JPS58192210A - Method of producing composite superconductive wire - Google Patents
Method of producing composite superconductive wireInfo
- Publication number
- JPS58192210A JPS58192210A JP57075732A JP7573282A JPS58192210A JP S58192210 A JPS58192210 A JP S58192210A JP 57075732 A JP57075732 A JP 57075732A JP 7573282 A JP7573282 A JP 7573282A JP S58192210 A JPS58192210 A JP S58192210A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- superconducting
- composite
- manufacturing
- wire
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims description 32
- 238000000034 method Methods 0.000 title claims description 30
- 239000004020 conductor Substances 0.000 claims description 33
- 238000004519 manufacturing process Methods 0.000 claims description 31
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 31
- 229910045601 alloy Inorganic materials 0.000 claims description 16
- 239000000956 alloy Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 16
- 229910020012 Nb—Ti Inorganic materials 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000002887 superconductor Substances 0.000 claims description 6
- 229910001257 Nb alloy Inorganic materials 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 4
- 229910001128 Sn alloy Inorganic materials 0.000 claims description 4
- 229910001362 Ta alloys Inorganic materials 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 4
- 238000005304 joining Methods 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910000531 Co alloy Inorganic materials 0.000 claims 2
- 229910000657 niobium-tin Inorganic materials 0.000 claims 2
- 238000004026 adhesive bonding Methods 0.000 claims 1
- 239000010949 copper Substances 0.000 description 9
- 238000003466 welding Methods 0.000 description 7
- 229910000679 solder Inorganic materials 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 238000011946 reduction process Methods 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910004179 HfZr Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- -1 containing these Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は極細多心などの複合超電導導体の製造方法に
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing composite superconducting conductors such as ultrafine multicore conductors.
Nb−Ti系極細多心複合超電導線は熱的、電気的安定
化全目的として、銅または他の常電導性金属金マトリッ
クスとしそれらの中に連続した多数のNb−Tiフィラ
メントを配した構造を有するものが周知である。この種
の超電導線の製造方法として次のような方法がある。た
とえば外径8o■までの常電導性金属パイプと、Nb
−T’i合金合金全常電導性金波覆した超電導素線等を
材料として常電導性金属ノやイブの中に1多数の超電導
翼1ilk挿入し、その後鍛造、スェージング、引抜き
、圧延等の方法により減面加ニレ、必要な程度にツイス
トカU工を加え、所要寸法に仕上げて超電導t’te−
製造する。Nb-Ti-based ultrafine multicore composite superconducting wires have a structure in which a large number of continuous Nb-Ti filaments are arranged in a copper or other normal-conducting metal gold matrix for the purpose of thermal and electrical stabilization. What it has is well known. There are the following methods for manufacturing this type of superconducting wire. For example, a normally conductive metal pipe with an outer diameter of up to 8° and a Nb
- Methods such as inserting a large number of superconducting blades 1ilk into a normal conductive metal tube or tube using a T'i alloy superconducting wire or the like coated with a fully normal conductive gold plate, and then forging, swaging, drawing, rolling, etc. The surface of the elm was reduced, the twisting process was added to the necessary degree, and the required dimensions were completed to form the superconducting t'te-
Manufacture.
