JP3363343B2 - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereofInfo
- Publication number
- JP3363343B2 JP3363343B2 JP14013697A JP14013697A JP3363343B2 JP 3363343 B2 JP3363343 B2 JP 3363343B2 JP 14013697 A JP14013697 A JP 14013697A JP 14013697 A JP14013697 A JP 14013697A JP 3363343 B2 JP3363343 B2 JP 3363343B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- gold
- semiconductor
- chromium
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Led Devices (AREA)
- Electrodes Of Semiconductors (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は半導体装置およびそ
の製造方法に関し、特に化合物半導体を用いた発光ダイ
オードアレイなどの半導体装置およびその製造方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device such as a light emitting diode array using a compound semiconductor and a manufacturing method thereof.
【0002】[0002]
【従来の技術および発明が解決しようとする課題】従
来、ガリウム砒素(GaAs)などの化合物半導体を用
いた半導体装置においては、それぞれの導電型に応じた
材料から成る電極が使われていた。例えばp型ガリウム
砒素では、金クロム(AuCr)などから成る電極が用
いられ、n型ガリウム砒素では、金ゲルマニウム(Au
Ge)/ニッケル(Ni)、金(Au)/金ゲルマニウ
ム或いは金ゲルマニウムインジウム(AuGeIn)な
どから成る電極が用いられている。これは、それぞれの
導電型の半導体基板若しくは半導体層とのコンタクト抵
抗を小さくしてオーミックコンタクトが得られるように
考慮されたものである。2. Description of the Related Art Conventionally, in a semiconductor device using a compound semiconductor such as gallium arsenide (GaAs), an electrode made of a material corresponding to each conductivity type has been used. For example, in p-type gallium arsenide, an electrode made of gold chromium (AuCr) or the like is used, and in n-type gallium arsenide, gold germanium (AuCr) is used.
An electrode made of Ge) / nickel (Ni), gold (Au) / gold germanium, gold germanium indium (AuGeIn), or the like is used. This is because the ohmic contact can be obtained by reducing the contact resistance with each conductive type semiconductor substrate or semiconductor layer.
【0003】ところが、半導体基板の同一面上に上述の
ような導電型によって構造が異なる電極を形成する場
合、電極材料の蒸着、マスク材料の塗布とパターニン
グ、電極材料のエッチングをそれぞれ二回行わなければ
ならず、製造工程が極めて煩雑になるという問題があっ
た。However, when forming electrodes having different structures depending on the conductivity type on the same surface of a semiconductor substrate, vapor deposition of an electrode material, application and patterning of a mask material, and etching of the electrode material must be performed twice. Therefore, there is a problem that the manufacturing process becomes extremely complicated.
【0004】また、それぞれの導電型の化合物半導体基
板若しくは化合物半導体層とオーミックコンタクトを得
ようとする場合、ゲルマニウム(Ge)で電極を形成す
ればよいことが知られているが、電極材料中にゲルマニ
ウムを添加して熱処理をすると、電極材料のゲルマニウ
ムや半導体材料のガリウムが電極の表面に析出して電極
表面が柔らかくなると共に、このゲルマニウムやガリウ
ムの一部が酸化されてボンディングワイヤを構成する材
料の濡れ性がわるくなり、ボンディングワイヤの接合不
良が発生するという問題があった。Further, it is known that an electrode may be formed of germanium (Ge) in order to obtain ohmic contact with a compound semiconductor substrate or compound semiconductor layer of each conductivity type. When heat treatment is performed by adding germanium, germanium of the electrode material and gallium of the semiconductor material are deposited on the surface of the electrode to soften the electrode surface, and part of the germanium or gallium is oxidized to form the bonding wire material. However, there is a problem in that the wettability of the wire becomes poor and a bonding failure of the bonding wire occurs.
