は、共通の曲率中心を自するオ)ん曲した共通
電極3′、第1.第2の電極4/、5/および基板18
′を使用したものでi)る。さらlこ、第6図は、共通
の減圧容器内lこ復数組の共通電極3II・・・ と、
第1、第2の電極4〃川、5″・・・と、基板13″・
・・と金環状1こ配置したものであり、図中22・・・
は前記各基板13I′・・・を加熱するtこめのヒータ
である。この場合、第1rD電極4′・・・と基板13
″・・・とを共通電極3″・・・の内側に配置し、第2
のm怜5“・・・1に#通電通電th3″・・・の外側
1こ配置& L、でも、去い。Jた、前記実施例では、
第2の電極をも通気性を有するものにし、原料ガスをこ
の第2の電極を透過させて1@2のプラズマ放電場へ導
(ようにしたものについて説明したが、本発明はかなら
ずしもこのようなものに限定されないのは勿論であり、
例えば、第2の電極を通気性のないもの(こし、原料ガ
スを側方から第2のプラズマ放電場へ供給するようlこ
してもよい。さらに、基板は絶縁材製のものであっても
よいし、導電材製のものであってもよい。
It goes without saying that the present invention is not limited to the first embodiment; for example, modifications such as those shown in FIGS. 4, 5, and 6 may be considered. Figure 4 ja), (b),
(C) shows the common electrode and the first . This figure shows a modification related to the second 110 connection. In the figure, 21 is a power supply that connects a high frequency power source and a DC power source. In addition, FIG. 5 shows a curved common electrode 3' having a common center of curvature, the first . Second electrode 4/, 5/ and substrate 18
'i). Furthermore, FIG. 6 shows several sets of common electrodes 3II... in a common vacuum container.
The first and second electrodes 4, 5''... and the substrate 13''...
. . . is arranged in a golden ring shape, and in the figure 22 . . .
is a heater for heating each of the substrates 13I'. In this case, the first rD electrodes 4'... and the substrate 13
″... are placed inside the common electrode 3″..., and the second
Place 1 outside of # energizing th3''... on mrei 5"...1 & L, but leave. In the above example,
Although the second electrode is also made to have air permeability and the raw material gas is transmitted through the second electrode and guided to the 1@2 plasma discharge field, the present invention does not necessarily require such a configuration. Of course, it is not limited to
For example, the second electrode may be made of a non-permeable material, or the material gas may be supplied from the side to the second plasma discharge field.Furthermore, the substrate may be made of an insulating material. Alternatively, it may be made of a conductive material.

本発明は、以上のような構成であるから、比較的大形の
基板または比較的広範囲に配置された複数の基板等に良
質の非晶質薄膜を短時間iこ生成させることができるプ
ラズマCVD装置を提供できるものである。
Since the present invention has the above-described configuration, the present invention is a plasma CVD method that can generate a high-quality amorphous thin film in a short time on a relatively large substrate or a plurality of substrates arranged over a relatively wide area. equipment can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は従来例を示す概略断面図である。第8
図は本発明の一実施例を示す概略断面図である。第4図
(a)、(b)、(e)は本発明のそれぞれ他の実施例
を示す回路図、第5図は、本発明の他の実施例を示す部
分断面図、第6図は本発明のさらに他の実施例を示す概
略平断面図である。 1・・・減圧空間  2・・・減圧容器8.8′、a”
−、共通電極  4.4′、4’−’plの電極  5
.5′、8”−1,2(Dllll極11−・・第1の
プラズマ放電場 12・・・第2のプラズマ放電場 13・・・基板  18&・・・成膜而代理人弁理士赤
澤−博 1
1 and 2 are schematic sectional views showing a conventional example. 8th
The figure is a schematic sectional view showing one embodiment of the present invention. 4(a), (b), and (e) are circuit diagrams showing other embodiments of the present invention, FIG. 5 is a partial sectional view showing another embodiment of the present invention, and FIG. 6 is a circuit diagram showing other embodiments of the present invention. FIG. 7 is a schematic cross-sectional plan view showing still another embodiment of the present invention. 1... Decompression space 2... Decompression container 8.8', a''
-, common electrode 4.4', 4'-'pl electrode 5
.. 5', 8''-1, 2 (Dllll pole 11-...First plasma discharge field 12...Second plasma discharge field 13...Substrate 18&...Film forming agent Patent attorney Akazawa- Hiroshi 1

