JPH0722076B2 - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH0722076B2
JPH0722076B2 JP1270614A JP27061489A JPH0722076B2 JP H0722076 B2 JPH0722076 B2 JP H0722076B2 JP 1270614 A JP1270614 A JP 1270614A JP 27061489 A JP27061489 A JP 27061489A JP H0722076 B2 JPH0722076 B2 JP H0722076B2
Authority
JP
Japan
Prior art keywords
tcnq complex
complex salt
tcnq
solid electrolytic
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1270614A
Other languages
Japanese (ja)
Other versions
JPH02275612A (en
Inventor
信一 丹羽
勝則 水富
健二 鹿熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to US07/472,983 priority Critical patent/US5031077A/en
Priority to KR1019900000351A priority patent/KR0154126B1/en
Priority to CA002007997A priority patent/CA2007997C/en
Priority to EP90101091A priority patent/EP0379213B1/en
Priority to DE69028790T priority patent/DE69028790T2/en
Publication of JPH02275612A publication Critical patent/JPH02275612A/en
Publication of JPH0722076B2 publication Critical patent/JPH0722076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は固体電解コンデンサに関するものである。更に
詳説すると、本発明は電解質としてTCNQ錯塩を使用する
有機半導体固体電解コンデンサにおける耐熱性の改善に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a solid electrolytic capacitor. More specifically, the present invention relates to improvement of heat resistance in an organic semiconductor solid electrolytic capacitor using a TCNQ complex salt as an electrolyte.

(ロ)従来の技術 電解質としてTCNQ錯塩を使用する有機半導体固体電解コ
ンデンサに関しては、本願発明者が既に種々提案してい
る。即ち、特開昭58−191414号(H01G 9/02)等に開示
されているN位をアルキル基で置換したイソキノリンと
のTCNQ錯塩を用いた固体電解コンデンサは、特に優れた
高周波特性を持っているため、スイッチング電源用など
に広く採用されているが、近年機器の小型化の必要性か
ら、この種のコンデンサも表面実装用部品(チップ部
品)としての対応を迫られている。
(B) Conventional Technology The inventors of the present application have already made various proposals regarding organic semiconductor solid electrolytic capacitors using TCNQ complex salts as electrolytes. That is, the solid electrolytic capacitor disclosed in JP-A-58-191414 (H01G 9/02) and the like, which uses a TCNQ complex salt with isoquinoline in which the N-position is substituted with an alkyl group, has particularly excellent high frequency characteristics. Therefore, it has been widely used for switching power supplies and the like, but in recent years, due to the need for downsizing of devices, this type of capacitor is also required to be used as a surface mounting component (chip component).

しかし、斯るTCNQ錯塩は、表面実装用部品として必須の
ハンダ付時の熱ストレス(通常230℃)には耐えられ
ず、著しい漏れ電流増大等の特性劣化を招く。そこで前
述のTCNQ錯塩の耐熱性向上の一手段として、前述のTCNQ
錯塩の融点(ほぼ210〜230℃)よりも一段と高い融点を
有するTCNQ錯塩が種々検討されている。
However, such TCNQ complex salt cannot withstand the thermal stress (usually 230 ° C.) when soldering, which is indispensable for surface mounting components, and causes characteristic deterioration such as a significant increase in leakage current. Therefore, as a means of improving the heat resistance of the above-mentioned TCNQ complex salt, the above-mentioned TCNQ
Various TCNQ complex salts having a melting point much higher than that of the complex salt (approximately 210 to 230 ° C) have been studied.

しかしながら、これまで検討された高融点TCNQ錯塩は、
確かに耐熱性は向上するが融解して冷却固化後のこのTC
NQ錯塩は従来のイソキノリン系TCNQ錯塩に比べて電導度
が著しく劣り、従来のTCNQ錯塩を用いた固体電解コンデ
ンサの最大の利点であった優れた高周波特性が失われる
という重大な欠点がある。
However, the high melting point TCNQ complex salts studied up to now are
Certainly the heat resistance improves but this TC after melting and cooling and solidification
The NQ complex salt is significantly inferior in conductivity to the conventional isoquinoline-based TCNQ complex salt, and has a serious drawback that the excellent high frequency characteristics, which is the greatest advantage of the solid electrolytic capacitor using the conventional TCNQ complex salt, are lost.