【0005】本発明は、このような従来技術の問題点に
鑑みて発明されたものであり、導電型の異なる半導体領
域若しくは半導体層にそれぞれ異なる電極を形成しなけ
ればならないという従来装置の問題点を解消すると共
に、ボンディングワイヤの接合不良が生じるという従来
装置の問題点を解消した半導体装置およびその製造方法
を提供することを目的とする。The present invention has been invented in view of the above problems of the prior art, and has the problem of the conventional device in which different electrodes must be formed in semiconductor regions or semiconductor layers having different conductivity types. It is an object of the present invention to provide a semiconductor device and a method for manufacturing the same in which the problem of the conventional device that the bonding failure of the bonding wire occurs is solved.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、本発明に係る半導体装置によれば、ガリウム砒素、
インジウムガリウム砒素、若しくはインジウムアルミニ
ウムガリウム砒素から成る半導体基板若しくは半導体層
上に、複数の金属材料を順次積層した電極を有する半導
体装置において、前記電極をクロム、金ゲルマニウム、
クロム、及び金を順次積層した構造にした。In order to achieve the above object, according to a semiconductor device of the present invention, gallium arsenide,
In a semiconductor device having an electrode in which a plurality of metal materials are sequentially stacked on a semiconductor substrate or semiconductor layer made of indium gallium arsenide or indium aluminum gallium arsenide, the electrode is chromium, gold germanium,
The structure was such that chromium and gold were sequentially laminated.
【0007】また、本発明に係る半導体装置によれば、
前記上層側クロムの膜厚が100〜500Åであること
が望ましい。According to the semiconductor device of the present invention,
It is desirable that the film thickness of the upper chromium layer is 100 to 500 Å.
【0008】さらに、本発明に係る半導体装置によれ
ば、前記下層側クロムの膜厚が100〜600Åであ
り、前記金ゲルマニウムの膜厚が700Å以上であり、
前記金の膜厚が8000Å以上であり、前記電極全体の
膜厚が11500Å以上であることが望ましい。Further, according to the semiconductor device of the present invention, the film thickness of the lower layer chromium is 100 to 600 Å and the film thickness of the gold germanium is 700 Å or more,
It is desirable that the film thickness of the gold is 8000 Å or more, and the film thickness of the entire electrode is 11500 Å or more.
【0009】[0009]
【0010】また、本発明に係る半導体装置の製造方法
によれば、ガリウム砒素、インジウムガリウム砒素、若
しくはインジウムアルミニウムガリウム砒素から成る半
導体基板若しくは半導体層上に、複数の金属材料を順次
積層して焼鈍する半導体装置の製造方法において、前記
半導体基板若しくは半導体層上に、クロム、金ゲルマニ
ウム、クロム、及び金を順次積層した後に、300〜3
50℃の温度で焼鈍する。Further, according to the method of manufacturing a semiconductor device of the present invention, a plurality of metal materials are sequentially laminated and annealed on a semiconductor substrate or semiconductor layer made of gallium arsenide, indium gallium arsenide, or indium aluminum gallium arsenide. In the method for manufacturing a semiconductor device according to claim 3, after sequentially stacking chromium, gold germanium, chromium, and gold on the semiconductor substrate or the semiconductor layer, 300 to 3
Anneal at a temperature of 50 ° C.
【0011】[0011]
【発明の実施の形態】以下、本発明を添付図面に基づき
詳細に説明する。図1は、本発明に係る半導体装置の一
実施形態を示す図であり、1は半導体基板若しくは半導
体層、2は全体としての電極、3はクロムから成る層、
4は金ゲルマニウムから成る層、5はクロムから成る
層、6は金から成る層である。DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a diagram showing an embodiment of a semiconductor device according to the present invention, in which 1 is a semiconductor substrate or a semiconductor layer, 2 is an electrode as a whole, 3 is a layer made of chromium,
4 is a layer made of gold germanium, 5 is a layer made of chromium, and 6 is a layer made of gold.
【0012】半導体基板もしくは半導体層1は、ガリウ
ム砒素(GaAs)、インジウムガリウム砒素(InG
aAs)、若しくはインジウムアルミニウムガリウム砒
素(InAlGaAs)などの化合物半導体から成る。
半導体層を形成する基板としては、化合物半導体に限ら
ず、シリコン基板やサファイア基板などであってもよ
い。The semiconductor substrate or the semiconductor layer 1 is made of gallium arsenide (GaAs) or indium gallium arsenide (InG).
aAs) or a compound semiconductor such as indium aluminum gallium arsenide (InAlGaAs).