Claims (1)

【特許請求の範囲】[Claims] 内部Iこ減圧空間を形成する減圧容器と、この減圧容器
内1こ配設した通気性を有する共通電極と前記減圧容器
内における前記共通電極の−(iitこ対向する部位に
配設され前記共通電極との間fこ第1のプラズマ放電場
を形成する第1のt極と、前記減圧容器内lこおける前
記共通電極の他面に対向する部位着こ配設され前記共通
電極とのrIj51こ第2のプラズマ放電場を形成する
第2の電極と、成膜面を前記第1のプラズマ放電場に対
向させて前記第1の電極側に配置した基板と、前記第2
のプラズマ放電場へ原料ガスを供給するガス供給系路と
を具備してなることを特徴とするプラズマCVD装■1
a decompression vessel forming an internal decompression space; a common electrode with air permeability disposed within the decompression vessel; a first t-pole forming a first plasma discharge field between the electrodes and a portion opposite to the other surface of the common electrode in the reduced pressure vessel; a second electrode forming the second plasma discharge field; a substrate disposed on the first electrode side with its film-forming surface facing the first plasma discharge field;
A plasma CVD device (1) characterized in that it is equipped with a gas supply line for supplying raw material gas to a plasma discharge field of
JP7358082A 1982-04-30 1982-04-30 Plasma chemical vapor deposition apparatus Pending JPS58193361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7358082A JPS58193361A (en) 1982-04-30 1982-04-30 Plasma chemical vapor deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7358082A JPS58193361A (en) 1982-04-30 1982-04-30 Plasma chemical vapor deposition apparatus

Publications (1)

Publication Number Publication Date
JPS58193361A true JPS58193361A (en) 1983-11-11

Family

ID=13522375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7358082A Pending JPS58193361A (en) 1982-04-30 1982-04-30 Plasma chemical vapor deposition apparatus

Country Status (1)

Country Link
JP (1) JPS58193361A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964769A (en) * 1982-09-30 1984-04-12 Shimadzu Corp Plasma cvd apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719034A (en) * 1980-07-09 1982-02-01 Fujitsu Ltd Vapor growth apparatus
JPS5858147A (en) * 1981-09-30 1983-04-06 Shimadzu Corp Plasma treating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719034A (en) * 1980-07-09 1982-02-01 Fujitsu Ltd Vapor growth apparatus
JPS5858147A (en) * 1981-09-30 1983-04-06 Shimadzu Corp Plasma treating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5964769A (en) * 1982-09-30 1984-04-12 Shimadzu Corp Plasma cvd apparatus

Similar Documents

Publication Publication Date Title
JPS63187619A (en) Plasma cvd system
JPS58193361A (en) Plasma chemical vapor deposition apparatus
JPS62203328A (en) Plasma cvd apparatus
JP3117366B2 (en) Plasma processing equipment
JPS6117151A (en) Plasma cvd device
JPS60189220A (en) Plasma cvd apparatus
JPS6124467B2 (en)
JPS6116349B2 (en)
JPH02115379A (en) Device for forming thin film
JPH05506836A (en) Dielectric material for ozone generator and method for forming film on dielectric material
JPS59161828A (en) Reaction device
JPH03215671A (en) Cvd method and device by sheet plasma
JPH1092458A (en) Module structure for fuel cell
JPH0891987A (en) Apparatus for plasma chemical vapor deposition
JPS60162777A (en) Plasma cvd apparatus
JPH05347257A (en) Vacuum vapor growth device
JPH06333851A (en) Cvd reaction furnace with double cylinder structure
JP2628529B2 (en) Plasma CVD equipment
JP2881976B2 (en) Plasma CVD equipment
JPH01115122A (en) Wafer treater
JPS59225517A (en) Apparatus for manufacture of amorphous semiconductor
JPS60197877A (en) Cooler
JPS6057614A (en) Device for surface treatment
JPS59223215A (en) Amorphous silicon film forming device
JPH02205685A (en) Apparatus for production thin film