JPS58193328A - Continuous heat treating furnace - Google Patents

Continuous heat treating furnace

Info

Publication number
JPS58193328A
JPS58193328A JP7450682A JP7450682A JPS58193328A JP S58193328 A JPS58193328 A JP S58193328A JP 7450682 A JP7450682 A JP 7450682A JP 7450682 A JP7450682 A JP 7450682A JP S58193328 A JPS58193328 A JP S58193328A
Authority
JP
Japan
Prior art keywords
strip
gas
heating
heated
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7450682A
Other languages
Japanese (ja)
Inventor
Masayuki Yamamoto
昌幸 山本
Koichi Wake
和気 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7450682A priority Critical patent/JPS58193328A/en
Publication of JPS58193328A publication Critical patent/JPS58193328A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To heat a strip in excellent heat efficiency, in heating the strip by a direct firing combustion gas, by arranging a gas permeable solid at a proper angle in the advancing direction of the strip. CONSTITUTION:In heating a strip 2 in a direct firing non-oxidative furnace comprising plural stages, the strip 2 is directly heated by a baking gas containing a non-combustion component and a minute amount of free oxygen generated by combustion due to a burner 4 in an air ratio of 1 or less. After the strip 2 is preheated by the high temp. exhaust gas from a heating furnace, it is heated by direct fire of a weakly oxidative combustion gas in the heating zone equipped with the burner 4. At this time, a gas permeable solid 7 comprising a foamed metal, a sintered metal or porous ceramics is arranged at right angles or a certain angle with respect to the advancing direction of the strip 2 and the combustion exhaust gas is passed through the gas permeable solid 7 to convert the heat contained in the exhaust gas to solid radiant heat. As the result, the strip can be heated in excellent heat efficiency and a heating apparatus itself can be also miniaturized.

Description

【発明の詳細な説明】 本発明は被熱材を直火燃焼ガスで加熱する連続熱処理炉
に関するものである。以下連続熱処理炉を直火無酸化炉
(以降NOFと呼び予熱炉を含む)の例で説明する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous heat treatment furnace for heating a material to be heated with direct combustion gas. The continuous heat treatment furnace will be explained below using an example of a direct fire non-oxidation furnace (hereinafter referred to as NOF and including a preheating furnace).

本発明は第1図に示す一般装置例NOFの■ 伝熱効率
を上昇させ、省エネルギーを計る。
The present invention improves the heat transfer efficiency of NOF, an example of a general device shown in FIG. 1, and saves energy.

■ 伝熱速度を上昇させ設備長さを短くし、設備費の低
減を計る。
■ Reduce equipment costs by increasing heat transfer rate and shortening equipment length.

という目的で、本発明の実施例第2図及び第3図のよう
にストリップ材(被熱材)と直角るるいは適宜角度をも
って部ち炉内におけるガス流れをさえぎる方向に通気性
固体を設置したことを特徴とする連続熱処理炉に関する
ものでろる。
For this purpose, as shown in Figures 2 and 3 of the embodiment of the present invention, a permeable solid is installed at right angles to the strip material (heated material) or at an appropriate angle in a direction that blocks the gas flow in the furnace. This article relates to a continuous heat treatment furnace characterized by the following.

一般に、ストリップ材の加熱方式としては、還元雰囲気
中でのラジアントチューブによる間接加熱と、弱酸化性
の燃焼ガス中での直接加熱がるる。
Generally, heating methods for strip material include indirect heating using a radiant tube in a reducing atmosphere and direct heating in a slightly oxidizing combustion gas.

1ラインとしては、前者の間接加熱のみによる場合と、
低温部を後者の直接加熱、高温部を前者の間接加熱によ
シ行う場合とがるる。
As one line, the former is based only on indirect heating;
There are cases where the low temperature section is heated directly by the latter, and the high temperature section is heated indirectly by the former.

前者の間接加熱は、還元性雰囲気中で加熱するため、ス
トリップ材の酸化がなく表面性状りしては有利でるるか
、間接加熱のため加熱速度が制限され、熱効率も低い。
The former type of indirect heating is heated in a reducing atmosphere, so it does not oxidize the strip material and is advantageous in improving the surface texture, but because it is indirect heating, the heating rate is limited and the thermal efficiency is low.

