JPH0139222B2 - - Google Patents

Info

Publication number
JPH0139222B2
JPH0139222B2 JP56134196A JP13419681A JPH0139222B2 JP H0139222 B2 JPH0139222 B2 JP H0139222B2 JP 56134196 A JP56134196 A JP 56134196A JP 13419681 A JP13419681 A JP 13419681A JP H0139222 B2 JPH0139222 B2 JP H0139222B2
Authority
JP
Japan
Prior art keywords
layer
titanium
metal
electrode
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56134196A
Other languages
Japanese (ja)
Other versions
JPS5835919A (en
Inventor
Yoshiki Wada
Yasuhiro Kawasaki
Shuichi Kanamori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13419681A priority Critical patent/JPS5835919A/en
Publication of JPS5835919A publication Critical patent/JPS5835919A/en
Publication of JPH0139222B2 publication Critical patent/JPH0139222B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Description

【発明の詳細な説明】 本発明は、チタン化合物やチタン合金を電極材
料とする金属半導体接合電極の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a metal semiconductor junction electrode using a titanium compound or a titanium alloy as an electrode material.

従来の金属半導体接合電極は、下地半導体(例
えばSi、GaAs等)上に直接金属層を設けて構成
したもの、又は下地半導体上にチタニウム(Ti)
層(第1層)を形成しさらにその上に金属層(第
2層)を設けて構成したものがある。
Conventional metal-semiconductor junction electrodes are constructed by forming a metal layer directly on a base semiconductor (e.g., Si, GaAs, etc.), or by depositing a metal layer directly on a base semiconductor (e.g., Si, GaAs, etc.), or by depositing a metal layer on a base semiconductor (such as titanium (Ti)).
Some devices are constructed by forming a layer (first layer) and further providing a metal layer (second layer) thereon.

このうち前者に於いては、後に示すように逆方
向耐圧が非常に低くなつたり、また、製造後の特
性のばらつきが多いために量産に適さないという
欠点があつた。
Among these, the former has disadvantages in that the reverse breakdown voltage is extremely low, as will be shown later, and that it is not suitable for mass production due to large variations in characteristics after manufacture.

一方、後者に於いては、Ti層の使用目的が第
2層の金属と下地半導体の間の応力を減少させ接
着力を増すことにあつたため、製造時の厚さ制御
が容易で歩留りも良いように、厚いTi層(例え
ば厚さ500Å)が用いられていた。従つて、第2
層の金属(電極材料)と半導体で決まる固有のシ
ヨツトキー障壁の高さと電気伝導特性を得ること
が出来ず、第1層のTiとで決まる特性が得られ
るだけであるという欠点があつた。
On the other hand, in the latter case, the purpose of using the Ti layer was to reduce the stress between the second layer metal and the underlying semiconductor and increase the adhesion strength, so it was easy to control the thickness during manufacturing and the yield was good. As such, thick Ti layers (eg, 500 Å thick) were used. Therefore, the second
The drawback was that it was not possible to obtain the inherent Schottky barrier height and electrical conductivity characteristics determined by the metal (electrode material) and semiconductor in the layer, but only the characteristics determined by the first layer of Ti.

本発明はこれらの欠点を解決するために、第1
層のTiの厚さを薄くして熱処理を行うことを特
徴としたものであり、以下図面を用いて詳細に説
明する。
In order to solve these drawbacks, the present invention
The feature is that the thickness of the Ti layer is reduced and heat treatment is performed, and will be explained in detail below with reference to the drawings.

第1図は本発明の実施列であり、熱処理直前の
段階まで製造された金属半導体接合電極の断面図
である。図において、1はn形砒化ガリウム
(GaAs)ウエハ、2はこのウエハ1の裏面に設
けた金・ゲルマニウム・ニツケル製オーミツクス
電極、3はチタニウム(Ti)層、(第1層)4は
窒化チタニウム(TiN)層(第2層)、5はTi層
(第3層)、6はアルミニウム(Al)層(第4層)
である。
FIG. 1 is a cross-sectional view of a metal-semiconductor junction electrode manufactured to the stage immediately before heat treatment, which is an embodiment of the present invention. In the figure, 1 is an n-type gallium arsenide (GaAs) wafer, 2 is an ohmic electrode made of gold, germanium, and nickel provided on the back side of this wafer 1, 3 is a titanium (Ti) layer, and (first layer) 4 is titanium nitride. (TiN) layer (second layer), 5 is Ti layer (third layer), 6 is aluminum (Al) layer (fourth layer)
It is.

次に本発明の製造方法の主要工程を説明する。 Next, the main steps of the manufacturing method of the present invention will be explained.