The substrate on which the semiconductor layer is formed is not limited to the compound semiconductor, but may be a silicon substrate, a sapphire substrate, or the like.
【0013】電極2は、下層側クロム層3、金ゲルマニ
ウム層4、上層側クロム層5、および金層6で構成され
る。下層側クロム層3は、半導体基板もしくは半導体層
1と電極2との密着性を向上させるために設ける。この
下層側クロム層3は、100Å以上の膜厚を有すること
が望ましく、半導体基板若しくは半導体層1と電極2と
のコンタクト抵抗(接触抵抗)、特にn型半導体層との
コンタクト抵抗を低減するために600Å以下にするこ
とが望ましい。100Å以下の厚みの場合、クロム層が
島状になって領域の全面には形成することが困難であ
る。この下層側クロム層3は、通常は300Å程度の厚
みに形成される。The electrode 2 is composed of a lower chromium layer 3, a gold germanium layer 4, an upper chromium layer 5 and a gold layer 6. The lower chromium layer 3 is provided to improve the adhesion between the semiconductor substrate or the semiconductor layer 1 and the electrode 2. The lower chromium layer 3 preferably has a film thickness of 100 Å or more, in order to reduce the contact resistance between the semiconductor substrate or the semiconductor layer 1 and the electrode 2, particularly the contact resistance between the n-type semiconductor layer. Moreover, it is desirable that it is less than 600Å. If the thickness is less than 100Å, the chromium layer becomes island-shaped and it is difficult to form it on the entire surface of the region. The lower chromium layer 3 is usually formed to have a thickness of about 300Å.
【0014】金ゲルマニウム層4は、半導体基板若しく
は半導体層1とオーミックコンタクトをとるために設け
る。この金ゲルマニウム層4は、700Å以上でできる
だけ薄いことが望ましい。この金ゲルマニウム層4は、
オーミックコンタクト層として機能するものであり、膜
厚が700Å以下になるとオーミックコンタクトをとる
のが困難になる。一方、金ゲルマニウムは非常に高価な
合金であり、できるだけ薄い方が望ましい。通常は10
00Å程度の厚みに形成される。上述のような化合物半
導体基板若しくは化合物半導体層1とオーミック接合す
る機能を果たすのは、ゲルマニウムであるが、ゲルマニ
ウムだけの場合は、硬度が小さく、しかも融点が高いた
めに、金との合金を用いる。この場合、Au:88wt
%−Ge:12wt%のものなどを好適に用いることが
できる。The gold germanium layer 4 is provided to make ohmic contact with the semiconductor substrate or the semiconductor layer 1. The gold germanium layer 4 is preferably as thin as possible at 700 Å or more. This gold germanium layer 4 is
It functions as an ohmic contact layer, and it becomes difficult to make ohmic contact when the film thickness is 700 Å or less. On the other hand, gold germanium is a very expensive alloy, and it is desirable that it be as thin as possible. Usually 10
It is formed to a thickness of about 00Å. It is germanium that fulfills the function of forming an ohmic contact with the compound semiconductor substrate or the compound semiconductor layer 1 as described above, but in the case of only germanium, an alloy with gold is used because of its low hardness and high melting point. . In this case, Au: 88 wt
% -Ge: 12 wt% or the like can be preferably used.
【0015】上層側クロム層5は、下層のゲルマニウム
や半導体材料のガリウムが電極2の表面に析出すること
を防止するために設けるものであり、100〜500Å
の厚みに形成することが望ましい。この上層側クロム層
5の膜厚が100Å以下の場合、クロム層が島状になっ
て領域の全面には形成しにくく、ゲルマニウムやガリウ
ムの析出防止効果が充分でない。また、この上層側クロ
ム層5の膜厚が500Å以上になると、半導体基板若し
くは半導体層1とのコンタクト抵抗、特にn半導体との
コンタクト抵抗が大きくなる。この上層側クロム層5
は、通常は300Å程度の厚みに形成される。The upper chromium layer 5 is provided to prevent germanium of the lower layer and gallium of the semiconductor material from depositing on the surface of the electrode 2, and is 100 to 500 Å.