後者の直接加熱は、空気比1以下で燃焼した未燃分と、
微量のフリ〜02(未反応02)を含む弱酸化性雰囲気
中で加熱するためストリップ材が酸化する。しかし、間
接加熱に比べ加熱速度、熱効率が高いというメリットを
有する。従って、今後さらに直接加熱がよシ多く採用さ
れることが期待されるが、その為にはストリップ材の酸
化を抑制すると共に、加熱速度、熱効率をさらにアンプ
することが課題となる。
The latter direct heating uses unburned matter burned at an air ratio of 1 or less,
The strip material is oxidized because it is heated in a weakly oxidizing atmosphere containing a trace amount of Free-02 (unreacted 02). However, it has the advantage of higher heating speed and thermal efficiency than indirect heating. Therefore, it is expected that direct heating will be used more frequently in the future, but to achieve this, it is necessary to suppress oxidation of the strip material and further increase the heating rate and thermal efficiency.

まず、上記のような特徴を持つ代表的な直火無酸化炉(
NOF)について第1図によシ説明する。1はンール性
と耐火断熱性を有した炉壁、2はストリップ材、3はス
トリップ材の搬送ロール、4は空気比1以下で燃焼する
バーナ一つまシ加熱装置である。5は加熱装置4から供
給された燃焼ガスでストリップ材を加熱するための加熱
室で、通常は加熱室5からの燃焼ガスでストIJツブ材
を予熱するため、加熱室の前面側に予熱室6を有する。
First, let's start with a typical direct-fired non-oxidizing furnace (
NOF) will be explained with reference to FIG. Reference numeral 1 designates a furnace wall having thermal insulation properties and refractory properties, 2 a strip material, 3 a conveyor roll for the strip material, and 4 a heating device with one burner that burns at an air ratio of 1 or less. Reference numeral 5 denotes a heating chamber for heating the strip material with the combustion gas supplied from the heating device 4. Normally, the combustion gas from the heating chamber 5 preheats the strip IJ strip material, so a preheating chamber is provided on the front side of the heating chamber. It has 6.

図中の実矢線は燃焼ガス流れを示したものである。The solid arrows in the figure indicate the flow of combustion gas.

炉温は、最高1200〜1300℃とされておシ、スト
リップ材への伝熱は、主にガスふく射によってなされる
゛。炉壁面の温度は、炉温よシ一般に100〜150℃
低く炉壁面からの固体ふく射は小さい。又、対流による
伝熱量は、ふく射による伝熱量に比べ非常に小さい。従
って、伝熱速度を上げるためには、ガス層の厚さを増加
しなければならないが、設備スペース、コスト面から制
約される。
The furnace temperature is set at a maximum of 1,200 to 1,300°C, and heat transfer to the strip material is mainly performed by gas radiation. The temperature of the furnace wall surface is generally 100 to 150℃ compared to the furnace temperature.
Solid radiation from the furnace wall is small. Further, the amount of heat transferred by convection is very small compared to the amount of heat transferred by radiation. Therefore, in order to increase the heat transfer rate, it is necessary to increase the thickness of the gas layer, but this is limited by equipment space and cost.

本発明は、被熱材を直火燃焼ガスで加熱する連続熱処理
炉において、被熱材進行方向に対し、直角あるいはある
角度をもって通気性固体を設置し、燃焼ガスが通気性固
体を通して前面へ流れることによシ、燃焼排ガスのエネ
ルギーを、通気性固体からの固体ふく射に変換し、被熱
材へ伝え、熱効率を上げると共に伝熱速度の上昇を計ろ
うとするものである。
The present invention is a continuous heat treatment furnace in which materials to be heated are heated with directly fired combustion gas, in which a permeable solid is installed at right angles or at a certain angle to the direction of movement of the material to be heated, and the combustion gas flows to the front through the permeable solid. In particular, it aims to convert the energy of combustion exhaust gas into solid radiation from an air-permeable solid and transfer it to the heated material, thereby increasing thermal efficiency and heat transfer rate.