また別の製造方法としては、外径が140w〜250鰭
の常電導金属・セイデの中に多数の常電導 □性金属
で被覆したNb −Ti合金超電導素1挿入し、 i
上記金属パイプの両端面に同種の金属板1r浴接するこ
とにより、パイプ内を真空として上記超電導素線等全封
入し、複合ビレット’1作成する。そして押出加工法に
より1通常は直径80−〜30mの複合棒とし、しかる
後に鍛造、押出、スェージング、引抜き等の方法に工り
減面加工し、所要寸法に仕上げ必要な程度にツイスト加
工金加えてNb −Ti極細多心超電導at製造してい
る。ところでこのNb −Ti複合超電導線では、Nb
−Tiフィラメントの直径音長くは約60μm以下に
選足し、数十率またはそれ以上の本数でPgr要の電流
容量を得ている、
最近になって超電導線は核融合装置、磁気浮上列束、超
電導発電機、粒子加速機、エネルギー貯蔵製電、MHD
発電、磁気分離装置の研究開発に盛んに使われている。Another manufacturing method is to insert a Nb-Ti alloy superconducting element 1 coated with a large number of normal-conducting metals into a normal-conducting metal shell having an outer diameter of 140 W to 250 W, and
By bringing metal plates 1r of the same type into bath contact with both end faces of the metal pipe, the inside of the pipe is evacuated and the superconducting strands and the like are completely encapsulated to form a composite billet '1. Then, by extrusion processing method, it is made into a composite bar with a diameter of 80-30m.Then, it is processed by forging, extrusion, swaging, drawing, etc. to reduce the surface area, and finished to the required dimensions, adding twist processing to the necessary degree. We are manufacturing Nb-Ti ultrafine multicore superconducting at. By the way, in this Nb-Ti composite superconducting wire, Nb
- The diameter and length of the Ti filaments has been selected to be approximately 60 μm or less, and the current capacity required for Pgr can be obtained by using tens of filaments or more.Recently, superconducting wires have been used in nuclear fusion devices, magnetic levitation arrays, Superconducting generator, particle accelerator, energy storage electrical manufacturing, MHD
It is actively used in research and development of power generation and magnetic separation devices.
これらはやがて実用上使われるが、超電導線材はたとえ
ば横断面全第1図に示すように鋼マトリックスlの中に
多数のNb−Ti合金フィラメント2を埋込んだモノリ
シック形3で使われることがある。その他、特に核融合
装置、高エネルギー物理研究装置などに用いられる超電
導導体には、大電流容量の大型導体が用いられるが、た
とえば第2図(a)K示す工うに銅等の基材4の上に必
要により撚線した多数の複合超電導線5を並べ、基材4
と超電導線5と會ハンダ等全用いて接合し、必要により
第2図Cb)に示すように常電導性金属の蓋6t−接合
して大電流超電導導体にする方法がある。These will soon be put to practical use, but superconducting wires are sometimes used, for example, in a monolithic type 3 in which a large number of Nb-Ti alloy filaments 2 are embedded in a steel matrix 1, as shown in the cross-sectional view in Figure 1. . In addition, large-sized conductors with large current capacities are used especially for superconducting conductors used in nuclear fusion devices, high-energy physics research devices, etc. A large number of twisted composite superconducting wires 5 are arranged on top of the base material 4.
There is a method of joining the superconducting wire 5 and the superconducting wire 5 using solder, etc., and if necessary, as shown in FIG. 2Cb), a lid 6t of a normal conductive metal is joined to form a large current superconducting conductor.
上記のLつな超電導導体の製作に関し、銅基材4と複合
超電導線5とを接合するには、ハンダ付等の接合方法が
採られることが多いが、ハング部は超電導導体における
安定化に寄与せず、いたずらに超電導導体の断面積を増
加させて超電導コイルの大型化金招いて因る。さらにハ
ンダ部の空孔の発生全防止することは困難で、このこと
が熱的電気的伝導性全損なう原因となっている。またこ
のような導体の製作に関して特に溝の深い基材4を製作
する罠は一般に押出、引抜き加工が用いられるが、成形
加工が非常に面倒であり、また基材4と超電導素線5と
のハンダ付は作業においても、長尺の基材4と素lH5
およびハンダの供給、加熱そして溶接後の冷却などの作
業が複雑となり、しかも基材4の外面に不要のノ・ンダ
が付着し、このハンダt−1除くための手数會要してい
た。Regarding the production of the above-mentioned L-shaped superconducting conductor, joining methods such as soldering are often used to join the copper base material 4 and the composite superconducting wire 5, but the hanging portion is used to stabilize the superconducting conductor. This unnecessarily increases the cross-sectional area of the superconducting conductor, leading to an increase in the size of the superconducting coil. Furthermore, it is difficult to completely prevent the formation of voids in the solder portion, which causes a total loss of thermal and electrical conductivity. In addition, in the production of such conductors, extrusion and drawing are generally used to produce the base material 4 with particularly deep grooves, but the forming process is extremely troublesome, and the connection between the base material 4 and the superconducting strands 5 is difficult. During soldering work, long base material 4 and base material 1H5 are used.