It is desirable to form it to a thickness of. When the film thickness of the upper chromium layer 5 is 100 Å or less, the chromium layer becomes island-shaped and is difficult to form on the entire surface of the region, and the effect of preventing the precipitation of germanium or gallium is not sufficient. Further, when the film thickness of the upper chromium layer 5 is 500 Å or more, the contact resistance with the semiconductor substrate or the semiconductor layer 1, especially the contact resistance with the n semiconductor, increases. This upper chrome layer 5
Is usually formed to a thickness of about 300Å.
【0016】金層6は、電極2全体の配線抵抗を下げる
と共に、ボンディングワイヤを接合するために設けるも
のであり、8000Å以上の厚みに形成することが望ま
しい。この金層6の厚みが8000Å以下の場合、電極
2全体の配線抵抗が大きくなり、例えば発光ダイオード
アレイのカソード電極などに用いた場合は、配線抵抗に
よる電圧降下で発光素子毎の発光強度にばらつきが発生
する。なお、この金層6は厚くても50000Å程度に
形成すれば充分であり、それ以上厚くしても相応の効果
はない。通常は8500Å程度の厚みに形成される。The gold layer 6 is provided to reduce the wiring resistance of the entire electrode 2 and to bond a bonding wire, and is preferably formed to a thickness of 8000 Å or more. When the thickness of the gold layer 6 is 8000 Å or less, the wiring resistance of the entire electrode 2 becomes large. For example, when the gold layer 6 is used as a cathode electrode of a light emitting diode array, the light emission intensity of each light emitting element varies due to a voltage drop due to the wiring resistance. Occurs. Even if the gold layer 6 is thick, it is sufficient if it is formed to a thickness of about 50,000 Å. Normally, it is formed to a thickness of about 8500Å.
【0017】半導体基板若しくは半導体層1が形成され
た基板を1×10-6Torr以下に保持された高真空槽
内に設置して、クロム、金ゲルマニウム、および金を蒸
発源として、下層側クロム層3、金ゲルマニウム層4、
上層側クロム層5、および金層6を順次堆積させる。こ
の場合、蒸発源の蒸発方式としては、抵抗加熱法、電子
ビーム加熱法、レーザービーム加熱法、高周波加熱法、
フラッシュ蒸発法などのいずれでもよい。The semiconductor substrate or the substrate on which the semiconductor layer 1 is formed is placed in a high vacuum chamber maintained at 1 × 10 -6 Torr or less, and chromium, gold germanium, and gold are used as evaporation sources to form a lower chromium layer. Layer 3, gold germanium layer 4,
The upper chromium layer 5 and the gold layer 6 are sequentially deposited. In this case, as the evaporation method of the evaporation source, a resistance heating method, an electron beam heating method, a laser beam heating method, a high frequency heating method,
Any method such as flash evaporation may be used.
【0018】次に、各金属層3〜6の密着性を良好にす
ると共に、オーミックコンタクトを得るために、300
〜350℃の温度で焼鈍する。この温度が300℃以下
の場合、ゲルマニウムの拡散が不十分で半導体基板もし
くは半導体層1と電極2とのオーミックコンタクトが得
られず、350℃以上の場合、半導体材料のガリウムや
電極材料のゲルマニウムが電極2の表面に析出して、電
極2が軟化すると共に、ガリウムやゲルマニウムが酸化
されてボンディングワイヤの構成材料の濡れ性が悪くな
り、ボンディング性が低下する。Next, in order to improve the adhesion of the metal layers 3 to 6 and to obtain ohmic contact, 300
Anneal at a temperature of ~ 350 ° C. When the temperature is 300 ° C. or lower, the diffusion of germanium is insufficient and ohmic contact between the semiconductor substrate or the semiconductor layer 1 and the electrode 2 cannot be obtained. When the temperature is 350 ° C. or higher, gallium as a semiconductor material or germanium as an electrode material It deposits on the surface of the electrode 2, softens the electrode 2, and oxidizes gallium or germanium to deteriorate the wettability of the constituent material of the bonding wire, thus lowering the bondability.
