JPS59107510A - Ohmic electrode forming method in compound semiconductor - Google Patents

Ohmic electrode forming method in compound semiconductor

Info

Publication number
JPS59107510A
JPS59107510A JP57216826A JP21682682A JPS59107510A JP S59107510 A JPS59107510 A JP S59107510A JP 57216826 A JP57216826 A JP 57216826A JP 21682682 A JP21682682 A JP 21682682A JP S59107510 A JPS59107510 A JP S59107510A
Authority
JP
Japan
Prior art keywords
layer
metal layer
compound semiconductor
ohmic electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57216826A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Mori
森 光廣
Takao Mori
孝夫 森
Motonao Hirao
平尾 元尚
Katsutoshi Saito
斉藤 勝利
Kuninori Imai
今井 邦典
Katsuaki Chiba
千葉 勝昭
Hiroshi Kato
弘 加藤
Masamichi Kobayashi
正道 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57216826A priority Critical patent/JPS59107510A/en
Publication of JPS59107510A publication Critical patent/JPS59107510A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04252Electrodes, e.g. characterised by the structure characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3235Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide ohmic electrode with small contact resistance and high reproductivity, by a method wherein on a compound semiconductor crystal with P as main constituent element is formed a high-melting metal layer at a low temperature, and Au layer is formed on the uppermost layer, and then the heat treatment is performed at such temperature and time that the Au layer and the semiconductor crystal do not react to produce alloy. CONSTITUTION:In order to form electrodes in alignment with buried layers 202, 203 and a cap layer 207, an insulation film layer 208 from SiO2 film is formed on a surface, and part of the insulation layer 208 is bored and then a first metal layer 209 is formed by means of vacuum evaporation. A second metal layer 210 of Mo, Pt or the like is formed thereon, and further a third metal layer 211 of Au is formed thereon. The second metal layer 210 is interposed between the first metal layer 209 and the third metal layer 211 of Au used to facilitate the bonding and serves to prevent reaction during the heat treatment. In this constitution, ohmic electrode with good reproductivity and small contact resistance is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明tit電極形成方法に関し、詳しくはリンPを含
む川−V族化合物半導体結晶及び混晶、例えばGaIn
PあるいはGaInAsp等の化合物半導体のウェーハ
上に電極を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for forming a tit electrode.
The present invention relates to a method of forming electrodes on a wafer of a compound semiconductor such as P or GaInAsp.

〔従来技術〕[Prior art]

従来、p InP、 p−InGaAsP系の化合物半
導体に対しては、生KAuベースの合金(側光ばAuZ
n/ALl、AuMg/Au等)ノ多層構m(D金属膜
によりオーム性電極を形成していた。これらの金属膜を
蒸着あるいはメッキ後、N2あるいはHll  N2ガ
ス芥囲気で半導体との合金化処理を施す。
Conventionally, for p-InP and p-InGaAsP-based compound semiconductors, raw KAu-based alloys (side-lighting AuZ
The ohmic electrode was formed using a metal film (D). After depositing or plating these metal films, they were alloyed with a semiconductor in an atmosphere of N2 or HllN2 gas. Apply processing.

合金化によりオーム性電極を作る方法は、半導体と金属
膜を互いに溶ける温度まで加熱する。ついで冷却過程で
半導体は再結晶するが、このとき金属(例えばA u 
)中に添加されている不純物(例えばZn2Mg)をと
り込みながら成長する。
The method of making ohmic electrodes by alloying involves heating a semiconductor and a metal film to a temperature where they melt together. Then, during the cooling process, the semiconductor recrystallizes, but at this time metals (for example, Au
) grows while incorporating impurities (for example, Zn2Mg) added in the film.