Moreover, operations such as supplying solder, heating, and cooling after welding are complicated, and unnecessary solder adheres to the outer surface of the base material 4, and it takes time and effort to remove this solder t-1.
この発明は上記のような従来のものの欠点全除去するた
めになされたもので、超電連累@全含む無整列の線束体
を包囲するように金輌板′tパイプ状に加工する工程と
、その後上記素線が断線しない範囲で断面縮小加工全行
なう工程とよりなり、これにより安定性に富む大電流容
置超電導導体を工業的に簡単に製造することのできる複
合超電導導体の製造方法全提供することを目的とする。This invention was made in order to eliminate all the drawbacks of the conventional ones as described above, and includes a process of processing a metal plate into a pipe shape so as to surround an unaligned wire bundle containing a superconductor. After that, the above-mentioned strands are subjected to a cross-section reduction process within a range that does not break, thereby providing a complete method for manufacturing a composite superconducting conductor that can industrially and easily manufacture a highly stable large-current container superconducting conductor. The purpose is to
以下この発明の一実施例を図について説明する。An embodiment of the present invention will be described below with reference to the drawings.
第3図はこの発明の製造方法全実施するための装[k示
すもので、7はデビン8に巻かれている超電4素li!
ilを含む撚紐エリなる線束体、9は同じくlピンlO
に巻かれている常電導性金属板、11はこの金属板10
’ka?イブ状にするロール群、12は常電導性金属板
10との間にアークを発生させるために必要なタングス
テン電極棒、13は線束体7と金属板9との複合体を巻
取るがビンである。FIG. 3 shows the equipment for carrying out the entire manufacturing method of the present invention, in which 7 is a superelectric 4-element li! wound around Devin 8!
A wire bundle consisting of a twisted string Eri containing il, 9 is also an l pin lO
A normally conductive metal plate 11 is wound around the metal plate 10.
'ka? 12 is a tungsten electrode rod necessary for generating an arc between the wire bundle 7 and the metal plate 9; be.
パイプ状に加工される金属板9の中に包まれる線束体7
は必要により他極の*’r含む撚線で、後の断面縮小加
工時の素線の断線を防ぐために、素線の形状が丸形また
は六角形線に拘らず、整列してパイプで包囲されるのが
好ましいが、工業生産するのにこのようなことは限られ
た少ない素線数−の場合にのみ可能で、素線数が多くな
るとむしろ整列させられないことが頻繁である。したが
ってこのような時には超電導XI!を含む線束体7t−
パイプ中に包み込んだのち、複合導体内の素線の断線が
生じない範囲で複合導体に断面縮小加工を加えて緊密な
構造の大型超電導導体を製造することができる。線束体
の撚シピツチは、撚りにより超電導素線などが強い加工
を受けない範囲でよく、また必ずしも撚線である必要は
なく、素線などを単に直線状の線束として奄、後の断面
縮小加工に影響金与えるものでない。Wire bundle 7 wrapped in a metal plate 9 processed into a pipe shape
is a stranded wire that includes *'r of the other pole if necessary, and in order to prevent the wire from breaking during cross-section reduction processing later, regardless of whether the shape of the wire is round or hexagonal, it is lined up and surrounded by a pipe. However, for industrial production, this is only possible when the number of strands is limited to a small number, and as the number of strands increases, it is often the case that they cannot be aligned. Therefore, in times like these, Superconducting XI! A wire bundle body 7t-
After being wrapped in a pipe, a large superconducting conductor with a tight structure can be manufactured by reducing the cross section of the composite conductor within a range that does not cause wire breakage within the composite conductor. The twisting pitch of the wire bundle may be as long as the superconducting wires are not subjected to strong processing due to twisting, and it does not necessarily have to be twisted wires. It does not affect the amount of money.
′″mal″1M*f 9 n°Ow1″′−”9°
′1れるが、・平イゾ化に適した巾のものが必要で、厚
さは銅化に影響するので仕上り縁材の構成にさかのぼっ
て決定される。′″mal″1M*f 9 n°Ow1″′−”9°
'1 However, it is necessary to have a width suitable for flat iso coating, and since the thickness affects copper coating, it is determined by going back to the composition of the finished edge material.