【0019】最後に、フォトリソグラフィ法やリフトオ
フ法で所定の電極形状にパターニングして完成する。Finally, patterning into a predetermined electrode shape is completed by a photolithography method or a lift-off method.
【0020】−実験例1−
ガリウム砒素から成る半導体基板1上に、シリコン(S
i)を2×1018atoms/cm-3含有したn型半導
体層と亜鉛(Zn)を1×1019atom・cm含有し
たp型半導体層を形成し、このn型半導体層とp型半導
体層に下層側クロム層3、金ゲルマニウム層4、および
金層6を600Å、8500Å、および8500Åの厚
みにそれぞれ形成すると共に、上層側クロム層5の厚み
を種々変更してコンタクト抵抗を測定した。なお、コン
タクト面積は200μm2 である。その結果を図2に示
す。図2から明らかなように、上層側クロム層5の膜厚
が480Åの場合、コンタクト抵抗はほぼ9Ω(n側)
と6Ω(p側)であったものが、上層側クロム層5の膜
厚が500Å以上になると、p側は4.5Ωでほぼ横ば
いであったものが、n側は28Ωとなり、上層側クロム
層5の膜厚が500Åを越えると急激にコンタクト抵抗
が大きくなることがわかった。したがって、上層側クロ
ム層5の膜厚は500Å以下であることが望ましい。-Experimental Example 1- On a semiconductor substrate 1 made of gallium arsenide, silicon (S
i) an n-type semiconductor layer containing 2 × 10 18 atoms / cm −3 and a p-type semiconductor layer containing 1 × 10 19 atom · cm of zinc (Zn) are formed, and the n-type semiconductor layer and the p-type semiconductor are formed. The lower chromium layer 3, the gold germanium layer 4, and the gold layer 6 were formed in the respective layers to have a thickness of 600Å, 8500Å, and 8500Å, and the thickness of the upper chromium layer 5 was variously changed to measure the contact resistance. The contact area is 200 μm 2 . The result is shown in FIG. As is clear from FIG. 2, when the thickness of the upper chromium layer 5 is 480Å, the contact resistance is almost 9Ω (n side).
When the film thickness of the upper chromium layer 5 was 500 Å or more, it was 4.5Ω on the p-side and was almost flat, but it was 28Ω on the n-side and the upper chromium was 5. It was found that when the film thickness of the layer 5 exceeds 500 Å, the contact resistance rapidly increases. Therefore, it is desirable that the film thickness of the upper chromium layer 5 is 500 Å or less.
【0021】−実験例2−
実験例1と同一条件でn型半導体層とp型半導体層を形
成すると共に、下層側クロム層3、金ゲルマニウム層
4、上層側クロム層5をそれぞれ300Å、1000
Å、300Åの厚みに形成すると共に、金層6の厚みを
種々変更して、電極2全体の厚みが図3に示す値になる
ように形成して電極2の配線抵抗を測定した。なお、電
極2の線幅は20μmで、長さは5.4mmである。こ
の線幅と長さは、600dpiの発光ダイオードを形成
する場合の一般的な値である。その結果を図3に示す。-Experimental Example 2-Under the same conditions as in Experimental Example 1, an n-type semiconductor layer and a p-type semiconductor layer are formed, and a lower chromium layer 3, a gold germanium layer 4, and an upper chromium layer 5 are 300 Å and 1000 respectively.
The thickness of the gold layer 6 was changed to various values, and the thickness of the gold layer 6 was changed so that the total thickness of the electrode 2 was the value shown in FIG. 3, and the wiring resistance of the electrode 2 was measured. The electrode 2 has a line width of 20 μm and a length of 5.4 mm. This line width and length are typical values for forming a 600 dpi light emitting diode. The result is shown in FIG.