尚、ここでいう通気性固体とは通気性と適度の圧損を有
する多孔質材のことで、金属系では発泡金属、焼結金属
等があシ、耐火物系ではセラミック多孔体、ポーラスS
iC、アルミナボール結合体等のものがある。
Note that the breathable solid here refers to a porous material that has good air permeability and a suitable pressure drop.Metallic materials include foamed metal, sintered metal, etc., and refractory materials include ceramic porous materials and porous S.
There are products such as iC and alumina ball composite.

一般に、この種の通気性固体は多孔質でるるため、通気
性固体と通過ガス間の熱移動現象は、粉粒体の充填層伝
熱に略近似しておp、通気性固体  I)の相当直径が
、0.01〜1.Ovrm程度であれば、102〜10
”kca17’m”H’cといった大きな対流熱伝達係
数が得られるため、通気性固体の上流側表面温度は略瞬
間的にガス温度近くまで加熱される。又、通気性固体か
ら通過ガス上流側への固体ふく射は、非常に大きいこと
が知られている。
In general, this type of breathable solid is porous, so the heat transfer phenomenon between the breathable solid and the passing gas approximately approximates the heat transfer in a packed bed of granular material. The equivalent diameter is 0.01 to 1. If it is about Ovrm, it is 102 to 10
Since a large convective heat transfer coefficient of "kca17'm"H'c is obtained, the upstream surface temperature of the breathable solid is almost instantaneously heated to near the gas temperature. Furthermore, it is known that solid radiation from the permeable solid to the upstream side of the passing gas is extremely large.

そこで、第4図のように、ストリッチ材2に対面して、
通気性固体7を設置し、実矢線のように燃焼ガスを排出
する構造が考えられる。この構造では、ストリップ材2
と相対する炉壁面全体を通気性固体に変換することが可
能であシ、加熱装置4で生じた燃焼ガスをすべて通気性
固体を通して排出することができる。又、ライン減速時
に加熱装置あるいは別に設けた冷却ガス吹込口から冷却
ガスを吹込み、冷却ガスが通気性固体を通過して短時間
でストリップ材に相対する壁面の温度を下げることによ
シ、ストリップ材の過熱を防ぐことができる。
Therefore, as shown in Fig. 4, facing the stretch material 2,
A structure in which a breathable solid body 7 is installed and combustion gas is discharged as shown by the actual arrow line can be considered. In this structure, the strip material 2
It is possible to convert the entire furnace wall surface facing the air-permeable solid into a gas-permeable solid, and all the combustion gases generated in the heating device 4 can be discharged through the gas-permeable solid. In addition, when the line is decelerated, cooling gas is blown in from the heating device or a separately provided cooling gas inlet, and the cooling gas passes through the breathable solid to lower the temperature of the wall facing the strip material in a short time. Overheating of the strip material can be prevented.

上記のように第4図の構造は多くのメリットを有するが
、反面燃焼ガスが通気性固体を通過する際の空塔速度(
ガス通過速度)が制限される。一般に、通気性固体を通
過するガスの空塔速度が大きい程大きな伝熱量を得るこ
とができる(第5図)。
As mentioned above, the structure shown in Figure 4 has many advantages, but on the other hand, the superficial velocity (
gas passing rate) is limited. Generally, the greater the superficial velocity of gas passing through the gas permeable solid, the greater the amount of heat transfer can be obtained (Figure 5).

第4図の構造では、空塔速度が小さく、熱伝達係数が小
さいという欠点を有する。
The structure shown in FIG. 4 has the drawbacks of a small superficial velocity and a small heat transfer coefficient.

本発明は、上記欠点を改善するものであシ、以下第2図
及び第3図に基づき一実施例を説明する。
The present invention aims to improve the above-mentioned drawbacks, and one embodiment will be described below with reference to FIGS. 2 and 3.

第2,3図の本発明例ではNOF炉内に、ス) +7ツ
プ材2の進行方向に対し直角方向に通気性固体7をスト
リップ材の両面側に取付ける。ここで、ストリップ材2
のバタッキ、形状不良等により、通気性固体7を破損し
ないよう又板きずを生じないよう、ストリップ材2と通
気性固体7との間知は一般に100〜l 5 Q mm
の間隔をとる必要がある。
In the example of the present invention shown in FIGS. 2 and 3, permeable solids 7 are attached to both sides of the strip material in a direction perpendicular to the traveling direction of the strip material 2 in the NOF furnace. Here, strip material 2
In order to prevent damage to the air permeable solid 7 due to flopping, poor shape, etc., and to avoid scratches on the plate, the distance between the strip material 2 and the air permeable solid 7 is generally 100 to 15 Q mm.
It is necessary to take an interval of

加熱装置4で発生した燃焼ガスは、ストリップ材2と対
向し前面へ流れる。燃焼ガスが通過した通気性固体7の
上流側面の温度は、燃焼ガス温度とほぼ等しくなシ、又
通気性固体7面からの固体ふく射が従来のガスふく射よ
シ大きい為、上流側のストリップ材2へ従来のガスふく
射による伝熱量以上のエネルギーが伝ゎシ、伝熱速度が
上昇する。同時に、通気性固体7を通過した後の燃焼ガ
スの温度は通気性固体7がない場合よシ低くなシ熱効率
が上昇する。
Combustion gas generated by the heating device 4 flows toward the front facing the strip material 2. The temperature of the upstream side of the air-permeable solid 7 through which the combustion gas has passed is almost equal to the combustion gas temperature, and the solid radiation from the air-permeable solid 7 is larger than the conventional gas radiation. 2, more energy is transferred than the amount of heat transferred by conventional gas radiation, and the heat transfer rate increases. At the same time, the temperature of the combustion gas after passing through the air permeable solid 7 is lower than in the absence of the air permeable solid 7, and the thermal efficiency is increased.

又、第2図のように通気性固体7を配置した場合rは、
通過する燃焼ガスの空塔速度は0.25〜1、9 Nm
/ Sとなシ、前述した第5図に示す空塔速度の条件を
十分に満足できる。
In addition, when the air permeable solid 7 is arranged as shown in Fig. 2, r is
The superficial velocity of the combustion gas passing through is 0.25-1.9 Nm
/S, the above-mentioned superficial velocity conditions shown in FIG. 5 can be fully satisfied.

以上、被熱材としてストリップ材2の場合を、竪型の連
続熱処理炉によって説明したが、横型においても同様で
あシ、又、丸鋼、バ1プ等の連続熱処理炉に対しても、
本発明の適用は可能でろる。
Above, the case of the strip material 2 as the material to be heated has been explained using a vertical continuous heat treatment furnace, but the same applies to a horizontal type, and also to continuous heat treatment furnaces for round steel, bulges, etc.
Application of the present invention may be possible.