超電導X線會含む線束体7と常電導性金属板9とはぎビ
ン13の回転力VC工り引張られて移動し、上記金属板
9はローラ群11によって線束体7を包囲しながらしだ
いに・ンイプ状となり、パイプ化したところでタングス
テン電極棒12との間に発生しているアークにエリ、・
やイブの対向縁部が溶接される。そして溶接された複合
体は巻き設ビン13に巻取られる。巻取られた複合体は
・!イブ内の素−が断at起こさない範囲で引抜加工、
スェージングなどの方法にエリ断面縮小加工されて大電
流超電導導体となる。このようにして製造した超電導導
体はハンダなどの接合材料を使わずに安定した働き倉な
す超電導導体を再現性よく簡単に造ることができる。The wire bundle 7 containing the superconducting X-ray beam, the normal conductive metal plate 9, and the scraping bin 13 are pulled and moved by the rotational force VC, and the metal plate 9 gradually surrounds the wire bundle 7 by the roller group 11. When it is made into a pipe, the arc generated between it and the tungsten electrode rod 12 has an edge.
Opposite edges of the eaves are welded together. The welded composite is then wound onto a winding bin 13. The rolled up complex is...! The drawing process is carried out within the range that does not cause the element inside the tube to break off.
It becomes a large current superconducting conductor by reducing the cross section of the material using methods such as swaging. The superconducting conductor manufactured in this way can be easily produced with good reproducibility without using bonding materials such as solder, and has a stable working chamber.
なお、実施例では常電導性金属板9會)やイブ化する時
、線束体7に充分に接触し、必要に工り線束体に害を生
じない範囲の変形を与える程度のノeイデ内径にするの
が好ましく、この↓うにすればその彼の縮小加工初期に
おける素線の断線の発生率を少なくできる。またノ母イ
ゾ浴接の熱源はアークの他に電子ビーム、ゾラズiビー
ム等を用いてもより、溶接の他にろう付等の方法であっ
ても工い。しかもノfイデ會溶接する場合には、金属板
9の全厚全接合することが望ましいが、必ずしもその必
要はなく、縮小加工に影響するものでない。In addition, in the embodiment, when forming the normal conductive metal plate 9) or the wire bundle 7, the inside diameter of the wire is such that it can sufficiently contact the wire bundle 7 and deform the wire bundle within a range that does not cause any harm to the wire bundle. It is preferable to do this, and by doing this, the incidence of wire breakage at the beginning of the reduction process can be reduced. In addition, the heat source for mother-iso bath welding may be an electron beam, a Zolaz i-beam, etc. in addition to an arc, or a method such as brazing may be used instead of welding. In addition, in the case of welding, it is desirable to weld the entire thickness of the metal plates 9, but this is not necessarily necessary and does not affect the reduction process.
金属板9が厚い場合には接合を省けることもある。If the metal plate 9 is thick, bonding may be omitted.
これは有効な量の縮小加工が可能になるからであり、特
にスェージングのように主に半径方向の圧縮力でもって
加工する場合には接合を省ける場合が多い。This is because an effective amount of reduction processing becomes possible, and joining can often be omitted, especially when processing is performed mainly with compressive force in the radial direction, such as in swaging.
上記・ヂイゾの溶接時に線束体7が過熱され、たとえば
Nb −Ti合金超電導線の場合ではその電流特性の劣
化が危惧される。しかし金精板9が無酸素鋼の場合には
アーク溶接のとき、条件により230℃に加熱される場
合があっても、超電導素線自身が熱伝導性がよいため通
常は180〜200℃の昇温に止まり、したがって電流
特性の劣化は生じない。また溶接する場合%パイプの内
面と素線の表面の酸化を防止するために予め溶接部付近
をアルゴン等の不活性雰囲気に置換しておくことが好ま
しい、
E記の説明では、金属板9が円形パイプの場合について
述べたが同様の方法に工って断面形状が長方形状など任
意の形状の複合体を造ることも可能である。The wire bundle 7 is overheated during welding of the above-mentioned DIZO, and in the case of Nb--Ti alloy superconducting wire, for example, there is a fear that its current characteristics may deteriorate. However, if the metal plate 9 is made of oxygen-free steel, even though it may be heated to 230°C depending on the conditions during arc welding, it is usually heated to 180-200°C because the superconducting wire itself has good thermal conductivity. The temperature only increases, and therefore the current characteristics do not deteriorate. In addition, when welding, it is preferable to replace the vicinity of the welded area with an inert atmosphere such as argon in advance in order to prevent oxidation of the inner surface of the pipe and the surface of the wire. Although the case of a circular pipe has been described, it is also possible to create a composite body of any shape, such as a rectangular cross-sectional shape, by using a similar method.
