JPS58192908A - Control device of combined cycle turbine plant - Google Patents

Control device of combined cycle turbine plant

Info

Publication number
JPS58192908A
JPS58192908A JP7606582A JP7606582A JPS58192908A JP S58192908 A JPS58192908 A JP S58192908A JP 7606582 A JP7606582 A JP 7606582A JP 7606582 A JP7606582 A JP 7606582A JP S58192908 A JPS58192908 A JP S58192908A
Authority
JP
Japan
Prior art keywords
circuit
steam turbine
turbine
temperature
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7606582A
Other languages
Japanese (ja)
Inventor
Tatsuo Arii
有井 達夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP7606582A priority Critical patent/JPS58192908A/en
Publication of JPS58192908A publication Critical patent/JPS58192908A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To reduce thermal stresses in a waste heat recovery boiler and steam turbine by providing a limit value output circuit that outputs a limit value with receiving input from a drum temperature limiting circuit and steam turbine temperature limiting circuit. CONSTITUTION:A combined cycle turbine plant consists of a gas turbine 5 and steam turbine 11. A plant control device 17 is provided with the drum temperature limiting circuit 30 for waste heat recovery boiler 7, a steam turbine temperature limiting circuit 35, and a limiter 33 that operates by the output from a limit value output circuit 32. The fuel signal from a low value preference circuit 22 is converted to opening signal by an opening control circuit 21 to adjust the opening of a fuel control valve 3. With this arrangement thermal stresses in the waste heat recovery boiler 7 and the steam turbine 11 can be reduced even in starting and sudden change in loading.

Description

【発明の詳細な説明】 〔発明の接衝分野〕 本発明は、ガスタービンと蒸気タービンとを組合せた、
コンバインド8サイクルタービンプラントの而:御装置
に係り、とくに起動時や負荷急変時における、蒸気ター
ビンおよび排熱回収ボイ2の熱応力を14減する制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Contact Field of the Invention] The present invention provides a system that combines a gas turbine and a steam turbine.
This invention relates to a control device for a combined 8-cycle turbine plant, and in particular to a control device that reduces thermal stress of the steam turbine and exhaust heat recovery boiler 2 by 14 during startup or sudden load changes.

〔発明の技術的背景〕[Technical background of the invention]

ガスタービンと、その排ガスを熱源として生じた、発生
蒸気によシ駆動される蒸気タービンからなる、コンバイ
ンドサイクルタービンプラントは、熱効率が高いため、
近年とくに注目されている。
Combined cycle turbine plants, which consist of a gas turbine and a steam turbine driven by the generated steam generated using its exhaust gas as a heat source, have high thermal efficiency.
It has received particular attention in recent years.

コノコンバインドサイクルタービンプラントには、数台
のガスタービンと、排熱回収ボイラおよび7台の蒸気タ
ービンが組合せられたタイプや、ガスタービンと排熱回
収ボイラおよび蒸気タービン6フ台よりなるタイプ等が
ある。なかでも、ガスタービジと蒸気タービンを一軸に
連結したものは、設置場所が比較的狭くてよいため、近
年多く採用されようとしている。第1図はガスタービン
と蒸気タービン6フ台よシなり、しかも−軸で連結され
たタイプの、コンバインドサイクルタービンプラントで
あって、第1図において空気圧縮機lによって圧縮され
た空気は、燃焼器−に供給され、そこで主燃料制御弁3
を有する主燃料供給管弘を経て供給される主燃料の燃焼
によつて加熱され、高温ガスとなってガスタービン!に
供給される。
Cono combined cycle turbine plants include a type that combines several gas turbines, an exhaust heat recovery boiler and seven steam turbines, and a type that consists of a gas turbine, an exhaust heat recovery boiler, and six steam turbines. be. Among these, those in which a gas turbine and a steam turbine are connected to a single shaft have been increasingly adopted in recent years because they require a relatively small installation space. Figure 1 shows a combined cycle turbine plant in which a gas turbine and a steam turbine are connected to each other by a six-wheel shaft. is supplied to the main fuel control valve 3.
It is heated by the combustion of the main fuel supplied through the main fuel supply pipe, which has a main fuel supply pipe, and turns into high-temperature gas to the gas turbine! supplied to

上記ガスタービン!に供給された高温ガスは、そのガス
タービンjで仕事を行ない、同一軸に連結された発電機
4を駆動し、また、上記ガスタービンjから排出された
高温の排ガスは、排熱回収ボイラヱに供給され、その熱
源とされている。上記排ガスは、過熱器I、蒸発りおよ
び節炭器IOを経るうちに、蒸気および給水と熱交換し
、温度が低下して大気に放出される。一方、蒸気タービ
ンiiにて仕事を終え、復水器/コで凝縮された給水は
、給水ポンプ13を経て、節炭器/θで加熱され、ドラ
ム/lに導入される。その後給水は循環ポンプ/Sを経
て蒸発器りを通る間に蒸発し、その発生蒸気は、ドラム
/4’にて汽水分離された後、過熱器rで過熱される。
The gas turbine above! The high-temperature gas supplied to the gas turbine j performs work in the gas turbine j to drive the generator 4 connected to the same shaft, and the high-temperature exhaust gas discharged from the gas turbine j is sent to the waste heat recovery boiler e. It is supplied as a heat source. The exhaust gas exchanges heat with steam and feed water while passing through the superheater I, evaporator, and economizer IO, lowers its temperature, and is released into the atmosphere. On the other hand, the feed water that has completed its work in the steam turbine ii and has been condensed in the condenser/co passes through the feed water pump 13, is heated by the economizer/θ, and is introduced into the drum/l. Thereafter, the feed water is evaporated while passing through the circulation pump/S and the evaporator, and the generated steam is separated from brackish water in the drum/4' and then superheated in the superheater r.

この過熱蒸気は、蒸気加減弁16を経て蒸気ターヒン/
ハこ供給され、その蒸気タービン//で膨張仕事を行な
い、同一軸に連結された発電機ぶを駆動する。
This superheated steam passes through a steam control valve 16 and then passes through a steam control valve 16.
The steam turbine performs expansion work and drives a generator connected to the same shaft.

このようなコンバインドサイクルタービンプラントの制
御は、主燃料制御弁3を有する、主燃料供給1<<から
燃焼器コヘ供給される燃料の量を、上記主燃料1b1]
御弁3にて調節して行なわれる。すなわち、要求負荷に
対応して、制御装置Uにより、制御弁3の開度を調整し
て、燃料の量を調節すれば、ガスタービンjの負荷が制
御でき、さらに、ガスタービンjから排出される排ガス
の温度、流量が調節されるため、排熱回収ボイラヱへの
入熱量が変化し、これに伴って必然的に蒸気タービン/
lへの蒸気供給像が変化して、蒸気タービン//の負荷
が制御できる。蒸気加減弁/6は、通常運転中は全開の
ま捷で保持され、従って排熱回収ボイラヱで発生する発
生蒸気は、すべて蒸気タービン//に供給され、コンバ
インドサイクルタービンプラントの熱効率を高くしてい
る。このように、ガスタービン!を制御する制御装置U
によシ、プラント全体の起動・停止、負荷調節の制御が
行なわれている。
The control of such a combined cycle turbine plant is such that the amount of fuel supplied to the combustor from the main fuel supply 1<<, which has the main fuel control valve 3, is controlled by controlling the amount of fuel supplied to the combustor from the main fuel 1b1]
This is done by adjusting the control valve 3. That is, if the control device U adjusts the opening degree of the control valve 3 and the amount of fuel in accordance with the required load, the load on the gas turbine j can be controlled, and furthermore, the amount of fuel discharged from the gas turbine j can be controlled. As the temperature and flow rate of the exhaust gas are adjusted, the amount of heat input to the exhaust heat recovery boiler changes, and as a result, the steam turbine/
By changing the steam supply profile to l, the load on the steam turbine // can be controlled. The steam control valve 6 is kept fully open during normal operation, so all the steam generated in the heat recovery boiler is supplied to the steam turbine, increasing the thermal efficiency of the combined cycle turbine plant. There is. Like this, a gas turbine! A control device U that controls
The system also controls the start/stop of the entire plant and load adjustment.

しかして、制衝装置Uは、点火からガスタービン!が定
格回転数に達するまで制御する起動制御回路/lと、ガ
スタービン!の回転数を常に定格回転数に維持させ、速
度調定率に従って負荷要求に追従せしめる燃料信号を出
力する速度制御回路/9と、ガスタービン!から排出さ
れる排ガスの温度から、燃焼温度を演算し、この燃焼温
度が許容値以内になるような燃料信号を出力する、燃焼
温度制御回路−を有し、さらに上記起動制御回路/I。
However, the damping device U is used from the ignition to the gas turbine! Start control circuit/l that controls until the rated rotation speed is reached, and the gas turbine! A speed control circuit/9 that outputs a fuel signal to always maintain the rotation speed of the gas turbine at the rated rotation speed and follow the load request according to the speed regulation rate, and a gas turbine! and a combustion temperature control circuit which calculates a combustion temperature from the temperature of exhaust gas discharged from the exhaust gas and outputs a fuel signal such that the combustion temperature falls within an allowable value, and further includes the startup control circuit /I.

速度制御回路19および、燃焼温度制御回路−から出力
された燃料信号のうち、最小値を開度制御回路21に出
力する低値優先回路−を有する。そのため上記開度制御
回路コ/には、常時燃焼温度制限を越えず、しかも回転
数、負荷の要求値に追従する燃料16号が入力されてい
る。さらにこの燃料信号を一度指令信号に変換して、主
燃料制御弁Jの開度がv4wJされている。
It has a speed control circuit 19 and a low value priority circuit which outputs the minimum value of the fuel signals output from the combustion temperature control circuit to the opening degree control circuit 21. Therefore, fuel No. 16 that does not exceed the combustion temperature limit and that follows the required values of rotational speed and load is always input to the opening control circuit. Furthermore, this fuel signal is once converted into a command signal, and the opening degree of the main fuel control valve J is increased by v4wJ.

〔背景技術の問題点〕[Problems with background technology]

しかるに上述のごとく、従来技術においては、ガスター
ビン!の燃焼温度は許容値以下に制限されているが、排
熱回収ボイラヱのドラムlダや、循環ポンプ/6の厚肉
部および蒸気タービンl/の熱応力eこついては、何等
考慮されておらず、そのために疋;励時や負荷急変時に
おいて、排熱回収ポイラヱや蒸気タービン//に熱応力
が加わり、機器の寿命を短くする要因をなしているとい
う問題がある。
However, as mentioned above, in the conventional technology, gas turbines! Although the combustion temperature of the steam turbine is limited to below the allowable value, no consideration is given to the thermal stress of the drum of the exhaust heat recovery boiler, the thick wall of the circulation pump, and the steam turbine. Therefore, there is a problem in that thermal stress is applied to the exhaust heat recovery boiler and the steam turbine during excitation or sudden changes in load, which shortens the life of the equipment.

〔発明の目的〕[Purpose of the invention]

本発明は、このような点に鑑みてなされたもので、起動
時や負荷急変時においても、排熱回収ボイラや蒸気ター
ビンの熱応力を軽減する、コンバインドサイクルタービ
ンプラントの、制御装置を提供することを目的とする。
The present invention has been made in view of these points, and provides a control device for a combined cycle turbine plant that reduces thermal stress in an exhaust heat recovery boiler and a steam turbine even during startup or sudden changes in load. The purpose is to

〔発明の概要〕[Summary of the invention]

本発明は、コンバインドサイクルタービンプラントにお
ける、起動を制御する起動制御回路、速度・負荷を制御
する速度制御回路、ガスタービンの燃焼温度を制御する
燃焼温度制御回路および上記各回路の出力の最小値を出
力する、低値優先回路を有するプラント制御装置におい
て、排熱回収ボイラのドラムに設置した、ドラム温度検
出器からの信号を入力する、ドラム温度制限回路と、蒸
気タービンに設けた蒸気タービン温度検出器からの信号
を入力する蒸気タービン温度制限回路と、上記λつの温
度制限回路からの入力を得て、制限値を出力する制限値
出力回路と、その制限値出力回路からの出力によシ動作
する、制限器を設けたことを特徴とする。
The present invention provides a startup control circuit for controlling startup, a speed control circuit for controlling speed and load, a combustion temperature control circuit for controlling combustion temperature of a gas turbine, and a minimum value of the output of each of the above circuits in a combined cycle turbine plant. In a plant control device that has a low value priority circuit that outputs a low value, there is a drum temperature limiting circuit that inputs a signal from a drum temperature detector installed in the drum of the exhaust heat recovery boiler, and a steam turbine temperature detection circuit installed in the steam turbine. A steam turbine temperature limiting circuit that inputs signals from the steam turbine, a limit value output circuit that receives input from the above-mentioned λ temperature limit circuits and outputs a limit value, and operates based on the output from the limit value output circuit. It is characterized by being equipped with a restrictor.

〔発明の実施例〕[Embodiments of the invention]

以下第一図を参照して、本発明の一実施例について説明
する。なお、第1図と同一部分には同一符号を付し、そ
の説明は省略する。
An embodiment of the present invention will be described below with reference to FIG. Note that the same parts as in FIG. 1 are given the same reference numerals, and their explanations will be omitted.

第一図において符号30は、ドラム温度制限回路であつ
て、そのドラム温度制限〜j路JOK¥i、ドラムl弘
の上下面に設けられ、それぞれメタル温度を検出するド
ラム温度検出器J/、 31’からの検出信号が人力さ
れている。また、上6己ド2ム温度制限回路3θ、は、
入力されたドラム上下面温度の差を演算し、この温1J
E差があらかじめドラム/ダの大きさ、#質等から決定
されている許容値以下であるか否かを、4出し、許容値
以上である場合、制限値出力回路3コに信号を出力し、
制限値出力回路32は、これにより山11限器33を動
作させて、低値優先回路nからの燃料1g号の上昇を抑
制するように制限を加える。なお、ドラム温度検出器3
/、3/’は、本実施例のように、ドラム/4’の上下
面に設置する場合や、ドラム/弘の内外面に設置し、内
外面温度差を測定する場合、−まには、上下面と内外面
に設置し、上下thI温度差と内外面温度差を、ともに
測定する場合がある。一方、蒸気タービンl/の第1段
シェルの内外面に取付けられた、蒸気タービン温度検出
器評、3弘′〃・らの検出信号は、蒸気タービン温度制
限回路35に人力され、その蒸気タービン温度制限回路
3jで、内外面温度差が算出され、この値をもとに、蒸
気タービンl/の寿命消費率を演算し、あらかじめ設定
された寿命消費率以内であるか、否かの判断の後、内外
面温度差が大きすぎる場合には、制限値出力回路3コに
信号を出力し、制限値出力回路3コは、この温度差の大
きさにより変化する制限値を、制限器33に入力し、低
値優先回路−からの燃料信号に制限を加える。制限値出
力回路3コは、ドラム温度制限回路3θと、蒸気タービ
ン温度制限回路3Sからの温度差(1号、および温度差
と許容値との偏差を人力し、この偏差が大きい場合には
、制限値を低く抑え、偏差が小さい場合には制限値を大
きく詐容し、ドラム温度制限と蒸気タービン温度制限の
うち、小さい制限値を制限器33に出力する。そして低
値優先回路nからの燃料信号を、ドラムl弘の上下面ま
たは内外面温度差が許容値以内になるように、または蒸
気タービンl/の内外面温度差が許容値以内になるよう
に制限する。
In FIG. 1, reference numeral 30 denotes a drum temperature limiting circuit, which includes drum temperature detectors J/, which are provided on the upper and lower surfaces of the drum 1, and detect the metal temperature, respectively. The detection signal from 31' is manually generated. In addition, the upper 6th dome temperature limiting circuit 3θ is,
Calculate the input temperature difference between the upper and lower surfaces of the drum, and calculate this temperature by 1J.
It outputs 4 signals to determine whether the E difference is less than the allowable value determined in advance from the drum/da size, #quality, etc., and if it is above the allowable value, outputs a signal to the limit value output circuit 3. ,
The limit value output circuit 32 thereby operates the mountain 11 limiter 33 and applies a limit so as to suppress the rise of fuel No. 1g from the low value priority circuit n. In addition, the drum temperature detector 3
/, 3/' are installed on the upper and lower surfaces of the drum /4' as in this embodiment, or when installed on the inner and outer surfaces of the drum/hiro to measure the temperature difference between the inner and outer surfaces. , may be installed on the upper and lower surfaces and the inner and outer surfaces, and both the upper and lower thI temperature difference and the inner and outer surface temperature difference may be measured. On the other hand, a detection signal from a steam turbine temperature detector installed on the inner and outer surfaces of the first stage shell of the steam turbine 1/1 is inputted manually to the steam turbine temperature limiting circuit 35, The temperature limit circuit 3j calculates the temperature difference between the inner and outer surfaces, calculates the life consumption rate of the steam turbine l/ based on this value, and determines whether or not it is within a preset life consumption rate. After that, if the temperature difference between the inside and outside surfaces is too large, a signal is output to the three limit value output circuits, and the three limit value output circuits send a limit value that changes depending on the size of this temperature difference to the limiter 33. input and limit the fuel signal from the low value priority circuit. The limit value output circuit 3 manually calculates the temperature difference (No. 1) from the drum temperature limit circuit 3θ and the steam turbine temperature limit circuit 3S, and the deviation between the temperature difference and the allowable value, and if this deviation is large, The limit value is kept low, and when the deviation is small, the limit value is falsified to a large value, and the smaller limit value of the drum temperature limit and the steam turbine temperature limit is output to the limiter 33.Then, the limit value is output from the low value priority circuit n. The fuel signal is limited so that the temperature difference between the upper and lower surfaces or the inner and outer surfaces of the drum 1 is within a tolerance value, or the temperature difference between the inner and outer surfaces of the steam turbine 1/ is within a tolerance value.

この制限された燃料信号が開度制御回路2/で開度信号
に変換され、燃料制御弁3の開閉を調節する。
This limited fuel signal is converted into an opening signal by the opening control circuit 2/, and the opening/closing of the fuel control valve 3 is adjusted.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ドラムに設置され
たドラム温度検出器からの検出1d号を入力す51ドラ
ム温度制限回路と、蒸気タービンに設けられた蒸気ター
ビン温度検出器からの検出信号を人力する晶気タービン
温ぜ制限回路と、上記2つの温W 7LilJ限回路か
らの入力信号を得て、制限値を出力する制限値出力回路
と、その制限値出力回路、からの出力により動作せしめ
られる制限器が設けられたことにより、起動時や負荷急
変時においても、排熱回収ボイラや蒸気タービンの温度
を許容値以内になるように、ガスタービンが運転される
ため、排熱回収ボイラや蒸気タービのの熱応力全軽減す
ることができ、ひいては機器の寿命を長くすることがで
きる等の効果を奏する。
As explained above, according to the present invention, the 51 drum temperature limiting circuit inputs the detection number 1d from the drum temperature detector installed in the drum, and the detection signal from the steam turbine temperature detector installed in the steam turbine. It is operated by the output from the limit value output circuit, which receives the input signals from the two temperature W7LilJ limit circuits and outputs the limit value. By installing the restrictor, the gas turbine is operated to keep the temperature of the exhaust heat recovery boiler and steam turbine within the allowable value even during start-up or sudden load changes, so the exhaust heat recovery boiler It is possible to completely reduce the thermal stress of steam turbines and steam turbines, which has the effect of extending the life of the equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のコンバインドサイクルタービンプラント
の制御装置系統図、第2図は本発明の一実施例によるタ
ービンプラントの制御装置系統図である。 !・・・ガスタービン、 ヱ・・・排熱回収ボイラ、/
/・・・蒸気タービン、21・・・開度制御回路、 n
・・・低値優先回路、 30・・・ドラム温度制限回路
、 3/。 3/’・・・ドラム温度検出器、 32川制限値出力回
路、33・・・制限器、31t、34′・・・蒸気ター
ビン温度検出器、3j・・・蒸気タービン温度制限回路
。 出願人代理人  緬 股   清
FIG. 1 is a system diagram of a control system of a conventional combined cycle turbine plant, and FIG. 2 is a system diagram of a system of a control system of a turbine plant according to an embodiment of the present invention. ! ...Gas turbine, E...Exhaust heat recovery boiler, /
/...Steam turbine, 21...Opening control circuit, n
...Low value priority circuit, 30...Drum temperature limit circuit, 3/. 3/'...Drum temperature detector, 32 river limit value output circuit, 33...Restrictor, 31t, 34'...Steam turbine temperature detector, 3j...Steam turbine temperature limit circuit. Applicant's agent Kiyoshi Muta

Claims (1)

【特許請求の範囲】[Claims] コンバインドサイクルタービンプラントにおける、起動
を制御する起動制御回路、速度・負荷を制御する速度制
御回路、ガスタービンの燃焼温度制御回路および、上記
各回路の出力の最小値を出力する、低値優先回路を有す
るプラント制御装置において、排熱回収ボイラのドラム
に設置した、ドラム温度検出器からの信号を入力する、
ドラム温度制限回路と、蒸気タービンに設けた蒸気ター
ビン温度検出器からの信号を入力する蒸気タービン温度
制限回路と、上−己λつの温度制限回路からの入力を得
て、制限値を出力する制限値出力回路と、その制限値出
力回路からの出力により、動作する制限器を設けたこと
を特徴とする、コンバインドサイクルプラントの制御装
置。
In a combined cycle turbine plant, a startup control circuit that controls startup, a speed control circuit that controls speed and load, a gas turbine combustion temperature control circuit, and a low value priority circuit that outputs the minimum value of the output of each of the above circuits. In a plant control device with
A drum temperature limiting circuit, a steam turbine temperature limiting circuit that inputs signals from a steam turbine temperature detector installed in the steam turbine, and a limiter that receives inputs from the upper and lower temperature limiting circuits and outputs a limit value. 1. A control device for a combined cycle plant, comprising a value output circuit and a limiter operated by the output from the limit value output circuit.
JP7606582A 1982-05-07 1982-05-07 Control device of combined cycle turbine plant Pending JPS58192908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7606582A JPS58192908A (en) 1982-05-07 1982-05-07 Control device of combined cycle turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7606582A JPS58192908A (en) 1982-05-07 1982-05-07 Control device of combined cycle turbine plant

Publications (1)

Publication Number Publication Date
JPS58192908A true JPS58192908A (en) 1983-11-10

Family

ID=13594372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7606582A Pending JPS58192908A (en) 1982-05-07 1982-05-07 Control device of combined cycle turbine plant

Country Status (1)

Country Link
JP (1) JPS58192908A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0093118A1 (en) * 1981-11-09 1983-11-09 Gen Electric Hrsg damper control.
JPS60122804A (en) * 1983-12-07 1985-07-01 株式会社日立製作所 Pressure-change operating boiler stress monitor device
US5099643A (en) * 1989-01-26 1992-03-31 General Electric Company Overspeed protection for a gas turbine/steam turbine combined cycle
US5404708A (en) * 1992-07-15 1995-04-11 Siemens Aktiengesellschaft Method for operating a gas and steam turbine plant and gas and steam turbine plant operating according to the method
EP1072760A1 (en) * 1999-07-30 2001-01-31 ABB Alstom Power (Schweiz) AG Method of starting a combined power plant and combined power plant for carrying out the method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0093118A1 (en) * 1981-11-09 1983-11-09 Gen Electric Hrsg damper control.
EP0093118A4 (en) * 1981-11-09 1985-06-06 Gen Electric Hrsg damper control.
JPS60122804A (en) * 1983-12-07 1985-07-01 株式会社日立製作所 Pressure-change operating boiler stress monitor device
US5099643A (en) * 1989-01-26 1992-03-31 General Electric Company Overspeed protection for a gas turbine/steam turbine combined cycle
US5404708A (en) * 1992-07-15 1995-04-11 Siemens Aktiengesellschaft Method for operating a gas and steam turbine plant and gas and steam turbine plant operating according to the method
EP1072760A1 (en) * 1999-07-30 2001-01-31 ABB Alstom Power (Schweiz) AG Method of starting a combined power plant and combined power plant for carrying out the method

Similar Documents

Publication Publication Date Title
US5203160A (en) Combined generating plant and its start-up control device and start-up control method
JP3481983B2 (en) How to start a steam turbine
US4287430A (en) Coordinated control system for an electric power plant
US4578944A (en) Heat recovery steam generator outlet temperature control system for a combined cycle power plant
KR910003260B1 (en) Control system and method for a steam turbine having a steam bypass arrangement
JP4909853B2 (en) Power plant and control method thereof
KR100268611B1 (en) Combined cycle power plant and supplying method of coolant therof
US4854121A (en) Combined cycle power plant capable of controlling water level in boiler drum of power plant
EP0933505B1 (en) Steam cooled system in combined cycle power plant
CA2262722C (en) Gas turbine combined plant, method of operating the same, and steam-cooling system for gas turbine hot section
EP0928882B1 (en) Steam cooling apparatus for gas turbine
JPS58192908A (en) Control device of combined cycle turbine plant
US4665706A (en) Control system for variable pressure once-through boilers
JPS5925853B2 (en) Power plant operation control method and device for implementing this method
JP7185507B2 (en) Steam turbine equipment, method for starting steam turbine equipment, and combined cycle plant
US6279308B1 (en) Cooling steam control method for combined cycle power generation plants
EP0065408B1 (en) Control systems for boilers
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
EP0942152A1 (en) Cooling steam control method for combined cycle power generation plants
JPS6149487B2 (en)
JPS5870007A (en) Apparatus for controlling combined cycle power plant
JPS58107805A (en) Control of turbine for combined cycle power generation
JPS6242123B2 (en)
JPS60228711A (en) Turbine bypass control device for combined cycle electric power plant
JPH02130202A (en) Combined plant