本発明は、以上の通p被熱材進行方向に対し、直角るる
いはある角度をもって、伝熱促進効果を有した通気性固
体を設置したことを特徴とした連続熱処理炉でアシ、従
来炉及び第4図のように通気性固体な被熱材に対し平行
に設置した炉に比べ、伝熱速度及び熱効率の改善が可能
なため、同一加熱T/Hの場合、炉設備長さの減少、又
は、排ガス温度の低下が可能という多くの特徴を有した
ふ続熱処理炉でろる。
The present invention is a continuous heat treatment furnace characterized by installing an air permeable solid having a heat transfer promoting effect at right angles or at a certain angle to the direction of progress of the material to be heated. And as shown in Figure 4, compared to a furnace installed parallel to the air-permeable solid material to be heated, it is possible to improve the heat transfer rate and thermal efficiency, so the length of the furnace equipment can be reduced for the same heating T/H. Alternatively, it can be treated in a continuous heat treatment furnace that has many features such as being able to lower the exhaust gas temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の連続熱処理炉の縦断面図、第2図は本発
明の連続熱処理炉の縦断面図、第3図は本発明の部分詳
細図、第4図は本発明以外の連続熱処理炉例縦断面図、
第5図は本発明と第4図の装置例との熱伝達係数比較図
である。 ■・・・炉壁、  2・・・ストリップ材、  3・・
・搬送ロール、 4・・・加熱装置、 5・・・加熱室
、 6・・予熱室、 7・・・通気性固体 特許出願人代理人 弁理士 矢 葺 知 之 (ほか1名) 第1図 1311 第4図
Fig. 1 is a longitudinal sectional view of a conventional continuous heat treatment furnace, Fig. 2 is a longitudinal sectional view of a continuous heat treatment furnace of the present invention, Fig. 3 is a partial detailed view of the present invention, and Fig. 4 is a continuous heat treatment other than the present invention. Furnace example vertical cross-sectional view,
FIG. 5 is a comparison diagram of heat transfer coefficients between the present invention and the device example shown in FIG. ■... Furnace wall, 2... Strip material, 3...
・Conveyance roll, 4...Heating device, 5...Heating chamber, 6...Preheating chamber, 7...Patent attorney representing the applicant for the breathable solid patent Tomoyuki Yafuki (and one other person) Figure 1 1311 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 被熱材を直火燃焼ガスで加熱する連続熱処理炉内におい
て、被熱材進行方向に対し適宜角度をもって通気性固体
を配設し、燃焼ガスが通気性固体を通して前面へ流れる
ことによシ燃焼排ガスのエネルギーを、通気性固体から
の固体ふく射に変換して被熱材へ伝え、熱効率を上げる
と共に伝熱速度の上昇を計ることを可能とする連続熱処
理炉。
In a continuous heat treatment furnace that heats the material to be heated with direct combustion gas, a permeable solid is placed at an appropriate angle to the direction of movement of the material to be heated, and the combustion gas is combusted by flowing toward the front through the permeable solid. A continuous heat treatment furnace that converts the energy of exhaust gas into solid radiation from an air-permeable solid and transfers it to the heated material, increasing thermal efficiency and increasing the heat transfer rate.
JP7450682A 1982-05-06 1982-05-06 Continuous heat treating furnace Pending JPS58193328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7450682A JPS58193328A (en) 1982-05-06 1982-05-06 Continuous heat treating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7450682A JPS58193328A (en) 1982-05-06 1982-05-06 Continuous heat treating furnace

Publications (1)

Publication Number Publication Date
JPS58193328A true JPS58193328A (en) 1983-11-11

Family

ID=13549270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7450682A Pending JPS58193328A (en) 1982-05-06 1982-05-06 Continuous heat treating furnace

Country Status (1)

Country Link
JP (1) JPS58193328A (en)

Similar Documents

Publication Publication Date Title
US4235591A (en) Continuous flow oven
US3314666A (en) Fast fire tunnel kiln
JPS58193328A (en) Continuous heat treating furnace
US3542349A (en) Radiation-type heating furnace with atmosphere regulation
JPH1180808A (en) Method for sintering compact consisting of metal powder and continuous sintering furnace
JPS5433212A (en) Preventing apparatus for dew condensation in exhaust gas from industrial furnace
JP3044286B2 (en) Continuous annealing furnace
GB902674A (en) System for baking carbonaceous products or the like
JP3861009B2 (en) Refractory firing atmosphere furnace
SU513228A1 (en) Tunnel oven
JPS5818085A (en) Preheater for material to be heated
JPS6330370B2 (en)
JPH0236647B2 (en) RENZOKUKANETSURONIOKERUHAIGASURYOHOHO
JP3023184B2 (en) Continuous tunnel furnace
JPS645964B2 (en)
JPS6233006Y2 (en)
JPH0526580A (en) Continuous baking furnace
JPS5827924A (en) Heating method of material to be heated
JPS60256785A (en) Control method in continuous type calciner
SU681310A1 (en) Method of heating products in a furnace with a finely dispersed bed
JPS5754220A (en) Heat-treating furnace
JPS6135553Y2 (en)
SU964396A1 (en) Tunnel furnace
JPS575825A (en) Heat treatment furnace for long material
SU794082A1 (en) Method of indirect heating