ウエハ1の裏面に金・ゲルマニウム合金を蒸
着し、次いでニツケルを蒸着し、その後水素雰
囲気中で加熱して金・ゲルマニウム・ニツケル
製オーミツク電極2を形成する。
A gold/germanium alloy is deposited on the back surface of the wafer 1, and then nickel is deposited, and then heated in a hydrogen atmosphere to form a gold/germanium/nickel ohmic electrode 2.

ウエハ1の表面に第1層となる厚さ100Åの
Ti層3を例えばスパツタ法で形成する。
A first layer with a thickness of 100 Å is deposited on the surface of wafer 1.
The Ti layer 3 is formed by, for example, a sputtering method.

上記第1層上に第2層となる厚さ500Åの
TiN層4を窒素プラズマ中でTiをリアクテイ
ブスパツタ法で形成する。
A second layer with a thickness of 500 Å is placed on top of the first layer.
The TiN layer 4 is formed by reactive sputtering of Ti in nitrogen plasma.

上記第2層上に第3層となる厚さ100ÅのTi
層5を例えばスパツタ法で形成する。
A third layer of Ti with a thickness of 100 Å is formed on the second layer above.
Layer 5 is formed, for example, by sputtering.

さらにその上に第4層として厚さ3000Åの
Al層6を例えば蒸着で形成する。
Furthermore, a fourth layer with a thickness of 3000 Å is added on top of that.
The Al layer 6 is formed, for example, by vapor deposition.

次に第1層から第4層で形成された電極を直
径200μmの大きさに写真食刻法で整形する。
なお、この時点で第1図に示した断面構造とな
る。
Next, the electrodes formed from the first to fourth layers are shaped to a diameter of 200 μm by photolithography.
At this point, the cross-sectional structure shown in FIG. 1 is obtained.

その後450℃の水素雰囲気中にて30秒間の熱
処理を加える。なお、この熱処理工程は、第1
層と第2層又は第2層の形成中に行なつてもよ
い。
After that, heat treatment is applied for 30 seconds in a hydrogen atmosphere at 450°C. Note that this heat treatment step
It may be performed during formation of the layer and the second layer or the second layer.

以上の工程により本発明の金属半導体接合電極
が構成される。なお、各層の厚さ並びにその形成
方法については、本実施例に限定されるものでは
ない。
The metal semiconductor junction electrode of the present invention is constructed by the above steps. Note that the thickness of each layer and its formation method are not limited to those in this example.

第2図及び第3図は、裏面のオーミツク電極2
に対し表面の電極(Al層6)をそれぞれ正(順
方向)と負(逆方向)にバイアスした時に電流電
圧特性である。図において、7は上記の実施例す
なわち本発明の製造方法により作られた場合の代
表的な特性であり、8は従来技術すなわち第1層
に相当するTi層を用いないで作成した場合の代
表的な特性例である。
Figures 2 and 3 show the ohmic electrode 2 on the back side.
In contrast, current-voltage characteristics are obtained when the surface electrode (Al layer 6) is biased positively (forward direction) and negatively (reverse direction), respectively. In the figure, 7 is the typical characteristic when the product is manufactured using the above-mentioned example, that is, the manufacturing method of the present invention, and 8 is the typical characteristic when it is manufactured using the conventional technique, that is, without using the Ti layer corresponding to the first layer. This is an example of a typical characteristic.

第3図から、本発明による電極は、従来方法に
よる場合に比べ十分高い逆方向耐圧を有すること
が明らかである。本発明は上記の利点に加えさら
に次のような利点を有する。すなわち、第2図の
順方向特性から求まるシヨツトキー障壁の高さ
は、本発明の場合は0.9eVであり、この値は従来
方法の場合より0.3eV高くなつている。別に測定
した容量電圧特性から求めた障壁の高さは、両者
ともほとんど等しい値で1.1eVとなつていること
から、本実施例の順方向特性は従来技術の場合に
比べ格段に改善されていることが分かると共に、
第2層となるTiNとウエハのGaAsで決まる大き
な障壁の高さを示していることが分かる。ちなみ
に、TiのみをGaAs上に形成した金属半導体接合
電極の障壁の高さは、本実施例の値より0.2eV低
い値を示す。
It is clear from FIG. 3 that the electrode according to the present invention has a sufficiently higher reverse breakdown voltage than the electrode according to the conventional method. In addition to the above advantages, the present invention has the following advantages. That is, the height of the Schottky barrier determined from the forward characteristics shown in FIG. 2 is 0.9 eV in the case of the present invention, which is 0.3 eV higher than in the case of the conventional method. The barrier heights determined from the separately measured capacitance-voltage characteristics are almost the same for both, 1.1 eV, indicating that the forward characteristics of this example are significantly improved compared to the conventional technology. As I understand that,
It can be seen that this shows a large barrier height determined by the second layer of TiN and the wafer's GaAs. Incidentally, the barrier height of the metal semiconductor junction electrode formed only of Ti on GaAs is 0.2 eV lower than the value of this example.