この結果、接触するバルク牛導体と同型の高a#ドーピ
ング層をつくる。しかしこの合金化処理によってAuと
半導体構成元素からなる商抵抗の金属間化合物層をその
界面に形成すると、かえって接触抵抗を上ける結果とな
り好ましくない。また合金化が不十分な場合は、高濃贋
ドーピング層が十分に形成されないため接触抵抗が高く
、これも好ましくない。InおよびP’を主要構成元素
とする化合物半導体ではこのオーム性電極を形成する際
の最適熱処理条件の範囲が狭く、素子の量産の場合再現
性良く良好なオーム性電極を得ることは困難である。
This results in a high a# doping layer that is the same type as the contacting bulk conductor. However, if an intermetallic compound layer with a quotient resistance consisting of Au and semiconductor constituent elements is formed at the interface by this alloying treatment, the contact resistance will increase on the contrary, which is not preferable. Furthermore, if the alloying is insufficient, the highly concentrated counterfeit doping layer will not be sufficiently formed, resulting in high contact resistance, which is also undesirable. In compound semiconductors whose main constituent elements are In and P', the range of optimal heat treatment conditions when forming ohmic electrodes is narrow, and it is difficult to obtain good ohmic electrodes with good reproducibility when mass producing devices. .

〔発明の目的〕[Purpose of the invention]

本発明の目的はリン(P)を主要構成元素として含む■
−■族化合物半導体に対して再現性の良い接触抵抗の小
さいオーム性電極形成法を提供することにある。
The object of the present invention is to contain phosphorus (P) as a main constituent element.
- To provide a method for forming ohmic electrodes with good reproducibility and low contact resistance for group compound semiconductors.

〔発明の概要〕[Summary of the invention]

半導体表面に高濃度ドーピング層を形成する方法として
は、先に述べた合金化の他に不純物元素の拡散あるいけ
イオン打込みによる方法がある。
In addition to the above-mentioned alloying, methods for forming a highly doped layer on the semiconductor surface include diffusion of impurity elements or ion implantation.

この後、電極に高融点金属を被着すれは、熱的に安定で
耐熱性の良いオーム性電極が得られる。しかしPは気化
しやすいため、高融点金塊被着時のウェーハ温度によっ
ては、蒸着前の加熱によってPが気化して金属−半導体
界面に変成層を形成する。このため、その後の熱処理に
よっても接触抵抗が高く良いオーム性を極とならない。
Thereafter, by coating the electrode with a high melting point metal, a thermally stable and heat resistant ohmic electrode is obtained. However, since P is easily vaporized, depending on the wafer temperature at the time of depositing the high melting point gold ingot, P may be vaporized by heating before vapor deposition to form a metamorphosed layer at the metal-semiconductor interface. Therefore, even after subsequent heat treatment, the contact resistance is high and good ohmic properties cannot be obtained.

そこでウェーハ表面からのPの気化を防止するため、低
温で被着した俊、高温で熱処理したところ良好なオーム
性電極になることが明らかになった。
Therefore, in order to prevent the evaporation of P from the wafer surface, it was revealed that the material deposited at a low temperature was heat-treated at a high temperature, resulting in a good ohmic electrode.

第1図はp−InP基板101(Znドープ5x 10
”/cm” ;ρ= 0.05Ω−Crn)上にp”−
Ino、tGao、eASo−2Po、s 層102(
厚さ0.4 μm;Zn表面濃度〜10′9/crn3
)を設けたウエーノ・に裏面全面(p −I n P基
板側)にAuZn/Au2虐の合金電位103を、表面
(p+−I nostGao、5ASo、2Po、s層
側)に第1の金属層104に’l’ i 5 Q n 
mを第2の金属層105にMo 200 n me、第
3の金属層106にAU500nmを用いた円形の電極
(60μmφ)をもつ構造のチップであり、円形電極の
オーム性を調べる目的でつくられたものである。第2図
および第3図はこの電流電圧特性を示すものである。
FIG. 1 shows a p-InP substrate 101 (Zn doped 5x 10
p”- on “/cm”; ρ=0.05Ω-Crn)
Ino, tGao, eASo-2Po, s layer 102 (
Thickness 0.4 μm; Zn surface concentration ~10'9/crn3
) was provided with an AuZn/Au2 alloy potential 103 on the entire back surface (p-I n P substrate side), and a first metal layer on the front surface (p+-I nostGao, 5ASo, 2Po, s layer side). 'l' in 104 i 5 Q n
This chip has a circular electrode (60 μmφ) using Mo 200 nm for the second metal layer 105 and AU 500 nm for the third metal layer 106, and was created for the purpose of investigating the ohmic properties of the circular electrode. It is something that FIGS. 2 and 3 show this current-voltage characteristic.

