JPS58191414A - Solid electrolytic condenser - Google Patents

Solid electrolytic condenser

Info

Publication number
JPS58191414A
JPS58191414A JP7493682A JP7493682A JPS58191414A JP S58191414 A JPS58191414 A JP S58191414A JP 7493682 A JP7493682 A JP 7493682A JP 7493682 A JP7493682 A JP 7493682A JP S58191414 A JPS58191414 A JP S58191414A
Authority
JP
Japan
Prior art keywords
tcnq
salt
solid electrolytic
electrolytic capacitor
complex salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7493682A
Other languages
Japanese (ja)
Other versions
JPH0376573B2 (en
Inventor
丹羽 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7493682A priority Critical patent/JPS58191414A/en
Publication of JPS58191414A publication Critical patent/JPS58191414A/en
Publication of JPH0376573B2 publication Critical patent/JPH0376573B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発IIJlti向体電解コンテンナに関する。[Detailed description of the invention] The present invention relates to a IIJlti electrolytic container.

一体電解コンテンプはtit酸化皮膜を有するアルミニ
ク^などの皮膜形成性金集に一体電解質を付着した構造
分有している。従来よ抄量産化されているこの檜コンテ
ンサにおいて、それを構成する画体電解′jMはほとん
ど二酸化マンガンでアルカ、を牛、二酸化マンガンの弱
点、81」ち二酸化マンガン形成のための熱分解時に皮
膜杉歇性金鵬の陽極綾化反楽が損傷を受けること、又二
酸化マンガンによる一極酸化皮膜の修復性か乏しいこと
などを改善する一体電解質として有機半導体、主にTC
NQ塩を用いることが提案された。こ\に、TCNQと
tよ7.7,8.8テトランアノキノジメタンを慕律す
る。
Monolithic electrolytic content has a structure in which a monolithic electrolyte is attached to a film-forming material such as aluminum having a titanium oxide film. In this hinoki cypress condenser, which has been mass-produced in the past, the electrolyte that constitutes it is mostly manganese dioxide and alkali, which is the weak point of manganese dioxide. Organic semiconductors, mainly TC, are used as an integral electrolyte to improve the damage to the anode oxide film of cedar wood and the poor repairability of the monopolar oxide film caused by manganese dioxide.
It was proposed to use NQ salt. Here, TCNQ and t 7.7, 8.8 tetraanoquinodimethane are the rules.

しかし乍ら、TCNQ塩は通常粉末状の結晶であり、そ
の結晶自体高−電導度や上記皮膜の良好な修復性を示す
ものの、粉末状結晶であるが九めに加工性に難がある。
However, TCNQ salt is usually in the form of powder crystals, and although the crystals themselves exhibit high electrical conductivity and good repairability of the above-mentioned film, they are difficult to process even though they are powder crystals.

lpち、皮膜形成性金XKTCNQ塩の結晶をどの様に
して付着するかとiう間W1がある。特に固体電解コン
デンサに用iる皮ilK形成性金属は多孔質の場合が多
いが、断る多孔質金属へのTCNQ塩の一様な含浸的付
着は困難を極める。更<itsなことは、TCNQ塩自
体がその付着作業時に常に変質などによる劣化の危険性
をはらんでいることである。
lp, W1, and how to deposit the film-forming gold XKTCNQ salt crystals. In particular, skin-forming metals used in solid electrolytic capacitors are often porous, but it is extremely difficult to uniformly impregnate TCNQ salt onto porous metals. What is more important is that the TCNQ salt itself is always at risk of deterioration due to deterioration during the adhesion process.

従来、提案されたTCNQ塩の付着方法は次の3つく分
類できる。
Conventionally proposed methods for attaching TCNQ salt can be classified into the following three types.

(1)DMF(ジメチルホルムアミド)などの溶媒KT
CNQ塩を溶かし九溶液をと記金嵐に塗布し、その後乾
燥させて溶媒を飛飲除去する方法。
(1) Solvent KT such as DMF (dimethylformamide)
A method of dissolving CNQ salt and applying the solution to Tokikin Arashi, then drying it to remove the solvent.

1!l  T CN Q塩をボールミル等により微細化
した結晶をアルコール41に分数せしめ、それをE記金
@に塗布し乾燥する方法。
1! l T CN A method in which Q salt is made into fine crystals using a ball mill, etc., and the crystals are dissolved in alcohol 41, and then applied to Ekikin@ and dried.

+ml  T CN Q塩を上記金nil!に真空蒸着
する力泳。
+ml T CN Q salt above gold nil! Power swim to vacuum evaporate.