上記の実施例に於いて、第1層のTi層3があ
るにも拘らず第2層の物質固有の特性が得られる
理由は、前記の熱処理により第1層のTiがGaAs
と接合を形成した後、第2層のTiNと反応する
ことにあると考えられる。Tiの厚さは、膜厚の
制御性と均一性および実用的に反応可能な厚さか
ら制限され10乃至150Åである。
In the above example, the reason why the properties unique to the material of the second layer are obtained despite the existence of the first Ti layer 3 is that the first layer of Ti is changed to GaAs by the heat treatment.
This is thought to be due to the reaction with the second layer of TiN after forming a bond with the TiN layer. The thickness of Ti is limited to 10 to 150 Å, which is limited by the controllability and uniformity of the film thickness and the thickness that allows practical reaction.

熱処理の条件は、前記の実施例に限らず、活性
化エネルギー1.3eVのアレニウス則で定まる450
℃30秒相当以上の熱処理でも同様の効果が得られ
ることを確認した。
The heat treatment conditions are not limited to the above examples, but are determined by Arrhenius law with an activation energy of 1.3 eV.
It was confirmed that similar effects could be obtained by heat treatment for 30 seconds or more at °C.

以上は、第2層にTiNを用いた例について述
べたが、TiNが高融点であるにも拘らず上記の
効果がでることから、上記の反応はTiNに固有
のものではなく、従つて、第2層はTiNに限ら
ず金属的性質を示すチタン化合物(例えばTiC
等)やチタン合金(例えばTi−W、Ti−Mo等)
の場合でもTiNの場合と同様であることが言う
までもない。
The above describes an example in which TiN is used in the second layer, but since the above effect is obtained even though TiN has a high melting point, the above reaction is not unique to TiN, and therefore, The second layer is not limited to TiN, but also titanium compounds that exhibit metallic properties (for example, TiC).
etc.) and titanium alloys (e.g. Ti-W, Ti-Mo, etc.)
Needless to say, the situation is similar to that of TiN.

さらに、上記の説明は良好な表面状態を得にく
い化合物半導体に共通の技術であるため、半導体
基板(ウエハ1)は上記の例にあつたGaAsに限
定されるものではなく、例えばGaAlAs、GaP等
であつてもよい。
Furthermore, since the above explanation is a common technique for compound semiconductors where it is difficult to obtain a good surface condition, the semiconductor substrate (wafer 1) is not limited to GaAs as in the above example, but may include GaAlAs, GaP, etc. It may be.

以上説明したように、本発明の方法により製造
された金属半導体接合電極は、製造が容易である
こと、高い逆方向耐圧を有すること、第2層の物
質で定まるシヨツトキー障壁の高さを容易に得ら
れること等の利点を有するため、高耐圧ダイオー
ド、集積回路内のレベルシフトダイオード等への
利用価値が高い。
As explained above, the metal-semiconductor junction electrode manufactured by the method of the present invention is easy to manufacture, has a high reverse breakdown voltage, and can easily adjust the height of the Schottky barrier determined by the material of the second layer. Because of these advantages, it is highly useful for high voltage diodes, level shift diodes in integrated circuits, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により製造された金属半導体接
合電極の断面図、第2図は本発明及び従来技術に
よる電極の順方向電流電圧特性、第3図は本発明
及び従来技術による電極の逆方向電流電圧特性で
ある。 1……ウエハ(半導体基板)、2……オーミツ
ク電極、3……チタニウム(Ti)層(第1層)、
4……窒化チタニウム(TiN)層(第2層)、5
……チタニウム(Ti)層(第3層)、6……アル
ミニウム(Al)層(第4層)、7……本発明の実
施例による電極の特性、8……従来技術による電
極の特性。
FIG. 1 is a cross-sectional view of a metal semiconductor junction electrode manufactured according to the present invention, FIG. 2 is a forward current-voltage characteristic of the electrode according to the present invention and the prior art, and FIG. 3 is a reverse direction diagram of the electrode according to the present invention and the prior art. This is the current-voltage characteristic. 1... Wafer (semiconductor substrate), 2... Ohmic electrode, 3... Titanium (Ti) layer (first layer),
4...Titanium nitride (TiN) layer (second layer), 5
... Titanium (Ti) layer (third layer), 6 ... Aluminum (Al) layer (fourth layer), 7 ... Characteristics of the electrode according to the embodiment of the present invention, 8 ... Characteristics of the electrode according to the prior art.

