JPS5819155B2 - Method for manufacturing a substrate for printed wiring board using metal material as a base and having through holes - Google Patents

Method for manufacturing a substrate for printed wiring board using metal material as a base and having through holes

Info

Publication number
JPS5819155B2
JPS5819155B2 JP11026976A JP11026976A JPS5819155B2 JP S5819155 B2 JPS5819155 B2 JP S5819155B2 JP 11026976 A JP11026976 A JP 11026976A JP 11026976 A JP11026976 A JP 11026976A JP S5819155 B2 JPS5819155 B2 JP S5819155B2
Authority
JP
Japan
Prior art keywords
substrate
holes
resin
metal material
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11026976A
Other languages
Japanese (ja)
Other versions
JPS5335164A (en
Inventor
高橋宏
中尾紀代史
片桐正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP11026976A priority Critical patent/JPS5819155B2/en
Publication of JPS5335164A publication Critical patent/JPS5335164A/en
Publication of JPS5819155B2 publication Critical patent/JPS5819155B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、金属材料を基体とする印刷配線板用。[Detailed description of the invention] The present invention is for a printed wiring board having a metal material as a base.

基板の製造方法に関し、詳しくは、スルホールを有する
金属材料基板平面部にスルホールの目詰まりを起すこと
なく、樹脂層を塗布形成させる方法に関する。
The present invention relates to a method of manufacturing a substrate, and more particularly, to a method of coating and forming a resin layer on a flat surface of a metal material substrate having through holes without causing clogging of the through holes.

電子機器の高密化にともない配線板への物理的な要求、
例えば熱の拡散放熱能あるいは多数の重量部品搭載等の
要求に従来の有機材料を基体とする配線板では十分に満
足できないため金属材料を基体とする配線板への指向が
成されている。
Physical requirements for wiring boards are increasing as electronic devices become more densely packed.
For example, since conventional wiring boards based on organic materials cannot fully satisfy the requirements for heat diffusion and heat dissipation ability or the ability to mount a large number of heavy components, there is a trend toward wiring boards based on metal materials.

しかしながらこれら金属芯入り配線板においては絶縁層
の形成が重要な課題であり、スルホールを有する金属材
料基板平面部に絶縁層を形成させる場合、スルホールに
目詰まりを生じないようにすることが必要である。
However, forming an insulating layer is an important issue in these metal-core wiring boards, and when forming an insulating layer on the flat surface of a metal material substrate that has through holes, it is necessary to prevent the through holes from clogging. be.

従来この目的のために、あらかじめ、剥離性フィルム上
へ樹脂塗膜を作成し、これに基体スルホールと同様な孔
あけ加工を施したのち基体配線板へ貼り合せるなどの方
法が試みられた。
Conventionally, for this purpose, a method has been tried in which a resin coating is prepared on a removable film in advance, holes are drilled in the same manner as through-holes in the substrate, and then the film is bonded to a substrate wiring board.

しかしながらスルホール位置合せの困難さによる回路の
信頼性の低下あるいは熱圧貼り合せの際にスルホールへ
の樹脂流入などが避けえられない欠点であった。
However, there are unavoidable drawbacks such as a decrease in the reliability of the circuit due to the difficulty in aligning the through-holes, and resin inflow into the through-holes during hot-pressure bonding.

本発明はこのような欠点に鑑みてなされたものでスルホ
ールを有する金属材料基板平面部に、スルホールの目詰
まりを起すことなく、絶縁層等の樹脂層を塗布形成させ
る方法を提供するものでスルホールを有する印刷配線板
用金属材料基板の平面部に、粘度400センチボイズ以
上の樹脂溶液を膜状で供給しながら、基板平面部の樹脂
溶液膜塗布面を基板平面部への樹脂溶液膜の供給速度よ
り犬なる速度で移動させて基板平面部に樹脂溶液膜を塗
布形成させる上釉を含むことを特徴とするものである。
The present invention has been made in view of these drawbacks, and provides a method for coating and forming a resin layer such as an insulating layer on a flat surface of a metal material substrate having through holes without clogging the through holes. While supplying a resin solution having a viscosity of 400 centivoise or more in the form of a film to the flat part of a metal material substrate for printed wiring boards having The glaze is characterized by including an upper glaze that is moved at a faster speed to coat and form a resin solution film on the flat surface of the substrate.

□この方法に好適な方法としてカーテンフロー
ヨー法(以下C,F法と略す)、トップリバースロール
コータ−法CT 、 R汰と略す)等があり以下具体的
に説明する。
□ Suitable methods for this method include the curtain flow method (hereinafter abbreviated as C, F method), top reverse roll coater method (abbreviated as CT and R), etc., which will be specifically explained below.

eF法は一定間隔のスリットから樹脂溶液膜を垂直方向
に落下させ、落下膜に対し被塗装物体を水平直角方向に
移動通過させることにより塗装する方法であるが、この
際溶液膜の落下速度より被塗装物体の移動速度を相対的
に速くすることによって塗布された塗膜は延伸されその
分に相当する収縮力が発生する。
The eF method is a coating method in which a resin solution film is dropped vertically through slits at regular intervals, and the object to be coated is moved horizontally and perpendicularly past the falling film. By increasing the moving speed of the object to be coated, the coated film is stretched and a corresponding shrinkage force is generated.

被塗装物体が唇面にスルホールなどのない平滑な板状物
の場合にはこの収縮力によっても被塗装物に対する塗膜
の界面化学的な濡れによって当初塗布された面積を滅す
ることはなく端部が丸味を帯びる程度であるが、スルホ
ールを有する場合スルホール上に塗布された溶液膜は支
持体がないため塗布と同時に収縮力によって途切れ、塗
膜、の表面張力も同時に作用してスルキールの位置から
周囲の平面部方向へ移動する。
If the object to be coated is a smooth plate-like object with no through holes on the lip surface, even this shrinkage force will not destroy the originally coated area due to surface chemical wetting of the coating film to the object, and the edges will However, when there is a through hole, the solution film coated on the through hole is interrupted by shrinkage force at the same time as it is applied because there is no support, and the surface tension of the coating film also acts at the same time, causing it to move away from the position of the through hole. Move toward the surrounding flat surface.

この場合いったん途切れた溶液膜がスルホール内に流入
し目詰りを生じさせないために樹脂溶液の粘度4−;
400センチボイズ以上必要である。
In this case, the viscosity of the resin solution is 4-; in order to prevent the interrupted solution film from flowing into the through hole and causing clogging;
A minimum of 400 centimeters is required.

その他フィルム上へ塗布する方法として多用されている
TR法においてもコーティングロール速度とバックアッ
プロール速度によって定まる被塗装物体の送り速度比を
調節することにより実現される。
The TR method, which is widely used as a method for coating other films, is also realized by adjusting the feed speed ratio of the object to be coated, which is determined by the speed of the coating roll and the speed of the backup roll.

現在の無電解銅メッキ技術では、上記のような絶縁層腎
直接印刷回路を形成しうる技術はまだ一般的でない。
With the current electroless copper plating technology, a technology capable of directly forming an insulating layer printed circuit as described above is not yet common.

即ち高接着力耐熱性を付与するためには前記絶縁層のみ
では十分でないため、か\る絶縁層上にさらに接着剤層
を設ける必要がある。
That is, since the insulating layer alone is not sufficient to impart high adhesive strength and heat resistance, it is necessary to further provide an adhesive layer on the insulating layer.

このような場合、絶縁層の上に更に無電解鋼メッキ層と
の接着力を高めるための接着剤層を本願の方法により形
成させることにより解決する。
Such a case can be solved by forming an adhesive layer on the insulating layer using the method of the present invention to further increase the adhesive strength with the electroless steel plating layer.

金属材料基板平面部に直接絶縁性をもつと同時に無電解
銅メッキ層との接着剤としての作用を有する樹脂層を本
願の方法により塗布形成させることも出来る。
A resin layer having insulation properties and acting as an adhesive to the electroless copper plating layer can also be formed by coating directly on the flat surface of the metal substrate by the method of the present invention.

スルホール内壁の絶縁化、接着+(tJ塗布等の工程は
適宜性われるが、本願発明によるスルホールを有する金
属材料基板平面部に絶縁層、接着剤層等の樹脂層を形成
させる工程はスルホール内壁の絶縁化、接着剤塗布等の
工程の前であっても後であっても良い。
Although the steps of insulating the inner wall of the through hole, adhesion + (tJ coating, etc.) are carried out as appropriate, the step of forming a resin layer such as an insulating layer, an adhesive layer, etc. on the flat surface of the metal material substrate having the through hole according to the present invention It may be done before or after steps such as insulation and adhesive application.

図面は、スルホールを有する金属材料基板平面部に本発
明により樹脂を塗布形成させた状態を示す断面図で、第
1図は、金属材料基板1のスルホール2、以外の平面部
に、絶縁層3が形成されたもので第゛2図は、スルホー
ル内壁に予じめ絶縁性と接着剤としての作用を兼せもつ
樹脂層4”が形成された金属材料基板平面部に、同様の
絶縁性と接着剤としての作用をもつ樹脂層5を塗布形成
させたものである。
The drawing is a cross-sectional view showing a state in which a resin according to the present invention is applied and formed on a flat surface of a metal material substrate having through holes, and FIG. Figure 2 shows that a resin layer 4'' with similar insulating properties and adhesive properties is formed on the flat surface of a metal substrate on which a resin layer 4'', which has both insulation and adhesive properties, has been previously formed on the inner wall of the through-hole. A resin layer 5 that acts as an adhesive is formed by coating.

本発明で使用される金属材料基体・とじては、鉄、アル
ミニウム及びそれらを主体とする合金等があり、板厚は
0.5〜5mrIL1スルホール内径はQ、8.m〜5
朋のものである。
The metal material base and binding used in the present invention include iron, aluminum, and alloys mainly composed of these materials, and the plate thickness is 0.5 to 5 m.The inner diameter of the IL1 through hole is Q, 8. m~5
It's mine.

、絶縁層としては、エポキシ樹脂、フェノール樹脂、ポ
リエステル樹脂、ポリアシド樹脂、ポリアミドイシド樹
脂、ポリアシド樹脂、ユリア樹脂、メラミン樹脂、塩化
ビニール、フッ素樹脂、ポリアクリル酸エステル樹脂、
ポリメタアクリル酸エステル樹脂等の一種又は混合、物
が接着剤層としては、NBR,SBR,クロロプレン、
クロロスルホン化ポリエチレン等の合成ゴム、天然ゴム
、ゴム/フェノール樹脂、ゴム/エポキシ樹脂、ポリア
セクールイフェノール樹脂エポキシ樹脂等の一種及び、
混合物が、更に絶縁性をもつと同時に接着剤としての作
用をもつ樹脂層としては、エポキシ樹脂、ゴム/フェノ
ール樹脂エポキシ樹脂/ゴムの一種及び混合物が使用さ
れる。
As the insulating layer, epoxy resin, phenol resin, polyester resin, polyacid resin, polyamide oxide resin, polyacid resin, urea resin, melamine resin, vinyl chloride, fluororesin, polyacrylic acid ester resin,
For the adhesive layer, one type or mixture of polymethacrylic acid ester resins, etc. may be NBR, SBR, chloroprene,
A type of synthetic rubber such as chlorosulfonated polyethylene, natural rubber, rubber/phenolic resin, rubber/epoxy resin, polyacetylene phenol resin, epoxy resin, etc.
As the resin layer, the mixture of which has an insulating property and at the same time functions as an adhesive, epoxy resins, rubber/phenolic resins, and mixtures of epoxy resins/rubbers are used.

尚、上記、絶縁層、接着剤層及びそれら両方の特性を有
する樹脂層にはそれぞれ炭酸カルシウム、シリカ、亜鉛
華、酸化チタン、ジルコニウムシリケート、クルジ等の
充填剤を混入しても良い。
Incidentally, fillers such as calcium carbonate, silica, zinc white, titanium oxide, zirconium silicate, and Kurji may be mixed into the above-mentioned insulating layer, adhesive layer, and resin layer having the characteristics of both.

溶剤としては、メチルエチルケトン、アセトン、1メチ
ルイソブチルケトン、トルエン、キシレン、メタノール
、エタノール、インプロパツール、メチルセロソルブ、
エチルセロゾルブ、酢酸エチル、ジメチルホルムアミド
等の一種又番体混合溶媒が使用される。
As a solvent, methyl ethyl ketone, acetone, 1 methyl isobutyl ketone, toluene, xylene, methanol, ethanol, inpropatol, methyl cellosolve,
One or several mixed solvents such as ethyl cellosolve, ethyl acetate, and dimethylformamide are used.

実施例 1 エポキシ樹脂(シェル化学製エピコート1001および
硬化剤)の60係メチルエナルケトン溶液に、ポリビニ
ルアセクール樹脂(積水化学製エスレツクBH4)の1
0係メチルエチルケトン溶液を等重量混合し、さらに酢
酸セロソルブを用いて約650センチボイズに調整した
Example 1 A 60% methyl enal ketone solution of an epoxy resin (Epicoat 1001 manufactured by Shell Chemical Co., Ltd. and a curing agent) was added with
Equivalent weights of the 0-factor methyl ethyl ketone solution were mixed, and the mixture was further adjusted to about 650 centivoise using cellosolve acetate.

次いで、西独ビニル21社製フロニコーターを使用し、
吐出ダイのスリット巾0.9 mw tにセットして、
前記溶液を、膜状に流路させた。
Next, using a Fronicoater manufactured by West German Vinyl 21,
Set the slit width of the discharge die to 0.9 mwt,
The solution was passed through a membrane.

この時の溶液の落下速度は凡そ70M/分で、あった。The falling speed of the solution at this time was approximately 70 M/min.

この流動塗膜中に1.0φ、1.5φ、および2.0φ
の4種類のスルホール各100穴を有する1、2mmt
鉄基板を125M/分のコンベアスピードで通過させ、
基板表面に樹脂塗膜を形成させた。
1.0φ, 1.5φ, and 2.0φ in this fluid coating film.
1.2mmt with 4 types of through holes each with 100 holes
The iron substrate is passed through at a conveyor speed of 125M/min.
A resin coating film was formed on the surface of the substrate.

この場合各スルホール内には樹脂流入による目詰りがな
く、乾燥後の平面部塗膜厚さは約35μであった。
In this case, there was no clogging in each through hole due to inflow of resin, and the coating film thickness on the flat surface after drying was about 35 μm.

同様にして基板裏面にも樹脂塗膜を形成させた。A resin coating film was also formed on the back surface of the substrate in the same manner.

なお、スルオール内への塗膜形成は、前晶ムをメチルエ
チルケトンにより、さらに稀釈して6センチボイズに調
整した溶液中に浸漬したのちスルホール壁に対して垂直
方向に200mm/分の速度で引き上げ、風乾して塗膜
形成させた。
In addition, to form a coating film inside the through hole, the pre-crystalline membrane was further diluted with methyl ethyl ketone and immersed in a solution adjusted to 6 centimeter voids, then pulled up at a speed of 200 mm/min in the direction perpendicular to the through hole wall, and air-dried. A coating film was formed.

これらの樹脂絶縁層について、加熱硬化したの゛ち絶縁
破壊電圧を測定したところ2KV以杏であった。
When these resin insulating layers were heated and cured, the dielectric breakdown voltage was measured to be 2 KV or more.

なお、これらの絶縁樹脂層のみの基板に無電解銅メッキ
法により印刷回路を作成した場合、回路の密着力が十分
に得られなかっため、さらにアタリロニトリルブクジエ
ンゴムおよびフェノール樹脂を主成分とする接着剤の8
%メチルエチルケトン溶液(粘度8センチボイズ)と2
5%メチルエチルケトン溶液(粘度800センチボイズ
)とを用いて前記方法と同様にしてスルホール内および
平1面部の絶縁層上に接着剤層を設けた。
Note that when a printed circuit is created using an electroless copper plating method on a board with only these insulating resin layers, sufficient adhesion of the circuit cannot be obtained, so a printed circuit with atarylonitrile book diene rubber and phenolic resin as the main components is used. Adhesive 8
% methyl ethyl ketone solution (viscosity 8 centivoise) and 2
Using a 5% methyl ethyl ketone solution (viscosity: 800 centivoise), an adhesive layer was provided in the through holes and on the insulating layer on the flat surface in the same manner as described above.

スルホール、内壁の接着剤厚さは約25μ、”平面部は
カーテ゛ンフローコート塗布を2回くりかえし行って塗
膜厚さ約50μを得た。
The thickness of the adhesive on the through-hole and inner wall was approximately 25 μm, and on the flat surface, curtain flow coating was applied twice to obtain a coating thickness of approximately 50 μm.

次いで公知の無電解鋼メッキ法にもとずいて印刷配線回
路を作成したところ回路の接着力はいずれの部分におい
ても、引き剥し強さ1.8kg/cIfL以上を維持し
ており、スルホール引き抜き強さは5kg以上、また2
60℃はんだ浴上に30秒以上放置しても伺ら異常変化
が認められなかった。
Next, a printed wiring circuit was created based on the known electroless steel plating method, and the adhesive strength of the circuit maintained a peel strength of 1.8 kg/cIfL or higher in all parts, and the through-hole pull-out strength was 5 kg or more, 2
No abnormal changes were observed even after being left on a 60°C solder bath for 30 seconds or more.

実施例 2 1.0φ〜3.0φの穴アケ加工を行った1、2を鉄基
板に電気泳動法により、エポキシ樹脂系電着塗膜を形成
したのち、(膜厚100〜180μ)実施例1に用いた
接着剤溶液の6.5センチボイズ稀釈溶液中に浸漬して
引き上げ、風乾、加熱乾燥したのち、この工程をくりか
えし2回行ってスルホール内壁に接着剤層を形成させた
のち、実施例1、、i、4.、用いた接着剤溶液を、酢
酸セロゾルブ/トルエ゛1.′ ン混合溶剤で800センチボイズに調整し、フローコー
ターのスリット巾Q、 g mm tで溶液を原潜させ
た。
Example 2 After forming an epoxy resin electrodeposition coating film on iron substrates 1 and 2 with holes of 1.0φ to 3.0φ processed by electrophoresis, (film thickness 100 to 180μ) Example The adhesive solution used in Example 1 was immersed in a diluted solution of 6.5 centimeter voids, pulled up, air-dried, and heated to dry. This process was repeated twice to form an adhesive layer on the inner wall of the through hole. 1,,i,4. , the adhesive solution used was mixed with cellosolve acetate/toluene 1. The solution was adjusted to 800 centivoid with a mixed solvent of 1000 ml, and the solution was heated using a flow coater with a slit width Q of g mm t.

この時の溶液落下速度は凡そ50M/分であった。The solution falling speed at this time was approximately 50 M/min.

こめ落下溶液膜中に、コンベアスピード10、O,M/
分の条件で基板を通過させ基板表面1(゛乾燥塗膜厚3
.5′μの接着剤層を形成させた。
Conveyor speed 10, O, M/
The substrate surface 1 (dry coating thickness 3
.. A 5'μ adhesive layer was formed.

この1.場合絶縁破壊電圧は大兄IKV内外であったが
、無電解銅メッキ法印刷回路の接着特性は引き剥し強さ
が1.8kg/crrL、 260℃はんだ耐熱性30
秒以上を維持できるものであった。
This 1. In this case, the dielectric breakdown voltage was within the range of Oe IKV, but the adhesion properties of the electroless copper plating printed circuit had a peel strength of 1.8 kg/crrL and 260℃ soldering heat resistance of 30.
It was possible to maintain more than a second.

以上説明したように、本発明によれば、多数の、スルホ
ールを有する印刷配線板用金属材料基板の平面部に絶縁
層、接着剤層等の樹脂層を、スルホールの目詰まりを起
すことなく塗布形成出来る。
As explained above, according to the present invention, a resin layer such as an insulating layer or an adhesive layer is coated on a flat surface of a metal material substrate for a printed wiring board having a large number of through holes without clogging the through holes. Can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明により金属材料基板平面部に樹脂層を形成
した状態を示す断面図で、第1図は絶縁層が形成された
場合、第2図は予じめスルホール内壁に巖縁性と接着性
を兼備する樹脂層が形成された金属材料基板平面部に更
に同様の樹脂層を形成させた場合を示す。 符号の説明、1・・・・・・金属材料基板、2・・・・
・・スルホール、計・・・・・絶縁層、4・・・・・・
スルホール内壁に形成された絶縁性と接着性を兼備する
樹脂層、5・・・・・・平面部に形成された絶縁性と接
着性を兼備する樹脂層。
The drawings are cross-sectional views showing the state in which a resin layer is formed on the flat surface of a metal substrate according to the present invention. A case is shown in which a similar resin layer is further formed on the flat surface portion of the metal material substrate on which the resin layer having the properties is formed. Explanation of symbols, 1...Metal material substrate, 2...
...Through hole, Total...Insulating layer, 4...
A resin layer having both insulation and adhesive properties formed on the inner wall of the through hole, 5... A resin layer having both insulation and adhesive properties formed on the flat surface.

Claims (1)

【特許請求の範囲】[Claims] 1 スルホールを有する印刷配線板用金属材料基板の平
面部に、粘度400センチボイズ以上め樹脂溶液を膜状
で供給しながら、基板平面部の樹脂溶液膜塗布面を、基
板平面部への樹脂−液膜の供給速度より大なる速度で移
動させて基板平面部に樹脂溶液膜を塗布形成させる工程
を含にとを特徴とする金属材料を基板とし、スルホール
を有する印刷配線板用基板の製造方法。
1. While supplying a resin solution with a viscosity of 400 centivoise or higher in the form of a film to the flat part of a metal material substrate for printed wiring boards having through holes, apply the resin solution film to the flat part of the substrate. A method for manufacturing a substrate for a printed wiring board having through holes, the substrate being made of a metal material, comprising the step of applying and forming a resin solution film on a flat surface of the substrate by moving the film at a speed higher than the film supply speed.
JP11026976A 1976-09-14 1976-09-14 Method for manufacturing a substrate for printed wiring board using metal material as a base and having through holes Expired JPS5819155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11026976A JPS5819155B2 (en) 1976-09-14 1976-09-14 Method for manufacturing a substrate for printed wiring board using metal material as a base and having through holes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11026976A JPS5819155B2 (en) 1976-09-14 1976-09-14 Method for manufacturing a substrate for printed wiring board using metal material as a base and having through holes

Publications (2)

Publication Number Publication Date
JPS5335164A JPS5335164A (en) 1978-04-01
JPS5819155B2 true JPS5819155B2 (en) 1983-04-16

Family

ID=14531392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11026976A Expired JPS5819155B2 (en) 1976-09-14 1976-09-14 Method for manufacturing a substrate for printed wiring board using metal material as a base and having through holes

Country Status (1)

Country Link
JP (1) JPS5819155B2 (en)

Also Published As

Publication number Publication date
JPS5335164A (en) 1978-04-01

Similar Documents

Publication Publication Date Title
US5153987A (en) Process for producing printed wiring boards
US4188415A (en) Baseboard for printed circuit board and method of producing the same
JPS61265894A (en) Making of electrically insulated substrate material for manufacture of drilled through hole plated printed circuit panel
JPS5819155B2 (en) Method for manufacturing a substrate for printed wiring board using metal material as a base and having through holes
JP3320432B2 (en) Method for manufacturing multilayer wiring board
JPS5814759B2 (en) Method for coating and forming a resin layer on a metal material substrate for printed wiring boards having through holes
JPH0823165A (en) Manufacture of metal cored wiring board using copper foil with insulating bonding agent
JPH0199288A (en) Manufacture of multi-layer printed wiring board
KR101293775B1 (en) Heat-curable adhesive film having good heat-resistance
JPS6113690A (en) Method of producing mutual connection circuit
JPH03209792A (en) Both-side metal-cladded flexible printed circuit board and manufacture thereof
JP4460719B2 (en) Manufacturing method of prepreg
JP2000244114A (en) Manufacture of build-up multilayer wiring board
JP3685507B2 (en) Manufacturing method of multilayer printed wiring board
JP3059869B2 (en) Substrate for printed wiring board
JP3266825B2 (en) Metal foil with insulating layer for manufacturing multilayer wiring boards
JPH09283923A (en) Manufacture of multilayer printed-wiring board
JPH0260195A (en) Manufacture of additive method wiring board
JP3056666B2 (en) Manufacturing method of multilayer printed wiring board
JPS6314516B2 (en)
JPH0139234B2 (en)
JPS63265488A (en) Printed circuit board
JP3221316B2 (en) Manufacturing method of printed wiring board
JPS6330797B2 (en)
JPH0461194A (en) Manufacture of metal-based wiring board