【0022】図3から明らかなように、電極2の厚みが
8000Åの場合はその配線抵抗は67Ωで、1000
0Åの場合は58Ωで、11500Åの場合は50Ωに
なり、それ以上の膜厚になると変化がほぼなくなること
がわかった。したがって、600dpiの発光ダイオー
ドを形成する場合、電極2の膜厚は全体で11500Å
以上が望ましいことがわかった。As is apparent from FIG. 3, when the thickness of the electrode 2 is 8000 Å, the wiring resistance is 67Ω and 1000
It was found that the value was 58Ω in the case of 0Å and 50Ω in the case of 11500Å. Therefore, when a 600-dpi light emitting diode is formed, the electrode 2 has a total film thickness of 11500Å
It turns out that the above is desirable.
【0023】−実験例3−
実験例1と同一の条件でn型半導体層とp型半導体層を
形成すると共に、下層側クロム層、金ゲルマニウム層
4、上層側クロム層5、および金層6をそれぞれ200
Å、1000Å、100Å、および10000Åの膜厚
に形成すると共に、焼鈍の温度を400℃×20分、3
50℃×20分、315℃×20分、300℃×20
分、285℃×20分に設定して、線径25μmの純金
細線から成るボンディングワイヤでボンディングを行っ
て、このワイヤーに引っ張り荷重をかけるボンディング
性試験を行った。-Experimental Example 3- An n-type semiconductor layer and a p-type semiconductor layer are formed under the same conditions as in Experimental Example 1, and a lower chromium layer, a gold germanium layer 4, an upper chromium layer 5 and a gold layer 6 are formed. 200 for each
Å, 1000 Å, 100 Å, and 10000 Å film thickness, annealing temperature 400 ℃ × 20 minutes, 3
50 ° C x 20 minutes, 315 ° C x 20 minutes, 300 ° C x 20
Min, 285 ° C. × 20 minutes, bonding was performed with a bonding wire made of a pure gold fine wire having a wire diameter of 25 μm, and a bondability test in which a tensile load was applied to this wire was performed.
【0024】その結果、焼鈍温度が400℃×20分の
ときは、ワイヤーボンディング直後にワイヤーが剥がれ
る欠陥が生じ、350℃×20分のときは7gの荷重で
ワイヤーがボンド部分から切断したもののワイヤボンデ
ィング性はほぼ良好で、315℃×20分のときは10
gの荷重でワイヤーがボンド部分から切断したものワイ
ヤボンディング性は良好であった。したがって、焼鈍は
350℃以下の温度で行うことが望ましいことがわかっ
た。As a result, when the annealing temperature was 400 ° C. × 20 minutes, the wire peeled off immediately after wire bonding, and when 350 ° C. × 20 minutes, the wire was cut from the bond portion with a load of 7 g. Bonding property is almost good, 10 at 315 ℃ x 20 minutes
The wire bondability was good when the wire was cut from the bond portion under a load of g. Therefore, it was found that the annealing is preferably performed at a temperature of 350 ° C. or lower.
【0025】[0025]
【発明の効果】以上のように、本発明に係る半導体装置
によれば、ガリウム砒素、インジウムガリウム砒素、若
しくはインジウムアルミニウムガリウム砒素から成る半
導体基板もしくは半導体層上に、電極をクロム、金ゲル
マニウム、クロム、および金を順次積層した構造にした
ことから、p型半導体層とn型半導体層の双方と良好な
オーミックコンタクトが得られる電極になると共に、ボ
ンディングワイヤーの接合強度も向上し、配線抵抗の小
さい電極となる。As described above, according to the semiconductor device of the present invention, the electrodes are chromium, gold germanium, and chromium on the semiconductor substrate or semiconductor layer made of gallium arsenide, indium gallium arsenide, or indium aluminum gallium arsenide. And a structure in which gold is sequentially laminated, the electrode has good ohmic contact with both the p-type semiconductor layer and the n-type semiconductor layer, the bonding strength of the bonding wire is improved, and the wiring resistance is small. It becomes an electrode.