上記(1)の力泳では、TCNQ塩に対する溶解度の高
いDMF全溶媒に用い、祈る溶媒を例えば100℃に加
熱したとしても、その溶解度は1ONが限度である。こ
のことは箔状の上記金属に必要なだけの厚みの固体電解
質を付着しえり、あるいは多孔質の上記金属に固体電解
質を十分含浸的に付着するKFi何度も!!!i布、乾
燥を繰り返す必要のあることを意味している0例えば定
格IJIF用の多孔質金属の場合、5〜10回の塗布、
乾燥で達せられる含浸率け、二酸化マンガンを固体電解
質KMIい九場合の含浸率を100Xとして、高々30
にである。この様な低い含浸率では、金属が多孔質であ
るにも拘らずコンデンサの容量値を大龜くできない。更
に溶媒t−塗布した金属は上記11L燥の度に高温中に
放置されるが、このとき多かれ少なかれrcNQ@の変
質が起こり、固体電解質の電導度f化を招く。加えて、
この様にして上記金網に付#形成される一体電解簀#:
jTcNQ塩の微細結晶〃・らなるため、夫除には塗布
溶液中にポリビニルピロリドンなどの凝固用樹脂が添加
されて上記微細結晶の付#強度の強化が図られるが、新
る凝固用[1は電気的絶縁物であるため、上紀電導度劣
化と相俟って固体電解質の電導度を更に低iもの(80
0f1.程度(25℃))Kftす。
In the above (1) force swimming, even if the entire solvent is DMF, which has a high solubility for the TCNQ salt, and the desired solvent is heated to, for example, 100° C., its solubility is limited to 1ON. This means that the solid electrolyte must be adhered to the required thickness to the foil-shaped metal, or the solid electrolyte must be sufficiently impregnated to the porous metal several times. ! ! i cloth, meaning that repeated drying is required 0 For example, for porous metals rated IJIF, 5 to 10 applications,
The impregnation rate achieved by drying is 30 at most, assuming that the impregnation rate when manganese dioxide is used as a solid electrolyte KMI is 100X.
It is. At such a low impregnation rate, the capacitance value of the capacitor cannot be increased to a large extent even though the metal is porous. Further, the metal coated with the solvent T is left in a high temperature every time the 11L is dried, but at this time more or less alteration of the rcNQ@ occurs, leading to a change in the conductivity of the solid electrolyte to f. In addition,
The integrated electrolytic cage formed on the wire mesh in this way:
Since TcNQ salt consists of fine crystals, a coagulating resin such as polyvinylpyrrolidone is added to the coating solution to strengthen the adhesion strength of the fine crystals. Since is an electrical insulator, the conductivity of the solid electrolyte is lowered even further (80
0f1. degree (25°C)) Kft.

上記(幻の方法では、TCNQ塩の微細化にも限界があ
り、上紀金鵬への付M強度が特に弱いので、コンデンサ
の時素試験において、TCNQ塩からなる固体電解質が
上記金属よりはがれ九りして、特性の劣化、例えば、T
ANSの増加や容量減少が見られる。上記付着強度の強
化は、上に述べ良様に凝固用樹脂の採用によりある程度
改善されるが、同mK固体電解質の電尋度の低下を招く
、又、TCNQ塩からなる微細結晶の分散溶液を用いる
膚ので、峙に多孔質金属への含浸率が悪く、超音波拡欽
會浸法を用いたとしてもその含浸率は高々上記(1)の
7j法と同程度である。
In the above (phantom method), there is a limit to the miniaturization of TCNQ salt, and the strength of the M attachment to Joki Kinho is particularly weak. and deterioration of characteristics, for example, T
An increase in ANS and a decrease in capacity can be seen. The above-mentioned bond strength can be improved to some extent by employing a coagulating resin as described above, but this leads to a decrease in the electrical strength of the same mK solid electrolyte. Because of the material used, the impregnation rate into the porous metal is poor, and even if the ultrasonic diffusion method is used, the impregnation rate is at most the same as the 7j method described in (1) above.

上記(1)の方法では、真空蒸着作業の煩雑さはもとよ
り、特に多孔質金属への付着には全く不向きである。
The above method (1) not only requires complicated vacuum deposition work, but is also completely unsuitable for adhesion to porous metals.

零発#4Fi、全く新規な固体電解コンデンサ、よ少具
体#JKは、コンデンナ素子と、液化伏廊で前記素子に
含浸され之T CN Q@塩からなる固体電解質とを含
む固体電解コンデンサを提供するものである。本発明を
爽施する際には、TCNQ塩を液化することが必要であ
るが、固体電解質形成のためにこの様VcTcNQ塩を
液化することは従来全く考えられていなかった。
Zero origin #4Fi, a completely new solid electrolytic capacitor, Yosho Gutai #JK provides a solid electrolytic capacitor comprising a condenser element and a solid electrolyte consisting of a TCNQ@salt impregnated into said element in a liquefaction tunnel. It is something to do. When carrying out the present invention, it is necessary to liquefy the TCNQ salt, but liquefying the VcTcNQ salt in this way for forming a solid electrolyte has never been considered.

TCNQ塩のみからなる液体τ碍る最も実際的な力泳?
よ、当初の形急である粉本伏TCNQ塩を加熱融解によ
り液化することである。しかし乍ら、単なるTCNQ塩
の加熱融解は、TCNQ塩を熱分解してほとんど電気的
絶縁物と化し、コンデンナ用固体電S寅の機能を全く無
くしてしまう。
The most practical force swimming using liquid τ consisting only of TCNQ salt?
The first step was to liquefy the powdered TCNQ salt by heating and melting it. However, simply heating and melting the TCNQ salt thermally decomposes the TCNQ salt and turns it into almost an electrical insulator, completely eliminating the function of the solid electric conductor for the condenser.