この発明り製造方法では、金属板9は無酸素銅に限らず
、通常、超′イ導線の安定化材として使用されるCu
、 Al 、 Atまたはこれらを主体とする金属、化
合物系超電導線の場合の強化材としてのステンレス鋼、
拡散バリヤーとしてのTa 、 Nbまたはそれらの合
金、もしくはその複合材でもよい。In this invented manufacturing method, the metal plate 9 is not limited to oxygen-free copper, but is also made of Cu, which is usually used as a stabilizing material for superconducting wires.
, Al, At or metals mainly containing these, stainless steel as a reinforcing material in the case of compound-based superconducting wires,
Ta, Nb, alloys thereof, or composites thereof may be used as a diffusion barrier.
%に複合材の中でもTa 、 Nbまたはそれらの合金
とCuが積層構造をなしている場合にはAI 、 At
に比較してCuが高強度であるため、縮小加工が容易で
、!l19、これによりバリヤーと安定化のためCui
含むより長い超電導線を製造することができる。Among composite materials, when Ta, Nb or their alloys and Cu form a laminated structure, AI, At
Compared to , Cu has higher strength, so it is easier to reduce the size. l19, which provides a barrier and stabilization for Cui
Longer superconducting wires can be manufactured that include.
勿論、線束体7を包囲するようにバリヤーをパイゾ状に
加工したのち、さらにこれを包囲するようにCu 1i
k!’t ”イブ状に加工しても上記同様に行なうこと
ができる。Of course, after processing the barrier into a piezo shape so as to surround the wire bundle body 7, Cu 1i is further formed to surround this.
k! Even if it is processed into a 't' rib shape, the same process as described above can be carried out.
また上記の実施例ではNb −Ti合金超電導線につい
て説明したが、Nb−Ti−Ta合金tはじめとしてN
b −Tj f含む多元合金、Nb38n * VzG
a + NbzAt+V1Si 、 Nb1Ga 、
V、Hf 、 V、(HfZr )等の超電導導体の製
造にも利用できる。特にNb38n化合物超電導線の場
合においては、NbまたはNb合金、SnまたはSn合
金をCuまたはCu合金を周辺に配置した状態で一体と
して断面縮小加工する製造方法の線材に適用する場合に
は、このような複合材が高強度の構成材を含まないため
に、後の断面縮小加工で素線の断線を生じにくく、所望
の形の大電流容量超電導導体の製造が容易になる。Furthermore, in the above embodiments, Nb-Ti alloy superconducting wire was explained, but Nb-Ti-Ta alloy t and Nb-Ti alloy superconducting wire were explained.
Multi-component alloy containing b -Tj f, Nb38n*VzG
a + NbzAt+V1Si, Nb1Ga,
It can also be used to manufacture superconducting conductors such as V, Hf, V, (HfZr), etc. Particularly in the case of Nb38n compound superconducting wire, when applying it to a wire produced by a manufacturing method in which Nb or Nb alloy, Sn or Sn alloy is integrally processed to reduce the cross section with Cu or Cu alloy arranged around it, such a method is necessary. Since the composite material does not contain high-strength constituent materials, the wires are less likely to break during the subsequent cross-sectional reduction process, making it easier to manufacture a large current capacity superconducting conductor in a desired shape.
ところでNb38n超電導素線中のanの割合上増加さ
せると、臨界電流値が増える事実があるが、Nb319
n超電導業縁の表面にSnまたはSnn合金付付着せ、
これを線束体としてこの発明の加工を行なうと、5ni
lt容易に増加させることができ、より優れた j性
能の長いNb38n超電導線ヲ得ることができる。また
超電導線の中でも特に化合物超電導iK歪み奮与えると
、若しく臨界電流値が減少する現象がある、このことは
周知であり、上記の如く金属板の材質tステンレス鋼と
するのはストレス効果の緩和に対する一つの工夫で、ス
テンレス鋼全強化の目的で縁材に付着させたものである
が、この発明の製造方法全採用する場合、線束体7の一
部金ステンレス鋼機またはタングステン線で置き換える
だけで容易にしかも長い高強度の線材が得られる。By the way, there is a fact that when the proportion of an in the Nb38n superconducting wire is increased, the critical current value increases.
Adhering Sn or Snn alloy to the surface of the n superconducting edge,
When this invention is processed using this as a wire bundle, 5ni
lt can be easily increased, and a long Nb38n superconducting wire with better performance can be obtained. In addition, it is well known that when strain is applied to compound superconducting iK, the critical current value decreases among superconducting wires, and as mentioned above, the reason why the material of the metal plate is stainless steel is to reduce the stress effect. This is one of the devices for mitigation, and it is attached to the edge material for the purpose of completely reinforcing the stainless steel, but when the entire manufacturing method of this invention is adopted, part of the wire bundle 7 is replaced with a gold stainless steel wire or tungsten wire. A long, high-strength wire rod can be easily obtained by simply using this method.
以と説明したLうにこの発明に工れば、超電導Xwj會
含む無整列の線束体を包囲する工すに金属板にノ’イデ
状に加工し、その後必要に心じてパイプの対向縁部奮接
合して複合体を得、次に複合導体内の素線が断at生し
ない範囲で引抜き加工等の断面・縮小加工ケ施こすこと
に工す、安定性に富む大電流8徽の超電導導体全工業的
に簡単な方法に↓9製造することができる効果がある。According to the invention described above, in order to enclose an unaligned wire bundle including a superconducting A highly stable, high-current superconductor is created by hard bonding to obtain a composite, and then subjecting it to cross-section and reduction processing such as drawing to the extent that the strands within the composite conductor do not break. It has the effect of being able to manufacture conductors in a simple manner across the entire industry.
第1図はモノリシック超電導導体の断面囚、第2図(a
)、 (b)は従来の大電流超電導導体の断面肉、第3
図はこの発明の製造方法を実施するための装置の一実施
例である。
7・・・超電導素線を含む線束体、8・−・がビン、9
・・・常電導性金属板、10・・・デビン、11・・・
ロール群、12・・・電極棒、13・・・ゲビン。
なお、図中、同一符号は同−又は相当部分を示す、
代理人 葛 野 信 −Figure 1 shows the cross section of a monolithic superconductor, Figure 2 (a
), (b) is the cross-sectional thickness of the conventional large current superconducting conductor,
The figure shows an embodiment of an apparatus for carrying out the manufacturing method of the present invention. 7... Wire bundle containing superconducting wire, 8... is a bottle, 9
...Normal conductive metal plate, 10... Devin, 11...
Roll group, 12... Electrode rod, 13... Gevin. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.
Claims (1)
を施こして製造する超電導導体の製造方法において、超
電導素@全含む無整列の縁束体全包囲するように金属板
を・4イデ状に加工する工程と。 その後、上記素線が断縁しない範囲で断面縮小加工を行
なう工程とからなること全特徴とする複合超1M4導体
の製造方法。 (2)金に板がCu 、 At、 Afまたはこれらを
主体とする金属からなることを特徴とする特許#〜求の
範囲第1項記載の複合超電導導体の製造方法8(3)金
属板がTaまたはTa合釜、 NbまたはNb合金、ま
たはこれらの複合材であること全特徴とする特許請求の
範囲第1項記載の複合超電導導体の製造方法。 (4)金属板がステンレス鋼またはそり複合材であるこ
と全特徴とする特許請求の範囲第1項記載の複合超電導
導体の製造方法。 (5)金属板がTa 、 T’a合金、NbまたはNb
合金とCuが積lIi′g4造であることを特徴とする
特許請求の範囲第1項記載の複合超電導導体の製造方法
。 (6)IVi1束体全包囲するようにNb板、Nb合金
板、Ta板またはTa合金板tパイプ状に加工し、さら
にこの・母イブ會包囲するようにCu4Nをパイプ状に
加工すること全特徴とする特許請求の範囲第1項記載の
複合超電導導体の製造方法。 (力金属板ヲ・ンイプ状に加工したのち、パイプの対同
縁部奮接合することを特徴とする特許請求の範囲第1〜
6項記載の複合超電導導体の製造方法。 (8)金属板金−gイブ状に加工したのち%パイプの対
向縁部1を接合せずに断面細小加工?行なうこと全特徴
とする1特許請求の範囲@1〜6項記載の複合超電導導
体の製造方法、 (9)超電専業縁がNb−Ti合金超電導素線であゐこ
とを特徴とする特許請求の範囲第1.2,7.8項記載
の複合超電導導体の製造方法。 θQM電導素巌素線b−Ti−Ta合金超電導素線であ
ることを特徴とする特許請求の範囲第1.2,7゜8項
記載の複合超電導導体の製造方法。 aυMill14素llMd: Nb3Sn 、 V3
Ga 、 Nb3At、 V3Si 。 Nb、Ga 、 V、Hf 、またはV2(E4f−Z
r)超電導xiであること紮特徴とする特許請求の範囲
第1〜8項記載の複合8@導導体の製造方法。 0邊超電導粱線がNbまたはNb合金棒とSnまたはS
n合金棒と金CuまたはCo合金を周辺に配置し、一体
として断面縮小加工してなるNb3Sn超電導累練であ
ることを特徴とする特許請求の範囲第1〜8項記−の床
台超電導24体の製造方法。 03超゛1j′導累線がNbまたはNb合金、Cuまた
はCu合金、 Snまたはsn合金の全てでたけ一部か
らなる複合材の表面にSnまだij、sn合金全付着し
たNb1Sn超電導農線である特許請求の範囲第1〜8
項配畝のり合超#L導導体の製造方法。 (14+!!束体が超電導講靭よf)高tn機械的強髪
全有する金属または合金線であることを特徴とする特許
請求の範囲第1〜8項および第11〜13項記載の複合
超電導導体の製造方法。[Claims] (1) A method for manufacturing a superconducting conductor in which a plurality of metals or alloys are bundled and subjected to cross-section reduction processing, in which an unaligned edge bundle containing a superconducting element @ is entirely surrounded. The process of processing a metal plate into 4-ide shapes. Thereafter, the method for manufacturing a composite super 1M4 conductor is characterized by comprising the step of reducing the cross section of the strands within a range where the strands are not broken. (2) Method 8 for manufacturing a composite superconducting conductor as described in Patent No. 2. The method for producing a composite superconducting conductor according to claim 1, wherein the material is Ta or Ta alloy, Nb or Nb alloy, or a composite material thereof. (4) The method for manufacturing a composite superconducting conductor according to claim 1, wherein the metal plate is made of stainless steel or a warped composite material. (5) The metal plate is Ta, T'a alloy, Nb or Nb
2. The method for manufacturing a composite superconducting conductor according to claim 1, wherein the alloy and Cu have a product of lIi'g4. (6) Process the Nb plate, Nb alloy plate, Ta plate, or Ta alloy plate into a T-pipe shape so as to completely surround the IVi1 bundle, and further process Cu4N into a pipe shape to surround this mother plate. A method for manufacturing a composite superconducting conductor according to claim 1. (Claims 1 to 3) characterized in that after the metal plate is processed into a pipe shape, the same edges of the pipe are joined together.
6. A method for producing a composite superconducting conductor according to item 6. (8) Metal sheet metal - Processed into a g-beam shape and then processed into a small cross-section without joining the opposing edges 1 of the pipe? (9) A patent claim characterized in that the superconductor specialty is a Nb-Ti alloy superconducting strand. A method for producing a composite superconducting conductor according to Items 1.2 and 7.8. A method for manufacturing a composite superconducting conductor according to claim 1.2, 7.8, characterized in that it is a θQM conductive element wire b-Ti-Ta alloy superconducting element wire. aυMill14 element llMd: Nb3Sn, V3
Ga, Nb3At, V3Si. Nb, Ga, V, Hf, or V2(E4f-Z
r) A method for manufacturing a composite 8@ conductor according to claims 1 to 8, characterized in that it is a superconductor xi. 0 superconducting wire is Nb or Nb alloy rod and Sn or S
The bed superconductor 24 of Claims 1 to 8 is characterized in that it is an Nb3Sn superconducting compound formed by arranging an n-alloy rod and a gold-Cu or Co-alloy around the periphery and reducing the cross-section of the n-alloy rod and the gold-Cu or Co alloy. How the body is manufactured. The superconducting line is an Nb1Sn superconducting agricultural line in which Sn still remains and all of the sn alloy is attached to the surface of a composite material consisting of only a portion of Nb or Nb alloy, Cu or Cu alloy, Sn or sn alloy. Claims 1 to 8
A method for manufacturing a super #L conductor using ridge-gluing. (14+!! The bundle is a superconducting material) A composite wire according to claims 1 to 8 and 11 to 13, characterized in that the bundle is a metal or alloy wire having a high tn mechanical strength. A method for manufacturing superconducting conductors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57075732A JPS58192210A (en) | 1982-05-06 | 1982-05-06 | Method of producing composite superconductive wire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57075732A JPS58192210A (en) | 1982-05-06 | 1982-05-06 | Method of producing composite superconductive wire |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58192210A true JPS58192210A (en) | 1983-11-09 |
Family
ID=13584730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57075732A Pending JPS58192210A (en) | 1982-05-06 | 1982-05-06 | Method of producing composite superconductive wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58192210A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS496479A (en) * | 1972-05-08 | 1974-01-21 | ||
JPS4923595A (en) * | 1972-06-23 | 1974-03-02 | ||
JPS51135493A (en) * | 1975-05-20 | 1976-11-24 | Toshiba Corp | Manufacturing method of superconductive wire |
JPS58169712A (en) * | 1982-03-30 | 1983-10-06 | 三菱電機株式会社 | Method of producing composite superconductive wire |
-
1982
- 1982-05-06 JP JP57075732A patent/JPS58192210A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS496479A (en) * | 1972-05-08 | 1974-01-21 | ||
JPS4923595A (en) * | 1972-06-23 | 1974-03-02 | ||
JPS51135493A (en) * | 1975-05-20 | 1976-11-24 | Toshiba Corp | Manufacturing method of superconductive wire |
JPS58169712A (en) * | 1982-03-30 | 1983-10-06 | 三菱電機株式会社 | Method of producing composite superconductive wire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3465430A (en) | Method of making superconductor stock | |
EP1526586B1 (en) | Manufacturing method for superconducting wire | |
US3838503A (en) | Method of fabricating a composite multifilament intermetallic type superconducting wire | |
US4161062A (en) | Method for producing hollow superconducting cables | |
DE1932086C3 (en) | Waveguide made of superconductor material and a metal that is normally electrically conductive at the operating temperature of the superconductor material | |
US6543123B1 (en) | Process for making constrained filament niobium-based superconductor composite | |
KR100860960B1 (en) | Method for manufacturing mgb2 superconducting wire | |
US3930903A (en) | Stabilized superconductive wires | |
US3570118A (en) | Method of producing copper clad superconductors | |
US3836404A (en) | Method of fabricating composite superconductive electrical conductors | |
US4489219A (en) | A-15 Superconducting composite wires and a method for making | |
US7089647B2 (en) | Increasing the copper to superconductor ratio of a superconductor wire by cladding with copper-based strip | |
JPS58192210A (en) | Method of producing composite superconductive wire | |
JPS58169712A (en) | Method of producing composite superconductive wire | |
JPH04277409A (en) | Compound superconducting wire and manufacture thereof | |
JPS61264609A (en) | Manufacture externally reinforced compound superconductor | |
JP3673831B2 (en) | Manufacturing method of Nb3Sn wire | |
JPH06150737A (en) | Nb multicore superconducting cable and manufacture thereof | |
JPH09204828A (en) | Manufacture of nb3al superconducting wire | |
JPH01140521A (en) | Manufacture of nb3al compound superconductive wire rod | |
JPS6025842B2 (en) | Method for manufacturing compound superconducting wire | |
JPH0419919A (en) | Manufacture of nb3sn superconductor wire | |
JPS604573B2 (en) | Manufacturing method of compound hollow superconducting magnet | |
JPH0419920A (en) | Manufacture of nb3sn superconductor wire | |
JPS63102115A (en) | Manufacture of superconductive alloy wire material |