Claims (1)

【特許請求の範囲】[Claims] 1 化合物半導体表面上に10乃至150Åの厚さを
有するチタニウムよりなる第1層を形成する工程
と、該第1層上にチタニウムの化合物またはチタ
ニウムを含有する合金よりなる第2層を形成する
工程と、該第1層と該第2層または該第2層の形
成中あるいは形成後に、該化合物半導体と該第1
層の反応を起こさせかつ該第2層が該化合物半導
体と接するのに要する時間の熱処理を行う工程を
有することを特徴とした金属半導体接合電極の製
造方法。
1. A step of forming a first layer made of titanium having a thickness of 10 to 150 Å on the surface of a compound semiconductor, and a step of forming a second layer made of a titanium compound or an alloy containing titanium on the first layer. and the compound semiconductor and the first layer during or after the formation of the first layer and the second layer or the second layer.
A method for manufacturing a metal-semiconductor junction electrode, comprising the step of performing heat treatment for a time required for causing a reaction in the layer and for the second layer to come into contact with the compound semiconductor.
JP13419681A 1981-08-28 1981-08-28 Manufacture of metal-semiconductor junction electrode Granted JPS5835919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13419681A JPS5835919A (en) 1981-08-28 1981-08-28 Manufacture of metal-semiconductor junction electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13419681A JPS5835919A (en) 1981-08-28 1981-08-28 Manufacture of metal-semiconductor junction electrode

Publications (2)

Publication Number Publication Date
JPS5835919A JPS5835919A (en) 1983-03-02
JPH0139222B2 true JPH0139222B2 (en) 1989-08-18

Family

ID=15122672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13419681A Granted JPS5835919A (en) 1981-08-28 1981-08-28 Manufacture of metal-semiconductor junction electrode

Country Status (1)

Country Link
JP (1) JPS5835919A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061774B2 (en) * 1985-03-29 1994-01-05 株式会社東芝 Semiconductor device
US5278099A (en) * 1985-05-13 1994-01-11 Kabushiki Kaisha Toshiba Method for manufacturing a semiconductor device having wiring electrodes
JPH0732146B2 (en) * 1988-01-05 1995-04-10 日本電気株式会社 Method for forming electrode of compound semiconductor device
US4923827A (en) * 1988-05-16 1990-05-08 Eaton Corporation T-type undercut electrical contact process on a semiconductor substrate
US4935805A (en) * 1988-05-16 1990-06-19 Eaton Corporation T-type undercut electrical contact on a semiconductor substrate
US5036023A (en) * 1989-08-16 1991-07-30 At&T Bell Laboratories Rapid thermal processing method of making a semiconductor device
JPH0463480A (en) * 1990-07-02 1992-02-28 Sharp Corp Group iii-v compound semiconductor device
US6204560B1 (en) * 1998-04-20 2001-03-20 Uniphase Laser Enterprise Ag Titanium nitride diffusion barrier for use in non-silicon technologies and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120132A (en) * 1979-11-30 1980-09-16 Sumitomo Electric Ind Ltd Manufacture of semiconductor element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55120132A (en) * 1979-11-30 1980-09-16 Sumitomo Electric Ind Ltd Manufacture of semiconductor element

Also Published As

Publication number Publication date
JPS5835919A (en) 1983-03-02

Similar Documents

Publication Publication Date Title
JP2000196109A (en) Electrode structure for nitride-based iii-v compound semiconductor device
JPS5823952B2 (en) shot key barrier device
US4574298A (en) III-V Compound semiconductor device
CA1224886A (en) Semiconductor device and process for producing the same
JP3418849B2 (en) Method of manufacturing ohmic contact for compound semiconductor
JPH0139222B2 (en)
US4312113A (en) Method of making field-effect transistors with micron and submicron gate lengths
US5451544A (en) Method of manufacturing a back contact for semiconductor die
US4310570A (en) Field-effect transistors with micron and submicron gate lengths
EP0992063A1 (en) A titanium nitride diffusion barrier for use in non-silicon technologies and metallization method
US5221638A (en) Method of manufacturing a Schottky barrier semiconductor device
US4312112A (en) Method of making field-effect transistors with micron and submicron gate lengths
JPS6148776B2 (en)
JPH0575101A (en) Semiconductor device having schottky barrier
JPS60193337A (en) Manufacture of semiconductor device
JP2817217B2 (en) Semiconductor device having metal / semiconductor junction and method of manufacturing the same
JP2932304B2 (en) Method of manufacturing semiconductor device having Schottky barrier
KR950005259B1 (en) Fabricating method of semiconductor device
JPH06104424A (en) Schottky barrier type diode and its manufacture
JPS59189625A (en) Manufacture of semiconductor device
JPH0245976A (en) Method for forming silicon carbide electrode
JPS62136018A (en) Manufacture of semiconductor device
JP2661235B2 (en) Method for manufacturing semiconductor device
JP2932305B2 (en) Method for manufacturing semiconductor device
JPH03165035A (en) Manufacture of semiconductor device