【0026】また、本発明に係る半導体装置の製造方法
によれば、ガリウム砒素、インジウムガリウム砒素、若
しくはインジウムアルミニウムガリウム砒素から成る半
導体基板若しくは半導体層上に、クロム、金ゲルマニウ
ム、クロム、および金を順次積層して、300〜350
℃の温度で焼鈍することから、p型半導体層とn型半導
体層の双方に良好なオーミックコンタクトが得られる電
極になると共に、ボンディングワイヤーの接合強度も向
上し、配線抵抗の小さい電極となる。Further, according to the method of manufacturing a semiconductor device of the present invention, chromium, gold germanium, chromium, and gold are deposited on the semiconductor substrate or semiconductor layer made of gallium arsenide, indium gallium arsenide, or indium aluminum gallium arsenide. Layered sequentially, 300-350
Since it is annealed at a temperature of ℃, it becomes an electrode that can obtain a good ohmic contact with both the p-type semiconductor layer and the n-type semiconductor layer, and the bonding strength of the bonding wire is improved, and the electrode has a low wiring resistance.
【図1】本発明に係る半導体装置の一実施形態を示す図
である。FIG. 1 is a diagram showing an embodiment of a semiconductor device according to the present invention.
【図2】本発明に係る半導体装置における上層側クロム
層の膜厚とコンタクト抵抗との関係を示す図である。FIG. 2 is a diagram showing a relationship between a film thickness of an upper chromium layer and a contact resistance in a semiconductor device according to the present invention.
【図3】本発明に係る半導体装置における金層の膜厚と
配線抵抗との関係を示す図である。FIG. 3 is a diagram showing a relationship between a film thickness of a gold layer and a wiring resistance in a semiconductor device according to the present invention.
1………半導体基板若しくは半導体層、2………下層側
クロム層、3………金ゲルマニウム層、4………上層側
クロム層、5………金層1 ...... semiconductor substrate or semiconductor layer, 2 ... lower chromium layer, 3 gold germanium layer, 4 upper chromium layer, 5 gold layer
Claims (4)
素、若しくはインジウムアルミニウムガリウム砒素から
成る半導体基板若しくは半導体層上に、複数の金属材料
を順次積層した電極を有する半導体装置において、前記
電極をクロム、金ゲルマニウム、クロム、及び金を順次
積層した構造にしたことを特徴とする半導体装置。1. A gallium arsenide, indium gallium arsenide
Element or indium aluminum gallium arsenide
A semiconductor substrate or a semiconductor layer made of a semiconductor device having a sequentially stacked electrodes a plurality of metal materials, chromium the electrode, gold germanium, chromium, and a semiconductor device which is characterized in that the stacked sequentially gold .
0Åであることを特徴とする請求項1に記載の半導体装
置。2. The thickness of the upper chromium layer is 100 to 50.
The semiconductor device according to claim 1, wherein the semiconductor device is 0Å.
0Åであり、前記金ゲルマニウムの膜厚が700Å以上
であり、前記金の膜厚が8000Å以上であり、前記電
極全体の膜厚が11500Å以上であることを特徴とす
る請求項1および請求項2に記載の半導体装置。3. The thickness of the lower chromium layer is 100 to 60.
The thickness of the gold germanium is 700 Å or more, the thickness of the gold is 8000 Å or more, and the film thickness of the entire electrode is 11500 Å or more. The semiconductor device according to.
素、若しくはインジウムアルミニウムガリウム砒素から
成る半導体基板若しくは半導体層上に、複数の金属材料
を順次積層して焼鈍する半導体装置の製造方法におい
て、前記半導体基板若しくは半導体層上に、クロム、金
ゲルマニウム、クロム、及び金を順次積層した後、30
0〜350℃の温度で焼鈍することを特徴とする半導体
装置の製造方法。4. Gallium arsenide, indium gallium arsenide
Element or indium aluminum gallium arsenide
A plurality of metal materials on the semiconductor substrate or semiconductor layer
In a method of manufacturing a semiconductor device in which the layers are sequentially laminated and annealed
On the semiconductor substrate or semiconductor layer, chromium, gold
After sequentially stacking germanium, chromium, and gold, 30
Semiconductor characterized by being annealed at a temperature of 0 to 350 ° C.