本発明は、ある種のTCNQ塩昨加熱触解しても、熱分
解するまでに短時間ではあるが、付着作業にとって扛十
分な時間的余裕を呈し、従って新る時IAI内に冷却固
化すれば高い電導度を保持するTCNQ塩からなる一体
電解簀を得られるという全く釈しい知見に!んいている
The present invention shows that even if some TCNQ salts are preheated and catalyzed, it will take only a short time to thermally decompose, but still provide enough time for the deposition process, so that they can be cooled and solidified in the IAI when fresh. This is a completely surprising finding that it is possible to obtain an integrated electrolytic tank made of TCNQ salt that maintains high conductivity! I'm watching.

1゛CムQ及びその種々の塩、並びにその製法自体は、
例えば、J 、Am、Chgm、l5oc +1VoL
、84.5574−3387(1962)K開示されて
いる。TCNQ塩としては、M n +(TCNQ  
)nで表わされる単塩と、Mn + (TCNQ  )
n(TCNQ)mで表わされる錯塩とがある。尚上記M
は有機カナオン、nはカチオンの価、鵬は1モルのwI
塩に含まれる中性TCNQのモル数に対応する正の故を
大々意味する。
1゛CumQ and its various salts, as well as its manufacturing method itself, are as follows:
For example, J, Am, Chgm, l5oc +1VoL
, 84.5574-3387 (1962) K. As a TCNQ salt, M n +(TCNQ
) n and a simple salt represented by Mn + (TCNQ )
There is a complex salt represented by n(TCNQ)m. Furthermore, the above M
is the organic kanion, n is the cation value, and Peng is the wI of 1 mole.
It means a positive value corresponding to the number of moles of neutral TCNQ contained in the salt.

本発明では、しかし乍ら、錯塩の使用がコンデンナ特性
にとってより好ましい。そして、錯塩の土紀諭は0.5
〜1.5が好ましく、より好ましくけ約1である。
In the present invention, however, the use of complex salts is more preferred for condenser properties. And the complex salt's Tokisho is 0.5
~1.5 is preferred, more preferably ~1.

本発明で出いられるTCNQ塩の例としては、N位を置
換し友キノリン及びインキノリンのTCNQ塩が挙げら
れる。尚、N位の置換体は、Cs〜C五畠(縦素数2〜
18の)アルキルエチル、フロビル、ブチル、ペンチル
、オクチル、デシル、オクタデシル)、05〜C8シク
ロアルキル(@えばシクロペンチル、シクロヘキシル)
、C1〜C1−アル状ン(例えばアリル)、フェニル又
はフェニル((l−(:ts)アルキル(例えばフェキ
チル)の欅な灰化水崖基である。
Examples of TCNQ salts produced in the present invention include TCNQ salts of quinoline and inquinoline substituted at the N-position. In addition, the substituent at the N position is Cs to C Gobata (vertical prime number 2 to
18) alkylethyl, furovyl, butyl, pentyl, octyl, decyl, octadecyl), 05-C8 cycloalkyl (e.g. cyclopentyl, cyclohexyl)
, C1-C1-alkyl (e.g. allyl), phenyl or phenyl ((l-(:ts))alkyl (e.g. fechyl).

本発明で用いられるTCNQ塩のより好ましい鉤td、
N−n−プロピルキノリンのTCNQ塩、N−1チルイ
ソキノリンのTCNQ4、N−イソプロピルキノリンの
TCNQ塩、N−n−へキシルキノリンのTCNQ場、
N−n−プロピルイソキノリンのTCNQ塩、N−イソ
プロピルイソキノリンのTCNQ塩、N−n−ブチルイ
ソキノリンのTCNQ塩である。
A more preferred hook td of the TCNQ salt used in the present invention,
TCNQ salt of N-n-propylquinoline, TCNQ4 of N-1 tylisoquinoline, TCNQ salt of N-isopropylquinoline, TCNQ field of N-n-hexylquinoline,
These are the TCNQ salt of Nn-propylisoquinoline, the TCNQ salt of N-isopropylisoquinoline, and the TCNQ salt of Nn-butylisoquinoline.

本頼明で用いられる各種TCNQjlの一点を下にP−
1〜P−9とじーC示す9櫨類の塩について記す。
P- below one point of various TCNQjl used in this Yoriaki
1 to P-9 Toji-C describes the salts of nine oaks.

P−1・・・N−n−プロピルキノリン+( TCN9
つ( TCNQ ) P−2・・・N−イソプロピルキノリン+( TCNQ
  )(TCNQ) P−6・・・1m − n−プロピルインキノリン+(
TCNQ− )( TCNQ ) P−4−=Nーインプロピルイソキノリン (TCNQ
−)(TCNQ) P−5・−N−mグチルイソキノリン ( TCNQ 
 )(TCNQ) P−6・・・N−エチルキノリン (TCNQ  )(
 TCNQ) P−7・・・N−エチルイソキノリン ( TCNQ−
)(TCNQ) P−8・・・N−n−へキシルキノリン ( TCNQ
  )(TCNQ) P − 9−・・N−n−ヘキシルイソキノリン (T
CNQ  )(TCNQ) 融  点  ℃ E記各塩の製造は例えば次の通りである。N−アルギル
ロードとキノリン(又はイソキノリン)とを反応させて
得られるN−アルキルキノリン(又はイソキノリン)ヨ
ーダイトとTCNQと七遍当な溶媒(例えばアヤトニト
リルフ中で、適当なモル比(例えば3:4)で反応させ
てTCNQ塩を作る.この塩は不純物が多いので、適当
な溶媒(例えばアセトニ) IJル〕にて82℃以下の
温度でのt紀反応又は高純度化で用いられる溶媒の種類
により、キノリン(又はインキノリン)部とTCNQ廊
とのモル比は若干変化する。例えば、反応時及び晶純度
化作業での溶媒が共にアセトニドニルの場合、mが1の
錯垣伏−のTCNQ朧が通常―られるか、d純反化作業
時のそれがメタノールであると、mが1より小さくなる
。と記モル比は、液化伏動のTCNQ塩にTCNQを粉
細混入しても変化する。例えば、mが′lのTCNQ塩
KINのTUNQを混入した融解固化塩は、mが約1.
14となる.この様icmが1より若干変化しても使J
i1可能である。
P-1...N-n-propylquinoline + (TCN9
(TCNQ) P-2...N-isopropylquinoline + (TCNQ
) (TCNQ) P-6...1m - n-propylinquinoline + (
TCNQ-) (TCNQ) P-4-=N-inpropylisoquinoline (TCNQ
-) (TCNQ) P-5・-N-mgutylisoquinoline (TCNQ
)(TCNQ) P-6...N-ethylquinoline (TCNQ)(
TCNQ) P-7...N-ethylisoquinoline (TCNQ-
) (TCNQ) P-8...N-hexylquinoline (TCNQ
) (TCNQ) P-9-...N-n-hexylisoquinoline (T
CNQ ) (TCNQ) Melting point ℃ E Each salt is produced, for example, as follows. N-alkylquinoline (or isoquinoline) iodite obtained by reacting N-argylrod and quinoline (or isoquinoline) and TCNQ are mixed in an appropriate molar ratio (for example, 3 : 4) to produce TCNQ salt.Since this salt has many impurities, it can be used in a suitable solvent (e.g. acetonyl) at a temperature below 82°C or in a solvent used for high purity. The molar ratio of the quinoline (or inquinoline) moiety and the TCNQ moiety changes slightly depending on the type of quinoline (or inquinoline) moiety.For example, when the solvent used in the reaction and in the crystal purification work is acetonidonyl, If TCNQ hazy is normally used or methanol is used during pure reaction work, m will be less than 1. For example, a molten solidified salt mixed with TUNQ of TCNQ salt KIN with m of 'l has m of about 1.
It becomes 14. In this way, even if icm changes slightly from 1, it can be used.
i1 is possible.

本発明に含まれないTCNQ塩、鉤えばHキノリン(又
はイソキノリン)のTCNQ塩やN−メチルキノリン(
又はイソキノリン)のT CN Q垣は加熱すると融解
せずに分解するか、あるいFi融解と同時に分解してし
まう。
TCNQ salts not included in the present invention include TCNQ salts of H-quinoline (or isoquinoline) and N-methylquinoline (
When heated, the T CN Q barrier of T CN Q (or isoquinoline) decomposes without melting, or decomposes simultaneously with the melting of Fi.

これに対し、上記の如き本発明の対象とするTCNQ塩
は加熱すると融解して液化状態を鼠するが、その状態で
熱分解するまでに実質的な時間を要する。この場合の熱
分解は突然起こり、#i、は電気的絶縁物と化す、完全
に#Q解後、絶縁化するまでの但し、加熱は、アルミケ
ースζTCNQ塩の結晶粉末を詰め、E記温度の金属板
上に接融させて行なつよ。
On the other hand, the TCNQ salt that is the subject of the present invention as described above melts and enters a liquefied state when heated, but it takes a substantial amount of time to thermally decompose in that state. In this case, thermal decomposition occurs suddenly, and #i turns into an electrical insulator. However, heating is carried out in an aluminum case filled with crystal powder of ζTCNQ salt until it becomes insulating. This is done by welding it onto a metal plate.

従って、液化状態のTCNQ塩はその分解前に冷却固化
されねばならない。それにより、高電導度を有する1体
電解質が得られる6例えば、P−1及びP−2の場合、
融点以上で約300℃以下の温度に加熱され、そして液
化完了後約1分以内、好ましくは20秒以内に室温での
冷却又は水等の冷媒中での冷却が開始される。P−5及
び?−4、P−5では、111点以上で約320℃以下
の温度に加熱され液化完了後約4分以内、好ましくは1
分以内に室温での冷却又は水等の冷媒中での冷却が開始
される。
Therefore, TCNQ salt in liquefied state must be cooled and solidified before its decomposition. Thereby, a one-body electrolyte with high conductivity is obtained6 For example, in the case of P-1 and P-2,
It is heated to a temperature above the melting point and below about 300° C., and cooling at room temperature or in a coolant such as water is initiated within about 1 minute, preferably within 20 seconds, after completion of liquefaction. P-5 and? -4 and P-5, the temperature is heated to about 320°C or less at 111 points or more and within about 4 minutes, preferably 1 minute after completion of liquefaction.
Cooling at room temperature or in a coolant such as water begins within minutes.

この様に分解前に冷却固化して得られるTCNQ塩のI
It導度は次の通りである。
In this way, the I of TCNQ salt obtained by cooling and solidifying before decomposition
The It conductivity is as follows.

電導度Ωtx (25℃) 本発明により得られる固体電解質は上記従来法11)や
(1)の場合の卯きTCNQ塩の微細結晶の県りではな
く、はソ多結晶塊状IIK近い。又本発明により得られ
る固体電解質は、TCNQ塩本来の性質、例えば皮II
I!形成性壷属麦面の酸化皮膜に対する優れ大修復性を
維持している。
Electrical conductivity Ωtx (25° C.) The solid electrolyte obtained by the present invention is not a fine crystalline TCNQ salt as in the case of the conventional method 11) or (1), but is close to a polycrystalline block IIK. In addition, the solid electrolyte obtained by the present invention has the inherent properties of TCNQ salt, such as skin II.
I! It maintains an excellent ability to repair the oxidized film on the surface of the vase.

本発明によれば、TCNQ塩を100X’J11!解し
九崖練によプ皮膜形成性金属へのTCNQ塩の付着をな
すのと同じことであるから、上記従来方法41)とは金
<14なり、はとんど1囲の付着作業で、上記金w4が
箔状のみならず多孔質の場合でも、必11な量の固体電
解質を形成することができ、量産性の向上はもとより、
乾燥の度KTCNQ塩が劣化するといっ良従来の欠点が
克服される。更に、本発明によれば、固体電解質は多結
1伏1/IAK近いから、上記金属への付着力が十分大
きく、従って従来の如き[1lilJ@樹脂を用iる必
要がなく、固体電解質の不所望な電導度の低下を避ける
ことができる。
According to the invention, TCNQ salt is 100X'J11! Since this is the same as adhering TCNQ salt to a film-forming metal by kneading, the above-mentioned conventional method 41) is gold < 14, and only one adhesion work is required. , Even when the gold w4 is not only in foil form but also porous, it is possible to form a necessary amount of solid electrolyte, which not only improves mass productivity, but also improves mass productivity.
The disadvantages of the conventional method are overcome as the KTCNQ salt deteriorates upon drying. Furthermore, according to the present invention, since the solid electrolyte has a multi-connectivity close to 1/IAK, the adhesion force to the metal is sufficiently large, and therefore there is no need to use resin as in the past, and the solid electrolyte Undesirable reduction in conductivity can be avoided.

以下本発Iji実施例を説明する。An embodiment of the Iji according to the present invention will be described below.

アルミニタム化威箔を陽極箔とし、アルミニクムエッチ
ング籠を陰極箔として、これらをマユ5紙からなるセパ
レータと共に巻取っ九コンデンナ素子を準備する。この
素子は次いで250℃の恒温槽中に釣4時鴎放Ii1さ
れて、上記セパレータの縦比処理がなされる。向、この
処理は素子への固体電解質の含浸度をより^めるための
4のであり、雀略しイ妙るものである。その後を紀索子
を250141度に予熱しておく。
An aluminium-etched aluminum foil was used as an anode foil, an aluminum etched cage was used as a cathode foil, and these were wound together with a separator made of cocoon paper to prepare a nine-condenser element. This element was then placed in a constant temperature bath at 250° C. for 4 hours to perform the above-mentioned aspect ratio treatment of the separator. On the other hand, this treatment is to improve the degree of impregnation of the solid electrolyte into the device, and is quite interesting. After that, preheat the Kisakuko to 250,141 degrees.

一力、既述の方法で作成された粉末状のTCNQ塩(本
*施例では上記P−1、P−1,P−5に使用)を有底
円筒状のアルミニクムケース内に充填し、このケースを
加熱し九査属板上に載置することVζよ抄ケース内のT
CNQ塩を融解液化する。
First, fill the powdered TCNQ salt (used for P-1, P-1, and P-5 above in this example) prepared by the method described above in a bottomed cylindrical aluminum case. , heat this case and place it on the 9th plate.
Melt and liquefy the CNQ salt.

1(1mのTCNQ塩に挿入し、次いでこのケースを水
中に浸漬して急冷する。これKよりコンデンナ孝子のセ
パレータKTCNQ塩が倉浸しえ伏急で幽化し、そのT
CNQ塩は^電導度を示す固体電解質を形成する。
1 (inserted in 1 m of TCNQ salt, then immersed this case in water to rapidly cool it. From this, the condenser Takako's separator KTCNQ salt is immersed in the warehouse, and the KTCNQ salt is immersed in the tank, and the TCNQ salt is immersed in the tank.
CNQ salts form solid electrolytes that exhibit electrical conductivity.

鍛後と、陽極リード及び陰極リードの先端を露出し九状
廊で上記ブースの開口を樹脂封口し、エージングするこ
とにより目的とする固体電解コンデンサが完成すると F表に本寮施例固体電解コンデンサの特性を示す、lk
中、Cap、tin  は犬4120Hgでの静電容量
、損失、ESRFllooKHsでの等価直列抵抗、Δ
capFi+25℃でのcapK対する静電容量変化率
、Lcは25V印加後15秒IIL!D漏れ電流を大々
意味する。
After forging, the tips of the anode lead and cathode lead are exposed, the opening of the booth mentioned above is sealed with resin in the ninth gallery, and the target solid electrolytic capacitor is completed by aging. lk
Inside, Cap, tin is capacitance at 4120Hg, loss, equivalent series resistance at ESRFlooKHs, Δ
CapFi + capK rate of capacitance change at 25°C, Lc is 15 seconds after applying 25V IIL! D means a large amount of leakage current.

温度特性 寿命特性 (紀爽施例では、コンデンサ素子を構成する簡蚕属はア
ルミニクムであっ九か、他の被膜形成性金属、例えばタ
ンタルやニオブでも#j−0以tの説明より明らかな如
く、本発明によれば、有vA千導体からなる固体電解質
を用い友固体電解コンデン賃において、固体電解簀の皮
膜要職性金属への含浸付着が藺率な作業で行え、・−か
つ断る作業時Kid体電体質解質化も少なく、叉K11
1体電解質の電尋度が優れていることから、温度特性、
悶波歇特性、特に高#s#LでのESRなどに優れ大も
のが得られ十分実用的なものである。
Temperature characteristics Life characteristics (In the Kisou example, the simple material constituting the capacitor element is aluminum, but other film-forming metals such as tantalum and niobium can also be used, as is clear from the explanation from #j-0 to According to the present invention, in a solid electrolytic condenser using a solid electrolyte made of a conductor having 1,000 vA, impregnating and adhering the film of a solid electrolytic tank to important metals can be carried out in an efficient work, and when the work is refused. Kid body electrolyte decomposition is also small, and K11
Since the single-body electrolyte has excellent electrical conductivity, its temperature characteristics,
It is sufficiently practical as it provides excellent and large wave-to-wave characteristics, especially ESR at high #s #L.

手  続  補  正  書 (1尭)特許庁長官殿 1、事件の表示 昭和57年特許願第74956号 2、発明の名称 固体電解コンデンサ 6、補正をする者 特許出願人 住所 守口型京阪本通2下目18番地 名称(188)三洋電機株式会社 代表者 井 植   薫 4、代理人 住所 守口市京阪本通2丁目18番地 6、補正の対象 +1)  特許請求の範囲の欄 (21発明の詳細な説明の欄 6、補正の内容 (11特許請求の範囲を別紙の通り補正下る。Handbook Continuation Supplementary Book (1st Edition) Dear Commissioner of the Japan Patent Office 1. Display of incident 1981 Patent Application No. 74956 2. Name of the invention solid electrolytic capacitor 6. Person who makes corrections patent applicant Address: Moriguchi Kata Keihan Hondori 2nd Lower 18 Name (188) Sanyo Electric Co., Ltd. Representative Kaoru Iue 4. Agent Address: 2-18 Keihan Hondori, Moriguchi City 6. Subject of correction +1) Claims column (21 Detailed explanation column of invention 6. Contents of correction (The scope of the 11th patent claim has been amended as shown in the attached sheet.

+21  明細書中。+21 In the specification.

O第2頁@13行において、r熱分解」とあるのt「硝
酸マンガンからの熱分解」と補正T6゜o  w6頁1
84行ニ*kN1:、rfl:A61711゜「質層」
と補正Tる。
On page 2 @ line 13, ``r thermal decomposition'' is corrected to ``thermal decomposition from manganese nitrate'' T6゜o w6 page 1
Line 84 d*kN1:, rfl:A61711゜"Quality layer"
and corrected it.

O第6頁@15行において、「触」とあるのを「融」と
補正下る。
On page 6 @ line 15, the word ``touch'' is corrected to ``fusion''.

0 11s10頁11!6行1:オイテ、rQル)l:
テ82℃以下の湿質」とあるのを「リルにて82℃以下
の1度)」と補正する。
0 11s10 page 11!6 line 1: Oite, rQle)l:
The text ``humidity below 82℃'' has been corrected to ``1 degree below 82℃ in rills''.

0 1110頁s7行において、「融」とあるのを「溶
」と補正下6゜ O@10頁第1ろ行において、「液化状態」とあるのを
削除下る。
0 On page 110, line s7, the word ``melt'' was corrected to ``melt.'' 6°O @ In the first row of page 10, the word ``liquefied state'' was deleted.

0 1110頁@16行において、「粉細」とあるのt
「粉砕」と補正するっ O@15頁184行において、「、と」とあるのV[。
0 On page 1110 @ line 16, it says "fine"
Correct it to "pulverize" O@Page 15, line 184, it says "," V[.

Jと補正T6゜ 0 @15頁189行において、「l、oJとあるのを
、  「LCJと補正T6゜ 「特許請求の範囲」 l) コンデンサ素子と、液化状態で1紀素子に含浸さ
れた?CIIQ錯塩からなる固体電解質とt含み、上記
! CN QQ撫は液化状態で熱分解下るまでに実質的
な時間を@下るものであることを特徴と下る固体電解コ
ンデンサ。
J and amendment T6゜0 @ page 15, line 189, replace ``l, oJ'' with ``LCJ and amendment T6゜``Claims'' l) A capacitor element and a primary element impregnated in a liquefied state. ? Contains a solid electrolyte consisting of a CIIQ complex salt, and the above! CN QQ is a solid electrolytic capacitor that takes a substantial amount of time to thermally decompose in a liquefied state.

12+  特許請求の範囲181項において、?CNQ
錯堆げ肩−n−ヘキシルキノリン、N−エチルイソキノ
リン又はN−n−プチルイソキ/りンの!GHQ錯樵で
あることを特徴とTる固体電解コンデンサ。
12+ In claim 181, ? CNQ
complex of n-hexylquinoline, N-ethylisoquinoline or N-n-butylisoquinoline/phosphorus! A solid electrolytic capacitor characterized by being a GHQ complex.

(31特許請求の範囲1j!1項において、上記IC)
lQ#iJIは、N位t#2化水素基で置換したキノリ
ン又はイソキノリンのテCNQm権であることな特徴と
Tる固体電解コンデンサ。
(In Section 31 Claim 1j!1, the above IC)
A solid electrolytic capacitor characterized in that lQ#iJI is a quinoline or isoquinoline substituted with a dihydrogen group at the N position.

(41特許請求の範囲笥5項において、上記炭化水素基
は炭素数2から18までのアルキル基であることt特徴
とTる固体電解コンデンサ。
(A solid electrolytic capacitor according to claim 5, characterized in that the hydrocarbon group is an alkyl group having 2 to 18 carbon atoms.

151  特許請求の範囲184項において、中性IC
IQと炭素数2から18までのアルキル基で肩付を置換
したインキノリンとのモル比はほぼ1:1であることを
特徴とTる固体電解コンデンサ。
151 In claim 184, neutral IC
A solid electrolytic capacitor characterized in that the molar ratio of IQ to inquinoline whose shoulder is substituted with an alkyl group having 2 to 18 carbon atoms is approximately 1:1.

Claims (1)

【特許請求の範囲】 (1) コンデンナ素子と、液化状影で1紀索子に含浸
され九TCNQ錯塩からなる一体電解質とを含み、上記
TCNQ錯塩#″i液化状塾で熱分解するまでに1iE
質的な時間を要するものであることを特徴とする固体電
解コンデンす。 tit  特許請求の範囲111項において、TCNQ
錯塩はN−n−ヘキシルキノリン、N−工fAI4ソキ
ノリン又はN−n−1チルイソキノリンのTCNQ錯塩
であることを特徴とする固体電解コンデンサ。 (3)特許lit家の範囲第1項において、丘紀TCN
Q錯塩は、N位を畿化水素基で置換したキノリン又はイ
ンキノーダンのTCNQ錯塩であることを特徴とする画
体電解コンデンサ。 (4)特許l1lI家の範m第5項において、E1厳化
水素基は嶽素歇2から181でのアルキル基であること
を特徴とする固体電解コンデンサ。 lit  特t+請米の範囲第4槍に2いて、TCNQ
と縦索J!に2から18までのアルキル基でに位を置換
したイソキノリンとのモル比はほぼ1:1であることを
特徴とする固体電解コンデンサ。
[Scope of Claims] (1) Contains a condenser element and an integral electrolyte made of nine TCNQ complex salts impregnated with a liquefied substance, and before being thermally decomposed in the TCNQ complex salt #''i liquefied form. 1iE
Solid electrolytic condenser is characterized by being time-consuming. tit In claim 111, TCNQ
A solid electrolytic capacitor characterized in that the complex salt is a TCNQ complex salt of N-n-hexylquinoline, N-techfAI4soquinoline, or N-n-1 tylisoquinoline. (3) In paragraph 1 of the scope of the patent lit family, Okuki TCN
A picture electrolytic capacitor characterized in that the Q complex salt is a TCNQ complex salt of quinoline or inquinodan in which the N-position is substituted with a hydrogen group. (4) A solid electrolytic capacitor, characterized in that the E1 hydrogen group is an alkyl group in 2 to 181 of the patent 111I family category, item 5. lit special t + ask rice range 4th spear 2, TCNQ
And vertical cable J! A solid electrolytic capacitor characterized in that the molar ratio of 1 to 1 and isoquinoline substituted at the 2- to 18-position alkyl groups is approximately 1:1.
JP7493682A 1982-05-04 1982-05-04 Solid electrolytic condenser Granted JPS58191414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7493682A JPS58191414A (en) 1982-05-04 1982-05-04 Solid electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7493682A JPS58191414A (en) 1982-05-04 1982-05-04 Solid electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS58191414A true JPS58191414A (en) 1983-11-08
JPH0376573B2 JPH0376573B2 (en) 1991-12-05

Family

ID=13561731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7493682A Granted JPS58191414A (en) 1982-05-04 1982-05-04 Solid electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS58191414A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337610A (en) * 1986-07-31 1988-02-18 エルナ−株式会社 Manufacture of solid electrolytic capacitor
US4780796A (en) * 1987-01-13 1988-10-25 The Japan Carlit Co., Ltd. Solid electrolytic capacitor
JPH01231207A (en) * 1988-03-11 1989-09-14 Japan Carlit Co Ltd:The Heat resistant charge-transfer complex
JPH02275612A (en) * 1989-01-20 1990-11-09 Sanyo Electric Co Ltd Solid state electrolytic capacitor
US4982312A (en) * 1988-10-31 1991-01-01 The Japan Carlit Co., Ltd. Charge transfer complex and solid electrolytic capacitor employing the same
US6731497B2 (en) 2001-07-11 2004-05-04 Tdk Corporation Solid electrolytic capacitor and method for manufacturing the same
US7342771B2 (en) 2002-06-18 2008-03-11 Tdk Corporation Solid electrolytic capacitor and a method for manufacturing a solid electrolytic capacitor
US7740433B2 (en) 2005-05-17 2010-06-22 Kabushiki Kaisha Kenwood Waterproof structure for portion where members are tightened with screw

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916855A (en) * 1972-06-13 1974-02-14
JPS54122861A (en) * 1978-03-16 1979-09-22 Nippon Electric Co Method of producing solid electrolytic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916855A (en) * 1972-06-13 1974-02-14
JPS54122861A (en) * 1978-03-16 1979-09-22 Nippon Electric Co Method of producing solid electrolytic capacitor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337610A (en) * 1986-07-31 1988-02-18 エルナ−株式会社 Manufacture of solid electrolytic capacitor
JPH0480527B2 (en) * 1986-07-31 1992-12-18 Elna Kk
US4780796A (en) * 1987-01-13 1988-10-25 The Japan Carlit Co., Ltd. Solid electrolytic capacitor
JPH01231207A (en) * 1988-03-11 1989-09-14 Japan Carlit Co Ltd:The Heat resistant charge-transfer complex
US4982312A (en) * 1988-10-31 1991-01-01 The Japan Carlit Co., Ltd. Charge transfer complex and solid electrolytic capacitor employing the same
JPH02275612A (en) * 1989-01-20 1990-11-09 Sanyo Electric Co Ltd Solid state electrolytic capacitor
JPH0722076B2 (en) * 1989-01-20 1995-03-08 三洋電機株式会社 Solid electrolytic capacitor
US6731497B2 (en) 2001-07-11 2004-05-04 Tdk Corporation Solid electrolytic capacitor and method for manufacturing the same
US7342771B2 (en) 2002-06-18 2008-03-11 Tdk Corporation Solid electrolytic capacitor and a method for manufacturing a solid electrolytic capacitor
US7740433B2 (en) 2005-05-17 2010-06-22 Kabushiki Kaisha Kenwood Waterproof structure for portion where members are tightened with screw

Also Published As

Publication number Publication date
JPH0376573B2 (en) 1991-12-05

Similar Documents

Publication Publication Date Title
US4785380A (en) Solid electrolytic capacitor, and method of manufacturing same
JPH04229611A (en) Solid electrolytic capacitor
US4934033A (en) Method of manufacturing a solid electrolytic capacitor
JPS58191414A (en) Solid electrolytic condenser
JPS5817609A (en) Solid electrolytic condenser and method of pruducing same
US4580855A (en) Solid electrolyte capacitor
JPH02249221A (en) Solid electrolytic capacitor
EP0285728B1 (en) Solid electrolytic capacitor, and method of manufacturing same
JPH0373961B2 (en)
EP0803885B1 (en) Process for producing solid electrolytic capacitor
JP3221889B2 (en) Method for manufacturing solid electrolytic capacitor
JP3228531B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6337609A (en) Manufacture of solid electrolytic capacitor
JP2999842B2 (en) Organic semiconductor solid electrolytic capacitors
JP2771767B2 (en) Method for manufacturing solid electrolytic capacitor
JPH1032147A (en) Electrolytic capacitor
JPH0466373B2 (en)
JPH01138709A (en) Solid electrolytic capacitor
JP3093810B2 (en) Method for manufacturing solid electrolytic capacitor
JPS60206126A (en) Method of producing solid electrolytic condenser
JPH0466374B2 (en)
JPH02294009A (en) Solid electrolytic capacitor
JPS60206127A (en) Method of producing solid electrolytic condenser
JPS61107716A (en) Solid electrolytic capacitor
JPS62204514A (en) Solid electrolytic capacitor