第2図の曲ftM108はウェーハに第1の金属層10
4(’l”i)を室温で蒸着したものであり、多層構造
の電極全蒸着したのみで熱処理前の特性である。これを
水素雰囲気中で400C,10分間の熱処理を施すこと
によって曲線107に示すような直線性の良いオーム性
電極が得られた。この時の接触比抵抗はρc”1〜3X
10−’Ω−crAであった。第3図の曲線11(lウ
ェーノミに第1の金属層104(’l’i)を2000
の条件で蒸着した多層金属電極の電流電圧特性であシ、
これに同様の熱処理を施したものの電流″ε圧特性が曲
線109である。いずれも良い直藏性が得られずオーム
性を極になっていない。第4図は第1層のTiの蒸着温
度を変えた場合について、400C熱処理後の上記多層
電極のρCの層化を調べたものである。これから明らか
なように200C未満の温度で第1層の金属を蒸着し、
その後400Cまで加熱することによって良好なオーミ
ンク電極となる。なおAuがp”  Ino*5Gao
、tASo、2Pa、s層と反応するまで熱処理温度を
上けるとかえって接触抵抗が上昇する。これはAuベー
スの合金型ili;惨に比べて、反応開好温度も550
Cと高く、耐熱性に優れていることが明らかとなった。
The curve ftM108 in FIG.
4 ('l"i) was deposited at room temperature, and the characteristics are those before heat treatment, even though the entire electrode of the multilayer structure was deposited. By heat-treating this at 400C for 10 minutes in a hydrogen atmosphere, curve 107 was obtained. An ohmic electrode with good linearity was obtained as shown in .The contact specific resistance at this time was ρc"1~3X
It was 10-'Ω-crA. The first metal layer 104 ('l'i) is applied to the curve 11 in FIG.
The current-voltage characteristics of the multilayer metal electrode deposited under the conditions of
Curve 109 shows the current and ε pressure characteristics of the same heat-treated product. In both cases, good directivity was not obtained and the ohmic property was not achieved. Figure 4 shows the deposition of the first layer of Ti. The layering of ρC of the above multilayer electrode after heat treatment at 400C was investigated when the temperature was changed.As is clear from this, the first layer of metal was deposited at a temperature below 200C,
A good ohmink electrode is then obtained by heating to 400C. Note that Au is p” Ino*5Gao
, tASo, 2Pa, if the heat treatment temperature is increased until it reacts with the s layer, the contact resistance will increase on the contrary. This is an Au-based alloy type ili; the reaction opening temperature is also 550
It was revealed that the heat resistance was high, and the heat resistance was excellent.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例全図を用いて説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to all drawings.

第5図は本発明によるInGaAsP/InP半導体レ
ーザを示す。n型Ir1P基板201に形成されたp型
InPからなる埋め込みJ* 202およびn型InP
からなる埋め込み層203によって埋め込まれたInG
aAsp活性層205に電流を限定して流すために、埋
め込み層202と伝導型の異なるh型InGaAsP層
204が表面に設けてあり、またInGaAsP活性層
205の上には、p型Inpからなるクランド/* 2
06とキャンプ層と呼ばれるp+型InGaAspから
なる高伝導度を膏207が設けられている。埋め込み層
202,203とキャンプ層207に位置合わせして電
極を設けるために表面に5in2又はP S G (P
hoshho −8ilicate Glass)膜か
らなる絶縁膜層208f:設け、その一部に穴開けを行
なった後、真窒蒸漸法によって第1の金属層209とし
てTiを30〜50nm破着する。第1の金属層として
は高融点金属でかつ絶縁路208との密着性が良いこと
が必要である。Tiの他にCrも同様の効果がある。そ
の上に第2の金属層210としてMo、W又はpiを2
00〜300nm、さらにその上に第3金属増211と
してAuを0.5〜1μm破着する。この第2の金属層
210の役割は第1の金属層209と第3の金属層21
1(All)との熱処理による反応を防ぐために挿入さ
れたものである。第3の金属4Auけボンディングを容
易にするために用いられる。この仙薬1の金属層と第2
の金属層との役割を兼ねる金属として第1層にMO又は
Wを用いて、その上にA u ′(+−用いる構造も可
能である。第喧の金属層の被着開始時はウェーハ表面温
度は室温である。被着中に蒸着源からの輻射熱のためウ
ェーハ表面温度は100r程度まで上昇する。この後第
2の金属層および第3の金属層の被着は金属層間の密層
性を艮くするため150Cで行なう。この後p9f!I
電極をH2雰囲気中で400C,20分間熱処理を施す
ことによって良いオーム性′Itllf!、、となる。
FIG. 5 shows an InGaAsP/InP semiconductor laser according to the present invention. A buried J* 202 made of p-type InP formed on an n-type Ir1P substrate 201 and an n-type InP
InG embedded by a buried layer 203 consisting of
In order to limit the current flow to the aAsp active layer 205, an h-type InGaAsP layer 204 having a different conductivity type from the buried layer 202 is provided on the surface, and on the InGaAsP active layer 205, a ground made of p-type InP is provided. /* 2
06 and a highly conductive layer 207 made of p+ type InGaAsp called a camp layer. 5in2 or P S G (P
After forming an insulating film layer 208f made of an insulating film layer 208f, which is made of a nitride glass film, and making a hole in a part of the insulating film layer 208f, 30 to 50 nm of Ti is deposited as a first metal layer 209 using a true nitrogen evaporation method. The first metal layer needs to be a high melting point metal and have good adhesion to the insulating path 208. In addition to Ti, Cr also has similar effects. Thereon, a second metal layer 210 of Mo, W or pi is applied.
00 to 300 nm, and on top of that, Au is broken to a thickness of 0.5 to 1 μm as a third metal layer 211. The role of this second metal layer 210 is to support the first metal layer 209 and the third metal layer 21.
This was inserted to prevent reaction with 1 (All) due to heat treatment. Used to facilitate bonding to the third metal 4Au. The metal layer of this elixir 1 and the second
It is also possible to use MO or W in the first layer as a metal that also serves as the second metal layer, and use A u '(+-) on top of it. The temperature is room temperature.During deposition, the wafer surface temperature rises to about 100r due to radiant heat from the evaporation source.After this, the second and third metal layers are deposited due to the dense layer between the metal layers. Do it at 150C to make it look better.After this, p9f!I
By heat-treating the electrode at 400C for 20 minutes in an H2 atmosphere, good ohmic properties can be obtained. ,, becomes.

最後にn側電極212を例えばAuGeNi/Pd/A
u (7)三l−構造によって蒸着アロイ法で形成し、
へき開によりチック化する。このチップを放熱体(例え
ばCu又はSiCブロック)にPb−8n半田を用いて
ポンディングして組立てる。
Finally, the n-side electrode 212 is made of, for example, AuGeNi/Pd/A.
u (7) formed by a vapor deposition alloy method with a tril-structure,
Tic occurs due to cleavage. This chip is assembled by bonding to a heat sink (for example, a Cu or SiC block) using Pb-8n solder.

第6図にこの半導体レーザの電流電圧特性を示す。曲線
31は正常な特性であり、立上がり電圧は活性ノーの禁
制帯幅から予想される値である。一方32は第1の金属
JviTiを200Cで蒸着した後に同様の熱処理ff
:施したものである。電極−半導体界面に形成された変
成層のため立上が9電圧が高くなるとともに、ダイオー
ドの直列抵抗も高くなってしまっている。
FIG. 6 shows the current-voltage characteristics of this semiconductor laser. Curve 31 is a normal characteristic, and the rising voltage is the value expected from the forbidden band width of the active node. On the other hand, 32 is subjected to the same heat treatment after depositing the first metal JviTi at 200C.
: It was given. Due to the metamorphic layer formed at the electrode-semiconductor interface, the rising voltage becomes high, and the series resistance of the diode also becomes high.

〔発明の効果〕〔Effect of the invention〕

本発明によれは、Pを主要構成元累として含む■−■族
化合物半導体に対して再現性の良い、接触抵抗の小さい
オーム性電4!j!、全形成できるので、例えは1〜1
.5μmμm波長波長レーザ光ダイオード、受光ダイオ
ードの電極として有効である。
According to the present invention, the ohmic conductor 4! has good reproducibility and low contact resistance for ■-■ group compound semiconductors containing P as a main constituent element. j! , all can be formed, so the example is 1 to 1
.. It is effective as an electrode for a 5 μm μm wavelength laser photodiode and a light receiving diode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はオーム性@物の特性評価をするチップを示す断
面図、第2図、第3スdオーム性電極の電流電圧特性を
示す図、第4図は第1層Ti蒸着温度と接触比抵抗の関
係を示す図、第5図は半導体レーザの構造金示す斜視図
、第6図は半導体レーザの電流は比特性を示す図である
。 101−p−I nP基板、102−p”−In0.l
Ga0.9ASO−2PO−8層、103 ・AuZn
/Au合金電極、XO4・・・第1の憧属層T i、 
105・・・第2の金属層Mo、106・・・第3の金
属層AU、201・・n−I n P、  202−埋
め込み層p−I n P、  203−−・n−I n
Pmめ込み層、204”’n−InGaAsP層、20
5・・・■nGaAsP活姉層、206−・−p−I 
nP層、207.、・p+−InGaAsPキャンプ層
、208・・・絶縁膜、209・・・p側電極の第1の
金属層(1’i)、210・・・p側電極の第2の金属
層(MO)、211・・・p側電極の第3の第 1 図 冨 Z 図    N 3 図 電圧          電圧 ■ 4 図 箭 5 図 7// ′FJに図 電IL(V) 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 0発 明 者 千葉勝昭 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 0発 明 者 加藤弘 高崎市西横手町111番地株式会 社日立製作所高崎工場内 0発 明 者 小林正道 高崎市西横手町111番地株式会 社日立製作所高崎工場内
Figure 1 is a cross-sectional view showing a chip for evaluating the characteristics of ohmic objects, Figure 2 is a diagram showing the current-voltage characteristics of the d-ohmic electrode, and Figure 4 is the temperature and contact of the first layer Ti evaporation. FIG. 5 is a perspective view showing the structure of the semiconductor laser, and FIG. 6 is a diagram showing the current characteristic of the semiconductor laser. 101-p-I nP substrate, 102-p''-In0.l
Ga0.9ASO-2PO-8 layer, 103・AuZn
/Au alloy electrode, XO4...first aspiration layer T i,
105... Second metal layer Mo, 106... Third metal layer AU, 201... n-I n P, 202--Buried layer p-I n P, 203-- n-I n
Pm embedded layer, 204''n-InGaAsP layer, 20
5...■nGaAsP active layer, 206--p-I
nP layer, 207. , p+-InGaAsP camp layer, 208... insulating film, 209... first metal layer (1'i) of p-side electrode, 210... second metal layer (MO) of p-side electrode , 211...The third 1st part of the p-side electrode Figure Z Figure N 3 Figure voltage Voltage ■ 4 Figure 5 Figure 7// 'FJ to Figure IL (V) Kokubunji-shi Higashikoigakubo 1-280 Co., Ltd. 0 inventions in the Hitachi, Ltd. Central Research Laboratory, 1-280 Higashi-Koigakubo, Kokubunji-shi, Hitachi, Ltd. 0 inventions, Hirokato Kato, 111 Nishiyokote-cho, Hitachi, Ltd., 1-280 Higashi-Koigakubo, Kokubunji City, Ltd. 0 inventions, Mr. Kobayashi Masamichi, Takasaki City, Nishiyokote-cho 111, Hitachi, Ltd., Takasaki Factory

Claims (1)

【特許請求の範囲】[Claims] 10 ” 10n ”以上のアクセプタ不純物表面濃度
をもつ、少なくともPを主要構成元素とする化合物半導
体結晶に少なくとも第1層に高融点金属層を200C未
満の温度で被着し、かつ最上層にAl1層を被着する多
層金R膜被清工程と、上記Au層と化合物半導体結晶が
合金化反応を起こさない温度および時間の範囲内で熱処
理を施す工程を少なくとも含む化合物半導体オーム性電
極形成法。
A compound semiconductor crystal containing P as a main constituent element and having an acceptor impurity surface concentration of 10"10n" or more is coated with a high melting point metal layer as at least the first layer at a temperature of less than 200C, and an Al1 layer as the top layer. A method for forming a compound semiconductor ohmic electrode comprising at least a step of applying a multilayer gold R film and a step of performing heat treatment within a temperature and time range that does not cause an alloying reaction between the Au layer and the compound semiconductor crystal.
JP57216826A 1982-12-13 1982-12-13 Ohmic electrode forming method in compound semiconductor Pending JPS59107510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57216826A JPS59107510A (en) 1982-12-13 1982-12-13 Ohmic electrode forming method in compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57216826A JPS59107510A (en) 1982-12-13 1982-12-13 Ohmic electrode forming method in compound semiconductor

Publications (1)

Publication Number Publication Date
JPS59107510A true JPS59107510A (en) 1984-06-21

Family

ID=16694495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57216826A Pending JPS59107510A (en) 1982-12-13 1982-12-13 Ohmic electrode forming method in compound semiconductor

Country Status (1)

Country Link
JP (1) JPS59107510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225280A (en) * 1990-12-26 1992-08-14 Nikko Kyodo Co Ltd Formation method of ohmic electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04225280A (en) * 1990-12-26 1992-08-14 Nikko Kyodo Co Ltd Formation method of ohmic electrode

Similar Documents

Publication Publication Date Title
US6946312B2 (en) Semiconductor light emitting device and its manufacture
JP3271475B2 (en) Electrical element joining material and joining method
JP2000164928A (en) Semiconductor light emitting device and its manufacture
US5036023A (en) Rapid thermal processing method of making a semiconductor device
JPS6112070A (en) Platinum electrode to iii-v group compound device with in asbase
JPS5932055B2 (en) Method for manufacturing a semiconductor device having contacts
JPH02275624A (en) Ohmic electrode and its forming method
EP0037401B1 (en) Ohmic contact to p-type inp or ingaasp
US4395727A (en) Barrier-free, low-resistant electrical contact on III-V semiconductor material
US7435605B2 (en) Method for fabricating a component having an electrical contact region
JP3363343B2 (en) Semiconductor device and manufacturing method thereof
US5047832A (en) Electrode structure for III-V compound semiconductor element and method of manufacturing the same
US6320265B1 (en) Semiconductor device with high-temperature ohmic contact and method of forming the same
US4414561A (en) Beryllium-gold ohmic contact to a semiconductor device
JPS59107510A (en) Ohmic electrode forming method in compound semiconductor
EP0222395A1 (en) Improvement in electrode structure of photosemiconductor device
JPS6024074A (en) Gallium arsenide semiconductor device and method of producing same
JP3123226B2 (en) Ohmic electrode and method for forming the same
US4380862A (en) Method for supplying a low resistivity electrical contact to a semiconductor laser device
JP2522892B2 (en) Method of forming ohmic contact on ZnSe layer
JP2708798B2 (en) Method of forming electrode of silicon carbide
JPH03184377A (en) Electrode for compound semiconductor
JPH0888197A (en) Electrode for ii-vi compound semiconductor
JP3150469B2 (en) Semiconductor device
JP2996367B2 (en) Semiconductor device and manufacturing method thereof