Device manufacturing method .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14013697A JP3363343B2 (en) | 1997-05-29 | 1997-05-29 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14013697A JP3363343B2 (en) | 1997-05-29 | 1997-05-29 | Semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10335259A JPH10335259A (en) | 1998-12-18 |
JP3363343B2 true JP3363343B2 (en) | 2003-01-08 |
Family
ID=15261727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14013697A Expired - Fee Related JP3363343B2 (en) | 1997-05-29 | 1997-05-29 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3363343B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007109682A (en) * | 2005-10-11 | 2007-04-26 | Sanken Electric Co Ltd | Semiconductor device and method of manufacturing same |
US10052848B2 (en) | 2012-03-06 | 2018-08-21 | Apple Inc. | Sapphire laminates |
US9221289B2 (en) | 2012-07-27 | 2015-12-29 | Apple Inc. | Sapphire window |
US9232672B2 (en) | 2013-01-10 | 2016-01-05 | Apple Inc. | Ceramic insert control mechanism |
US9632537B2 (en) | 2013-09-23 | 2017-04-25 | Apple Inc. | Electronic component embedded in ceramic material |
US9678540B2 (en) | 2013-09-23 | 2017-06-13 | Apple Inc. | Electronic component embedded in ceramic material |
US9154678B2 (en) | 2013-12-11 | 2015-10-06 | Apple Inc. | Cover glass arrangement for an electronic device |
US9225056B2 (en) | 2014-02-12 | 2015-12-29 | Apple Inc. | Antenna on sapphire structure |
US10406634B2 (en) | 2015-07-01 | 2019-09-10 | Apple Inc. | Enhancing strength in laser cutting of ceramic components |
-
1997
- 1997-05-29 JP JP14013697A patent/JP3363343B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10335259A (en) | 1998-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3739951B2 (en) | Semiconductor light emitting device and manufacturing method thereof | |
US5990500A (en) | Nitride compound semiconductor light emitting element and its manufacturing method | |
US6800501B2 (en) | Electrode for light-emitting semiconductor devices and method of producing the electrode | |
US6693352B1 (en) | Contact structure for group III-V semiconductor devices and method of producing the same | |
US6316792B1 (en) | Compound semiconductor light emitter and a method for manufacturing the same | |
JP3462720B2 (en) | N-type nitride semiconductor electrode, semiconductor element having the electrode, and method of manufacturing the same | |
JP4812351B2 (en) | Method for manufacturing electrode of compound semiconductor device | |
JP3299145B2 (en) | Gallium nitride based semiconductor p-type electrode and method of forming the same | |
JP2005340860A (en) | Semiconductor light-emitting element | |
WO2006011362A1 (en) | Nitride semiconductor device | |
JP3363343B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH07263751A (en) | Ii-vi compound semiconductor device and manufacture of it | |
JP2002353506A (en) | Semiconductor light-emitting element and manufacturing method therefor | |
JP3965610B2 (en) | Semiconductor device and manufacturing method thereof | |
JP4822155B2 (en) | Submount and manufacturing method thereof | |
JP2008147294A (en) | Electronic device | |
US6653215B1 (en) | Contact to n-GaN with Au termination | |
US20040232429A1 (en) | Electrode for light-emitting semiconductor devices and method of producing the electrode | |
US8000364B2 (en) | Nitride semiconductor light emitting device and method of manufacturing the same | |
JPH08306643A (en) | Electrode and light emitting element for iii-v group compound semiconductor | |
WO2022059450A1 (en) | Infrared led element | |
JP3123226B2 (en) | Ohmic electrode and method for forming the same | |
JP3423175B2 (en) | Light emitting device manufacturing method | |
CN113261119B (en) | Semiconductor light emitting device and method for manufacturing the same | |
JP3171677B2 (en) | Ohmic electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071025 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081025 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091025 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091025 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101025 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101025 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111025 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121025 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131025 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |