JPS58192370A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58192370A
JPS58192370A JP7522382A JP7522382A JPS58192370A JP S58192370 A JPS58192370 A JP S58192370A JP 7522382 A JP7522382 A JP 7522382A JP 7522382 A JP7522382 A JP 7522382A JP S58192370 A JPS58192370 A JP S58192370A
Authority
JP
Japan
Prior art keywords
metal layer
wafer
layer
semiconductor device
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7522382A
Other languages
Japanese (ja)
Other versions
JPH0423821B2 (en
Inventor
Mitsuhiro Mori
森 光廣
Katsutoshi Saito
斉藤 勝利
Takao Mori
孝夫 森
Katsuaki Chiba
千葉 勝昭
Masayoshi Kobayashi
正義 小林
Nobu Satou
佐藤 矗
Hiroshi Kato
弘 加藤
Masamichi Kobayashi
正道 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7522382A priority Critical patent/JPS58192370A/en
Publication of JPS58192370A publication Critical patent/JPS58192370A/en
Publication of JPH0423821B2 publication Critical patent/JPH0423821B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To suppress the diffusion of constituting atoms and an ohmic contact forming metal of a substrate into an Au layer, which is used as an electrode, by a method wherein a metal layer consisting of Pd is provided on the metal layer, having Au as a base material, formed on a III-V group compound semiconductor substrate. CONSTITUTION:A P type ohmic electrode 32 is formed on the wafer 31 consisting of n-GaAs crystal. Then, Au-Ge-Ni 33 is vapor-deposited on the back side of the wafer 31. While the above vapor-deposition procedure is performed, an alloy reaction is generated between n-GaAs and Au-Ge-Ni alloy and an excellent ohmic contact is formed. Then, a Pd film 34 is vapor-deposited on the above. Desirably, a metal such as Au 35, for example, is vapor-deposited on the film 34. This film 34 can suppress the diffusion of Ge, Ga and the like on the surface of Au, thereby enabling to form a highly reliably ohmic electrode.

Description

【発明の詳細な説明】 本発明は■−■族化合物半導体に対するオーム性電極を
構成する構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structure constituting an ohmic electrode for a ■-■ group compound semiconductor.

電極形成技術に要求される問題点の一つとしてボンディ
ング性がある。通常このワイヤボンディングは熱圧着法
により行なわれている。すなわち純粋なAuとAut−
用いて熱圧着すると非常に強固な接合が得られている。
One of the problems required for electrode formation technology is bondability. This wire bonding is usually performed by thermocompression bonding. That is, pure Au and Au-
When thermocompression bonding is performed using this method, a very strong bond is obtained.

従来よシ化合物半尋体に対するオーム性電極については
、AuQe/Ni/A u 、 A U  G e  
N j / A ’ * A uS fl /A u 
、 A u  Z n / A u等が使われていた。
Conventionally, as for ohmic electrodes for silica compound semicircular bodies, AuQe/Ni/A u , A U G e
N j / A' * A uS fl /A u
, A u Z n / A u etc. were used.

しかしこれらの二層あるいは三層構造のtC極は蒸着中
あるいは電極形成工程後のCVD法等を用いることによ
って熱処理工程を通ると半導体構成原子やオーム性接触
形成金属のAu層への拡散が抑制できなかった。このた
めAu表面の変成にょシワイヤポンディング性を悪くす
るという欠点があった。
However, when these two-layer or three-layer tC electrodes undergo a heat treatment process during vapor deposition or after the electrode formation process by using a CVD method, diffusion of semiconductor constituent atoms and ohmic contact forming metals into the Au layer is suppressed. could not. For this reason, there was a drawback that wire bonding properties were deteriorated due to the deformation of the Au surface.

このような欠点を避けるために、Au−Ge/’r a
 / A uのような三層溝造により解決する方法もあ
る。(特開昭56−29365 )この他Ta以外にW
、Ptを用いる方法もあるがそれぞれ密着性、エツチン
グ性に問題がある。また上記高融点金1jA (Ta、
 W、 P を等)はエレクトロンビーム蒸着法によら
ねばならず、半導体レーザ、発光ダイオードのように5
0μm〜100μm厚のウェーハに蒸着する時、次のよ
うな欠点を生じる。この問題点を第1図を用いて説明す
る。この場合編融点金属蒸着源14の上方のウェーハホ
ルダー11にウェーハ12を固定しなければならない。
In order to avoid such drawbacks, Au-Ge/'ra
There is also a method to solve this problem by using a three-layer trench structure like A u. (Unexamined Japanese Patent Publication No. 56-29365) In addition to Ta, W
There are also methods using Pt, but each has problems with adhesion and etching properties. In addition, the above-mentioned high melting point gold 1jA (Ta,
W, P, etc.) must be produced by electron beam evaporation, and the
When depositing on a wafer with a thickness of 0 μm to 100 μm, the following drawbacks occur. This problem will be explained using FIG. 1. In this case, the wafer 12 must be fixed to the wafer holder 11 above the melting point metal vapor deposition source 14.

ウェーハは薄くかつ■−■族化合物半導体の強度は弱く
固定のためウェーハにネジ13などで力を加えて抑える
と割れたりして取扱い上の困難が生じる。なお、m1図
において13はエレクトロンビーム、15はビームを発
生するWフィラメント、16は水冷るつぼである。
The wafer is thin and the strength of the ■-■ group compound semiconductor is weak and fixed, so if the wafer is held down by applying force with the screws 13 or the like, it will break, making handling difficult. In the m1 diagram, 13 is an electron beam, 15 is a W filament that generates the beam, and 16 is a water-cooled crucible.

本発明の目的は化合物半導体の構成原子やオーム性接触
形成金属が電極であるAu層へ拡散するのを抑制した為
信頼性のオーム性電極を提供することである。しかもワ
イヤポンディング強度力強く、且当該1!極形成のため
の蒸着工程で薄い化合物半導体のウェーハを破損する恐
汎のない簡便な方法で製作可能である。この製造上のオ
リ点は蓋産品を対象とする本発明の半導体装置用のオー
ム性電極の大きい利点である。
An object of the present invention is to provide a reliable ohmic electrode that suppresses diffusion of the constituent atoms of a compound semiconductor and the metal forming an ohmic contact into the Au layer that is the electrode. Moreover, the wire pounding strength is strong and the 1! It can be manufactured using a simple method that does not cause damage to thin compound semiconductor wafers during the vapor deposition process for forming the electrodes. This manufacturing advantage is a great advantage of the ohmic electrode for semiconductor devices of the present invention intended for lid products.

上記の目的を達成するために下記の411成を取る。In order to achieve the above purpose, the following 411 configurations are taken.

その骨子は、 (1)  III−Va化合物半導体基体に対し、該基
体との関にオーム性接触を構成し且Auを主体とする第
1の金J/i4層を設けること、 (2)第1の金属層上にpdからなる第2の金属層を設
けることである。
The main points are: (1) providing a first gold J/i4 layer mainly composed of Au and forming an ohmic contact with the III-Va compound semiconductor substrate; A second metal layer made of PD is provided on the first metal layer.

AM、 ’l’4に!!c111tll(°ils#h
o*avc*ip+Jvc   。
AM, 'l'4! ! c111tll(°ils#h
o*avc*ip+Jvc.

せしむる九めAu等よシなる第3の金属層が設けられる
。但し、Pd層をその目的のため十分に厚くすれば必ず
しも必要ではない。しかし、Pd層の形成を通常の蒸着
法に依る場合、余り厚いPd層は形成しにくいのでこの
方法は1利ではない。
A third metal layer, such as Au, is provided. However, this is not necessary if the Pd layer is made thick enough for that purpose. However, if the Pd layer is formed by a normal vapor deposition method, it is difficult to form an excessively thick Pd layer, so this method is not very advantageous.

本発明はPdより成る第2の金属層によって化合物半導
体基体の構成原子(たとえばGaAsの場合はGa)或
いはオーム性接触形成金属(たとえばZn)等が当咳峨
極層に拡散することを抑制することができ、十分に高信
頼性を確保することができる。
The present invention suppresses the diffusion of constituent atoms of the compound semiconductor substrate (for example, Ga in the case of GaAs) or ohmic contact forming metals (for example, Zn) into the polar layer by the second metal layer made of Pd. It is possible to ensure sufficiently high reliability.

本発明は化合物半導体基体表面に高濃度の不純物層が形
成されていない基体に適用して極めて有用である。
The present invention is extremely useful when applied to a compound semiconductor substrate on which a highly concentrated impurity layer is not formed.

前記第1の金属層としては通常、■−■族化合物半導体
の導電性と一致する不純物元素を少なくとも含有し且A
uを主成分とする合金が用いられる。PJtlU形に対
してはAu−7,n、Au−Be。
The first metal layer usually contains at least an impurity element matching the conductivity of the ■-■ group compound semiconductor, and
An alloy containing u as a main component is used. Au-7,n, Au-Be for PJtlU type.

N導電形に対してはAu−8i、Au−Ge。Au-8i, Au-Ge for N conductivity type.

Au−Ge−N i、Au−8n等が代表的な例である
Representative examples include Au-Ge-Ni and Au-8n.

これら合金の不[9元素の含有蓋は、この合金を溶融し
た場合、化合物半導体基体内に制磯度に不純物をドープ
可能な程度を目安とされる。
The content of the impurities in these alloys is determined to be such that when the alloys are melted, the impurities can be doped in a controlled manner into the compound semiconductor substrate.

例えばA u −7,nの場合、Znは10〜20Wi
−’7o、 A uG eの場合、Geは4〜12Wi
−% 8度である。
For example, in the case of A u -7,n, Zn is 10 to 20 Wi
-'7o, for A uG e, Ge is 4~12Wi
-% 8 degrees.

第1の金属層は通常200nrn〜300nmが採用さ
れる。膜厚の下限は溶融の後、少なくとも連続的な膜が
形成出来る程度となす。上限は蒸着の容易さ等信の要因
で決定して良い。
The first metal layer usually has a thickness of 200 nm to 300 nm. The lower limit of the film thickness is such that at least a continuous film can be formed after melting. The upper limit may be determined based on factors such as ease of vapor deposition.

第2の金属層は50nm〜650nmが採用される。前
述したように第2の金属層(Pd層)は厚くても良く、
この場合、第3の金属層を省略し得る。しかし、Pdを
650nm以上に厚く蒸着することは不可能ではないが
困難が伴う。
The second metal layer has a thickness of 50 nm to 650 nm. As mentioned above, the second metal layer (Pd layer) may be thick;
In this case, the third metal layer may be omitted. However, although it is not impossible to deposit Pd thicker than 650 nm, it is difficult.

第3の金属層は通常Auを用い300nm以上となして
いる。
The third metal layer is usually made of Au and has a thickness of 300 nm or more.

本発明は通常の抵抗嶽加熱法を利用することができる。The present invention can utilize a conventional resistance heating method.

第2図を用いてこの方法を説明する。蒸着金属22をフ
ィラメント21につるす。これをウェーハ24の上方に
配置すれば、ウェーハの固定は必要なく、加熱用カーボ
ン板23の上に置くだけで良い。
This method will be explained using FIG. Vapor deposited metal 22 is suspended from filament 21. If this is placed above the wafer 24, there is no need to fix the wafer, and it is sufficient to simply place it on the heating carbon plate 23.

P d 1d(1)高融点金属でめ9拡散のバリアとし
て憬能する。(2)iIk層工程でウェーハの固定の必
要のない抵抗線加熱法を用いることができる0本発明の
電属は特に■−■族化合物半導体素子の製造上、蒸着工
程で50〜100μmの厚みを扱う必要のある場合特に
有効である。
P d 1d (1) A high melting point metal that acts as a diffusion barrier. (2) In the iIk layer process, a resistance wire heating method that does not require fixing the wafer can be used. This is particularly effective when it is necessary to handle

以下、本発明を実施例によって詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to Examples.

最初にオーム性−極の形成条件について説明し次いでG
aAs−GaAtAs  レーザの製作工程の実際につ
いて述べる。
First, we will explain the conditions for forming the ohmic pole, and then
The actual manufacturing process of an aAs-GaAtAs laser will be described.

まずN型GaAsKA u −G e−N io金(i
iJtばAU−12wt%Ge−4wt%Ni)を抵抗
線加熱法で200nm〜300nmJl;層する。この
蒸着中にウェーハは360C〜380Cに加熱して蒸着
アロイをする。次にウェーハ温度を150C〜250C
に下げてpd、Auを連続蒸着する。
First, N-type GaAsKA u -G e-Nio gold (i
AU-12wt%Ge-4wt%Ni) is layered to a thickness of 200 nm to 300 nm by a resistance wire heating method. During this vapor deposition, the wafer is heated to 360C to 380C to deposit the alloy. Next, adjust the wafer temperature to 150C to 250C.
PD and Au are continuously deposited at a lower temperature.

Pdの厚みは5Qnm以上あれば充分バリアとなってお
シAuの表(3)へのQe、Ga等の拡散を抑えること
ができる。またその後熱処理工程を必要とする場合はさ
らにその際の1L時間に合わせてPdを厚くしておけば
良い。Auの厚みは300nm以上あればワイヤボンデ
ィングに支障はない。
If the thickness of Pd is 5 Qnm or more, it will act as a sufficient barrier and can suppress the diffusion of Qe, Ga, etc. into the Au surface (3). Further, if a heat treatment step is required after that, the Pd may be made thicker in accordance with the 1L time at that time. If the thickness of Au is 300 nm or more, there will be no problem in wire bonding.

N型InP についても同様の工程が可能であることは
本発明の梢神から言っても明らかでおる。
It is clear from the present invention that a similar process is possible for N-type InP.

次に実際の半導体レーザの作製時のウェーハエ機につい
て第3図(1)〜(3)を用いて述べる。第4図は半導
体レーザの斜視図である。
Next, a wafer wafer machine used for actually manufacturing a semiconductor laser will be described using FIGS. 3 (1) to (3). FIG. 4 is a perspective view of the semiconductor laser.

(1)n −GaAs (100ン結晶にエピタキシャ
ル成長法でGaAtAs f表面にし、レーザとしての
機能を待たせるために必要な結晶構造となるように加工
を終えたウェーハ31にPオーム性電極32を形成する
。このときのウェーハ厚みは45QAtmである。電極
にはCr/A u二層膜を約1〜1.3μmn厚み被部
する。ホトエッチングエ1で電極のエツチングを行ない
、スフライプレろを形成する(第3図(1))。
(1) A P-ohmic electrode 32 is formed on a wafer 31 that has been processed to have a GaAtAs f surface by epitaxial growth on an n-GaAs (100 nm) crystal and has the crystal structure necessary to function as a laser. The wafer thickness at this time is 45QAtm.A Cr/Au two-layer film is coated on the electrode to a thickness of approximately 1 to 1.3 μm.The electrode is etched in photo-etching step 1 to form a splice plate. (Figure 3 (1)).

(2)続いてウェーハの表面を研磨および歪とシェツチ
ングする。エツチング液はllt 8 U4klt 0
t−H,0系を用いる。ウェーハ厚みを最終的に100
〜120μmにする(第3図(2))。これはレーザチ
ップのへき囲が容易におこなえる厚さである。
(2) Subsequently, the surface of the wafer is polished, strained, and etched. Etching liquid is llt 8 U4klt 0
The t-H,0 system is used. The final wafer thickness is 100
~120 μm (Figure 3 (2)). This is a thickness that allows the laser chip to be easily separated.

同時に局部的に大きな圧力がかかるような取扱いを行な
うとウエーノ・を破損する厚みでもある。
At the same time, it is also thick enough to damage the wafer if it is handled in a way that places a large amount of local pressure on it.

(3)’)−L−ハIIC先に説明したAu−Qe−N
i/Pd/AH三層膜を抵抗線加熱法によって連続蒸着
する。蒸着中の真空度は3 X 10−”Torrであ
る。まずウェーハ温度を3600に設定し、4分間でA
11−ae−Niaaを300nm蒸着する。
(3)')-L-HaIICAu-Qe-N explained earlier
A three-layer i/Pd/AH film is successively deposited by resistance wire heating. The degree of vacuum during deposition is 3 × 10-” Torr. First, the wafer temperature is set to 3600 °C, and A
11-ae-Niaa is deposited to a thickness of 300 nm.

この間n−(JaAsとAu−Qe−Ni合金(fcと
えば、Au84wt%、Ge12wt%、Ni4Wi%
 )は蒸着中にアロイ反応をおこし、良好なオーミック
接触を形成する。次にウエーノ・@lkを200t:’
下げて、Pdji[34を200nm、、Au35を8
00nm連続蒸着し、全11極膜厚を1.3μmにする
(第3図(3))。
During this time, n-(JaAs and Au-Qe-Ni alloy (fc, for example, Au84wt%, Ge12wt%, Ni4Wi%
) causes alloying reaction during deposition and forms good ohmic contact. Next, Ueno @lk for 200t:'
Pdji [34 to 200 nm, Au35 to 8
00 nm continuous deposition to make the total 11 electrode film thickness 1.3 μm (FIG. 3 (3)).

(4)ウェーハエ機の終ったチップは400μm×30
0μmX 100μmtの寸法にへき−とスフ2イブに
より分割する(第4図)。破後にノくツシペーション膜
としてスパッタ810*Iilをチップのへき開面へ被
着して鋼面を保護する。このときスパッタ時にチップの
温度は上昇するがNオーム性′に他のボンダビリティ−
は劣化しない。
(4) The finished chip of the wafer machine is 400 μm x 30
Divide into dimensions of 0 μm x 100 μm by a groove and a cross section (Fig. 4). After the chip is broken, sputtered 810*Iil is deposited as a cleavage film on the cleavage surface of the chip to protect the steel surface. At this time, the temperature of the chip increases during sputtering, but due to the N-ohm property and other bondability
does not deteriorate.

今のガは基板がGaAlの場合であるが、InP−In
GaAIP系などの半導体レーザの場合でも■nP基板
に対して同僚である。
In the current case, the substrate is GaAl, but InP-In
Even in the case of semiconductor lasers such as GaAIP type, it is similar to nP substrate.

またオーム性a触形成金属層がAu−Ge。Further, the ohmic a-contact forming metal layer is Au-Ge.

Au−8t合金等であっても同じである。The same applies to Au-8t alloy and the like.

さらに基板としてP型基板を用いるレーザの場合はオー
ム性接触形成金X+−がたとえばAu−7、n合金によ
って形成される点が異なるだけである。
Furthermore, in the case of a laser using a P-type substrate as the substrate, the only difference is that the ohmic contact-forming gold X+- is formed of, for example, an Au-7,n alloy.

さらにPdはAuのエツチング液であるNH,I−■、
糸のエツチング液でエツチング可能であり、11L極の
パターンニングが必要な場合も問題ない。
Furthermore, Pd is an etching solution for Au, NH,I-■,
It can be etched with a thread etching solution, and there is no problem even if patterning of 11L poles is required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエレクトロンビーム蒸着法を説明する模式図、
第2図は抵抗線加熱蒸着法を説明する模式図、第3図は
レーザ装置の電極形成工程を示す装置のWr面図である
、第4図はレーザ装置の斜視図である。 31・・・ウェーハ、33・・・オーム性接触形成の第
1の金一層(Au−Qe−Ni等)、34−P dより
なる第2の金属J−135・・・第3の金属部(例え!
 1 図 6 第 2 目 VJ 3 図 (3〕 5 冨4 図 第1頁の続き σ■発 明 者 小林正装 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 @発 明 者 佐藤蟲 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 0発 明 者 加藤弘 高崎市西横手町111番地株式会 社日立製作所高崎工場内 ()■発 明 者 小林正道 高崎市西横手町111番地株式会 社日立製作所高崎工場内 363−
Figure 1 is a schematic diagram explaining the electron beam evaporation method.
FIG. 2 is a schematic diagram illustrating the resistance wire heating vapor deposition method, FIG. 3 is a Wr plane view of the device showing the electrode forming process of the laser device, and FIG. 4 is a perspective view of the laser device. 31... Wafer, 33... First gold layer (Au-Qe-Ni, etc.) for forming ohmic contact, 34-Second metal made of Pd J-135... Third metal part (example!
1 Figure 6 2nd VJ 3 Figure (3) 5 Tomi 4 Continuation of figure 1 page σ ■ Inventor Kobayashi Shosou 1-280 Higashikoigakubo, Kokubunji City Hitachi, Ltd. Central Research Laboratory @ Inventor Sato Mushi Kokubunji City 1-280 Higashi-Koigakubo, Hitachi, Ltd., Central Research Laboratory Inventor: Hirokato Kato, Hitachi, Ltd., Takasaki Factory, 111 Nishi-Yokote-cho, Takasaki-shi Inventor: Masamichi Kobayashi, 111 Nishi-Yokote-cho, Takasaki City, Hitachi, Ltd. Manufacturing site Takasaki factory 363-

Claims (1)

【特許請求の範囲】 1、l[[−Vm化合物半導体基体と、該基体との間に
オーム性接触を構成し且Auを主体とする第1の金属層
と、該第1の金属層上に設けられたpdからなる第2の
金属層とを少なくとも有する半導体装置。 2、前記第2の金属層上に第3の金属層を有して成るこ
とを特徴とする特許請求の範囲第1項記載の半導体装置
。 3、第3の金属層がALIよりなることを特徴とする特
許請求の範囲第2項記載の半導体装置。 4、前記第1の金属層が当該半導体基体内でN4電形を
構成する不純物を含有し且Auを主体とした金属よりな
9且削記半導体基体の第1の金属層と接触する領域がN
導電形なることを特徴とする特許請求の範囲第1項、第
2項又は第3項記載の半導体装置。 5、@記第1の金属層が当該半導体基体内でP4電形t
−構成する不純物を官有し且ALIを主体とした金鵬よ
シなp且前記半導体基体p第1の金属層と接触する領域
がP導電形なることを特徴とする特許請求の範囲第1項
、第2項又は第3項記載の半導体装置。
[Scope of Claims] 1, l[[-Vm compound semiconductor substrate; a first metal layer mainly composed of Au and forming an ohmic contact between the substrate; and a first metal layer on the first metal layer. A semiconductor device including at least a second metal layer made of PD provided in the semiconductor device. 2. The semiconductor device according to claim 1, further comprising a third metal layer on the second metal layer. 3. The semiconductor device according to claim 2, wherein the third metal layer is made of ALI. 4. The first metal layer contains an impurity constituting the N4 electric type in the semiconductor substrate and is made of a metal mainly composed of Au. N
The semiconductor device according to claim 1, 2, or 3, characterized in that it is of a conductive type. 5. @The first metal layer has a P4 electric type t in the semiconductor substrate.
Claim 1, characterized in that: - a metal layer containing impurities and consisting mainly of ALI, and a region in contact with the first metal layer of the semiconductor substrate P is of P conductivity type. , the semiconductor device according to item 2 or 3.
JP7522382A 1982-05-07 1982-05-07 Semiconductor device Granted JPS58192370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7522382A JPS58192370A (en) 1982-05-07 1982-05-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7522382A JPS58192370A (en) 1982-05-07 1982-05-07 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS58192370A true JPS58192370A (en) 1983-11-09
JPH0423821B2 JPH0423821B2 (en) 1992-04-23

Family

ID=13570008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7522382A Granted JPS58192370A (en) 1982-05-07 1982-05-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58192370A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460531A1 (en) * 1990-06-07 1991-12-11 Siemens Aktiengesellschaft Contact metallisation on semiconductor material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092083A (en) * 1973-12-12 1975-07-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092083A (en) * 1973-12-12 1975-07-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460531A1 (en) * 1990-06-07 1991-12-11 Siemens Aktiengesellschaft Contact metallisation on semiconductor material

Also Published As

Publication number Publication date
JPH0423821B2 (en) 1992-04-23

Similar Documents

Publication Publication Date Title
JP3271475B2 (en) Electrical element joining material and joining method
TWI278090B (en) Solderable top metal for SiC device
EP0070435B1 (en) Semiconductor device comprising a semiconductor substrate bonded to a mounting means
JP2983486B2 (en) Semiconductor substrate having a brazing material layer
US4321617A (en) System for soldering a semiconductor laser to a metal base
CN105103272A (en) Method for manufacturing semiconductor device
CA1224886A (en) Semiconductor device and process for producing the same
US5731224A (en) Method for manufacturing ohmic contacts for compound semiconductors
US6320265B1 (en) Semiconductor device with high-temperature ohmic contact and method of forming the same
US6191485B1 (en) Semiconductor device
JPS58192370A (en) Semiconductor device
US3942244A (en) Semiconductor element
JPH10335259A (en) Semiconductor device and manufacture thereof
JPH0139222B2 (en)
JP2708798B2 (en) Method of forming electrode of silicon carbide
KR0146356B1 (en) Brazing material for forming a bond between a semiconductor wafer and a metal contact
WO2005008757A1 (en) n-TYPE OHMIC ELECTRODE FOR n-TYPE GROUP III NITRIDE SEMICONDUCTOR, SEMICONDUCTOR LIGHT-EMITTING DEVICE WITH THE ELECTRODE, AND METHOD FOR FORMING n-TYPE OHMIC ELECTRODE
JP3142318B2 (en) Semiconductor device
JPS6016463A (en) Ohmic electrode
JPS63253633A (en) Manufacture of semiconductor device
JPS61231760A (en) Compound semiconductor element
JPS59107510A (en) Ohmic electrode forming method in compound semiconductor
JPS6220338A (en) Manufacture of semiconductor device
JPH09106959A (en) Ohmic electrode of compound semiconductor and formation thereof
JP2000340685A (en) Glass seal electronic component