(ハ)発明が解決しようとする課題 上述の如く、TCNQ錯塩を使用する有機半導体固体電解コ
ンデンサにおいて、表面実装時のハンダ耐熱性を改善し
ようとすると、コンデンサとしての高周波特性が劣化す
るという問題を両立して解決することを目的とするもの
である。
(C) Problems to be Solved by the Invention As described above, in the organic semiconductor solid electrolytic capacitor using the TCNQ complex salt, when trying to improve the solder heat resistance during surface mounting, there is a problem that the high frequency characteristics of the capacitor deteriorate. The objective is to solve both at the same time.

(ニ)課題を解決するための手段 従来のイソキノリン系TCNQ錯塩に代わり、高融点TCNQ錯
塩を用いると、一般に電解質としての電導度の低下か
ら、E.S.R.(等価値列抵抗)の増大を招き、高周波特性
の劣化が起こる。そこで、本発明においては高融点であ
り、かつ、カチオンの異なる2種以上のTCNQ錯塩を混合
して加熱融解し、コンデンサ素子に含浸して冷却固化し
たものを電解質として使用することにより前述の固体電
解コンデンサの耐熱性の改善と高周波特性の改善を両立
して解決するものである。
(D) Means for solving the problem When a high-melting TCNQ complex salt is used instead of the conventional isoquinoline-based TCNQ complex salt, the ESR (equivalent series resistance) is generally increased due to the decrease in the conductivity as an electrolyte, and the high frequency Deterioration of characteristics occurs. Therefore, in the present invention, two or more kinds of TCNQ complex salts having a high melting point and different cations are mixed, heated and melted, impregnated into a capacitor element and cooled and solidified to be used as an electrolyte. This is a solution to both the improvement in heat resistance and the improvement in high frequency characteristics of the electrolytic capacitor.

(ホ)作用 2種以上のカチオンの異なる高融点TCNQ錯塩を混合して
加熱融解し、冷却固化した時のE.S.R.はそれぞれのTCNQ
錯塩単独の時のE.S.R.の値の略1/10〜1/2に減少する。
換言すればカチオンの異なるTCNQ錯塩を混合して使用す
る場合は単独のTCNQ錯塩の場合よりもその電導度が略2
〜10倍上昇する。また、TCNQ錯塩を2種以上混合する
と、単独の場合よりも加熱融解後、冷却固化したTCNQ錯
塩の融点は一応低下することが推測されるが、従来のイ
ソキノリン系TCNQ錯塩の融点よりは高く、表面実装用リ
フローハンダの熱にも耐えるに十分な融点と耐熱性を有
する。
(E) Action ESR when high melting point TCNQ complex salts with two or more different cations are mixed, heated and melted, and cooled and solidified are TCNQ
It decreases to about 1/10 to 1/2 of the ESR value when the complex salt is used alone.
In other words, when the TCNQ complex salts having different cations are mixed and used, the conductivity is about 2 as compared with the case of the single TCNQ complex salt.
~ 10 times higher. In addition, when two or more TCNQ complex salts are mixed, it is presumed that the melting point of the TCNQ complex salt cooled and solidified after heating and melting is lower than that of a single case, but it is higher than the melting point of the conventional isoquinoline-based TCNQ complex salt, It has sufficient melting point and heat resistance to withstand the heat of reflow solder for surface mounting.

(ヘ)実施例 本発明について説明する。第1図は本発明に使用するコ
ンデンサ素子を示す。まず、高純度(99.99%以上)の
アルミニウム箔を化学的処理により粗面化し、実効表面
積を増加させるためのいわゆるエッチング処理を行な
う。次に電解液中にて、電気化学的にアルミニウム箔表
面に酸化皮膜(酸化アルミニウムの薄膜)を形成する
(化成処理)。次にエッチング処理、化成処理を行なっ
たアルミニウム箔を陽極箔(1)とし、対向陰極箔
(2)との間にセパレータ(3)としてマニラ紙を挟
み、第1図に示すように円筒状に巻き取る。こうしてア
ルミニウム箔に酸化皮膜を形成した陽極箔(1)及び陰
極箔(2)と両電極箔間に介挿されたセパレータ(3)
とを捲回してコンデンサ素子(6)が形成される。なお
(4)(4′)はアルミリード、(5)(5′)はリー
ド線である。
(F) Example The present invention will be described. FIG. 1 shows a capacitor element used in the present invention. First, a high-purity (99.99% or more) aluminum foil is roughened by a chemical treatment to perform a so-called etching treatment to increase the effective surface area. Next, an oxide film (a thin film of aluminum oxide) is electrochemically formed on the surface of the aluminum foil in the electrolytic solution (chemical conversion treatment). Next, the aluminum foil that has been subjected to etching treatment and chemical conversion treatment is used as an anode foil (1), and a manila paper is sandwiched between it and a counter cathode foil (2) as a separator (3) to form a cylindrical shape as shown in FIG. Roll up. The separator (3) interposed between the anode foil (1) and the cathode foil (2) thus formed with an oxide film on the aluminum foil and both electrode foils.
And are wound to form the capacitor element (6). Incidentally, (4) and (4 ') are aluminum leads, and (5) and (5') are lead wires.

さらにコンデンサ素子(6)に熱処理を施し、セパレー
タ(3)を構成するマニラ紙を炭化して繊維の細径化に
よる密度の低下を計る。
Further, the capacitor element (6) is heat-treated to carbonize the manila paper constituting the separator (3) to reduce the density due to the fiber diameter reduction.

なお、セパレータとしてマニラ紙にあらかじめ所定の温
度と時間(例えば240℃、40分間)で熱処理を施して炭
化したものやカーボン不織布を用い、陽極箔と陰極箔と
の間に挟んで巻回してもよい。
It should be noted that as a separator, a manila paper which has been heat-treated at a predetermined temperature and time (for example, 240 ° C., 40 minutes) and carbonized in advance is used, or a carbon non-woven fabric may be sandwiched between the anode foil and the cathode foil and wound. Good.

第2図はこのコンデンサ素子(6)をアルミケース
(7)内に収納した状態の断面図、第3図はその外観図
である。所定量の各種TCNQ錯塩(8)をケース(7)内
に入れ、加熱した熱板上にアルミケース(7)を載置
し、本実施例では310〜315℃にてケース(7)中の粉末
状TCNQ錯塩を加熱融解させる。一方、予め加熱してある
コンデンサ素子(6)をアルミケース(7)内に挿入し
て、融解したTCNQ錯塩の混合液をコンデンサ素子(6)
に含浸させ、すぐに冷却固化させる。その後、TCNQ錯塩
とは反応し難い樹脂(9)を封入し、さらにエポキシ樹
脂等(10)で成形する。(11)はリード線用溝である。
FIG. 2 is a sectional view of the capacitor element (6) housed in an aluminum case (7), and FIG. 3 is an external view thereof. A predetermined amount of various TCNQ complex salt (8) is put in the case (7), the aluminum case (7) is placed on a heated hot plate, and in this embodiment, the temperature of the case (7) is 310 to 315 ° C. Heat and melt the powdered TCNQ complex salt. On the other hand, the preheated capacitor element (6) is inserted into the aluminum case (7), and the molten mixture of TCNQ complex salt is added to the capacitor element (6).
And then immediately solidify by cooling. After that, a resin (9) that is difficult to react with the TCNQ complex salt is encapsulated and further molded with an epoxy resin or the like (10). (11) is a groove for the lead wire.

次に本発明における高融点(ほぼ230℃以上)TCNQ錯塩
の例を第1表に示す。第1表にはそれらのTCNQ錯塩を用
いて上述の如き融解法によりコンデンサを試作した結果
も合わせて示す。錯塩記号(I)は従来例である。尚、
第1表における錯塩記号(A)(B)(H)の合成に用
いたルチジンは、正確には3.5−ルチジン、また記号
(C)(D)(E)の合成に用いたフェニル・ピリジン
は、正確には4−フェニル・ピリジンである。さらに第
1表及び第2表に用いたコンデンサの定格は25V、0.68
μFであり、これらの表に用いた略号は次の意味を示
す。即ち、 cap ;静電容量(nF),120Hz tanδ ;損失角の正接(%),120Hz L.C ;漏れ電流(μA/1分後) E.S.R.;等価値列抵抗(mΩ),100KHz △cap ;静電容量変化率(%),120Hz 第2表は第1表の各種TCNQ錯塩を等量混合し、上述の融
解法によってコンデンサを試作した結果と、表面実装時
のハンダ付け時の熱を想定したリフロー試験の結果を示
す。このリフロー試験とはコンデンサを160℃に2分間
保持し、それに引き続いてリフロー炉の中で230℃に30
秒間保持した際の特性である。
Next, Table 1 shows examples of TCNQ complex salts having a high melting point (approximately 230 ° C. or higher) in the present invention. Table 1 also shows the results of trial production of capacitors using these TCNQ complex salts by the melting method as described above. The complex salt symbol (I) is a conventional example. still,
The lutidine used for the synthesis of the complex salt symbols (A) (B) (H) in Table 1 is exactly 3.5-lutidine, and the phenylpyridine used for the synthesis of the symbols (C) (D) (E) is , To be precise, 4-phenyl pyridine. Furthermore, the ratings of the capacitors used in Table 1 and Table 2 are 25V, 0.68
μF, and the abbreviations used in these tables have the following meanings. That is, cap: Capacitance (nF), 120Hz tanδ: Loss tangent (%), 120Hz LC: Leakage current (μA / 1 minute later) ESR: Equivalent series resistance (mΩ), 100KHz △ cap: Electrostatic Capacitance change rate (%), 120Hz Table 2 shows the results of trial production of capacitors by the above-mentioned melting method by mixing equal amounts of the various TCNQ complex salts shown in Table 1, and reflow assuming heat during soldering during surface mounting. The test results are shown. This reflow test is to hold the capacitor at 160 ℃ for 2 minutes, and then to 230 ℃ at 30 ℃ in the reflow furnace.
It is a characteristic when held for a second.

なお、また、TCNQ錯塩の混合はそれぞれのTCNQ錯塩の合
成、析出後混合しても、又合成反応時に混合後析出させ
てもよい。また、実施例においては等量混合時のみにつ
いて示してあるが、これを2対1、或いは3対1等の割
合に変更しても本発明の基本的効果は何等変わらない。
The TCNQ complex salts may be mixed after synthesis and precipitation of the respective TCNQ complex salts, or may be mixed and precipitated during the synthesis reaction. Further, in the examples, only the case of mixing equal amounts is shown, but the basic effect of the present invention does not change at all even if the ratio is changed to 2: 1 or 3: 1.

更に上述の実施例においてはコンデンサ素子としてアル
ミ箔の巻回型コンデンサについて示したが、アルミニウ
ム、タンタル、ニオブ等の弁作用を有する金属粉末を加
圧成形し、或いは焼結してなるコンデンサ陽極素子に上
述の本発明のTCNQ錯塩を電解質として使用してもよいこ
とは言うまでもない。
Further, although the winding type capacitor of aluminum foil is shown as the capacitor element in the above-mentioned embodiment, a capacitor anode element obtained by press-molding or sintering a metal powder having a valve action such as aluminum, tantalum, niobium, Needless to say, the above-mentioned TCNQ complex salt of the present invention may be used as an electrolyte.

(ト)発明の効果 このようにカチオンの異なるTCNQ錯塩を2種以上混合
し、これを加熱融解してコンデンサ素子に含浸し、冷却
固化して電解質として使用するという本発明によれば、
コンデンサの等価値列抵抗(E.S.R.)の増大を抑制しつ
つ、而も表面実装時のハンダによる高温にも充分耐える
コンデンサが得られる。即ち、表面実装時のハンダ耐熱
性のために、単に高融点の単独のTCNQ錯塩を選択する場
合には、従来例、例えばN位をアルキル基で置換したイ
ソキノリンとのTCNQ錯塩の場合に比較してE.S.R.が略7
〜27倍にも増大するが、本発明によれば、その値が2.4
〜6倍に抑制され、而も表面実装用リフローハンダ付け
時の高温にも充分耐えるコンデンサが得られる。
(G) Effect of the Invention According to the present invention, two or more kinds of TCNQ complex salts having different cations are mixed as described above, and the resulting mixture is heated and melted to impregnate a capacitor element, cooled and solidified, and used as an electrolyte.
It is possible to obtain a capacitor that can sufficiently withstand high temperature due to soldering during surface mounting while suppressing an increase in equivalent value series resistance (ESR) of the capacitor. That is, in the case of simply selecting a TCNQ complex salt having a high melting point for the sake of solder heat resistance during surface mounting, a conventional example, for example, a TCNQ complex salt with isoquinoline in which the N-position is substituted with an alkyl group is compared. ESR is about 7
~ 27 times, but according to the invention, the value is 2.4
It is possible to obtain a capacitor which is suppressed to about 6 times, and which can sufficiently withstand the high temperature at the time of reflow soldering for surface mounting.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に使用するコンデンサ素子の斜視図、第
2図は本発明の固体電解コンデンサの断面図、第3図は
同外観図である。 (1)(2)…陽、陰極箔、(3)…セパレータ、
(6)…コンデンサ素子、(7)…アルミケース、
(8)…複数種のTCNQ錯塩。
FIG. 1 is a perspective view of a capacitor element used in the present invention, FIG. 2 is a sectional view of a solid electrolytic capacitor of the present invention, and FIG. 3 is an external view thereof. (1) (2) ... positive, cathode foil, (3) ... separator,
(6) ... Capacitor element, (7) ... Aluminum case,
(8) ... Multiple TCNQ complex salts.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】カチオンの異なるTCNQ錯塩を2種以上混合
して加熱融解し、コンデンサ素子の電解質として含浸し
た後、冷却固化することを特徴とする固体電解コンデン
サ。
1. A solid electrolytic capacitor, which comprises mixing two or more TCNQ complex salts having different cations, heating and melting the mixture, impregnating it as an electrolyte for a capacitor element, and then cooling and solidifying.
【請求項2】2種以上のTCNQ錯塩とは (a)N位をペンタメチレン基又はヘキシルメチレン基
にて置換により結合した2分子のルチジンとのTCNQ錯
塩、 (b)N位をベンジル基又はフェネチル基で置換したイ
ソキノリンとのTCNQ錯塩、 (c)N位を炭素数2〜4の炭化水素で置換したフェニ
ル・ピリジンとのTCNQ錯塩、 上記(a)(b)(c)の中のいずれか2組の組合せ
(即ち、(a)(b)、(a)(c)、(b)(c))
或は3組の組合せ(即ち(a)(b)(c))である特
許請求の範囲第1項に記載の固体電解コンデンサ。
2. Two or more kinds of TCNQ complex salts are (a) a TCNQ complex salt with two molecules of lutidine in which the N-position is bound by substitution with a pentamethylene group or a hexylmethylene group, and (b) an N-position is a benzyl group or A TCNQ complex salt with isoquinoline substituted with a phenethyl group, (c) a TCNQ complex salt with phenylpyridine substituted with a hydrocarbon having 2 to 4 carbon atoms at the N position, any of the above (a), (b) and (c) Or a combination of two sets (that is, (a) (b), (a) (c), (b) (c))
Alternatively, the solid electrolytic capacitor according to claim 1, which is a combination of three sets (that is, (a) (b) (c)).
【請求項3】2種以上のTCNQ錯塩とは (a)N位をペンタメチレン基にて置換により結合した
2分子のルチジンとのTCNQ錯塩、 (b)N位をn−プロピル基で置換したフェニル・ピリ
ジンとのTCNQ錯塩、 の組合せである特許請求の範囲第1項に記載の固体電解
コンデンサ。
3. Two or more kinds of TCNQ complex salts are (a) a TCNQ complex salt with two molecules of lutidine in which the N position is bound by substitution with a pentamethylene group, and (b) the N position is substituted with an n-propyl group. The solid electrolytic capacitor according to claim 1, which is a combination of TCNQ complex salt with phenyl pyridine.
【請求項4】2種以上のTCNQ錯塩とは (a)N位をペンタメチレン基にて置換により結合した
2分子のルチジンとのTCNQ錯塩、 (b)N位をフェネチル基で置換したルチジンとのTCNQ
錯塩、 の組合せである特許請求の範囲第1項に記載の固体電解
コンデンサ。
4. Two or more kinds of TCNQ complex salts are: (a) a TCNQ complex salt with two molecules of lutidine having N-positions substituted by a pentamethylene group, and (b) lutidine having N-positions substituted with a phenethyl group. TCNQ
The solid electrolytic capacitor according to claim 1, which is a combination of complex salts.
JP1270614A 1989-01-20 1989-10-18 Solid electrolytic capacitor Expired - Fee Related JPH0722076B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US07/472,983 US5031077A (en) 1989-01-20 1990-01-12 Solid electrolyte capacitor and manufacturing method therefor
KR1019900000351A KR0154126B1 (en) 1989-01-20 1990-01-12 Solid electrolyte capacitor and manufacturing method therefor
CA002007997A CA2007997C (en) 1989-01-20 1990-01-17 Solid electrolyte capacitor and manufacturing method therefor
EP90101091A EP0379213B1 (en) 1989-01-20 1990-01-19 Solid electrolyte capacitor and manufacturing method therefor
DE69028790T DE69028790T2 (en) 1989-01-20 1990-01-19 Solid electrolytic capacitor and process for its manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1271589 1989-01-20
JP1-12715 1989-01-20

Publications (2)

Publication Number Publication Date
JPH02275612A JPH02275612A (en) 1990-11-09
JPH0722076B2 true JPH0722076B2 (en) 1995-03-08

Family

ID=11813127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1270614A Expired - Fee Related JPH0722076B2 (en) 1989-01-20 1989-10-18 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0722076B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191414A (en) * 1982-05-04 1983-11-08 三洋電機株式会社 Solid electrolytic condenser
JPS6272664A (en) * 1985-09-26 1987-04-03 Wako Pure Chem Ind Ltd Production of organic electrically conductive complex

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58191414A (en) * 1982-05-04 1983-11-08 三洋電機株式会社 Solid electrolytic condenser
JPS6272664A (en) * 1985-09-26 1987-04-03 Wako Pure Chem Ind Ltd Production of organic electrically conductive complex

Also Published As

Publication number Publication date
JPH02275612A (en) 1990-11-09

Similar Documents

Publication Publication Date Title
JPH04229611A (en) Solid electrolytic capacitor
CN102420052B (en) Solid electrolytic capacitor
JPH0722076B2 (en) Solid electrolytic capacitor
JPS58123715A (en) Solid electrolytic condenser
US4828738A (en) Solid electrolytic capacitor
JP2940711B2 (en) Method for manufacturing solid electrolytic capacitor
KR0154126B1 (en) Solid electrolyte capacitor and manufacturing method therefor
KR100699971B1 (en) Solid Electrolytic Capacitor and Production Method Thereof
JPH04312910A (en) Production of solid-state electrolytic capacitor
JP3123772B2 (en) Organic semiconductor solid electrolytic capacitors
JP2840516B2 (en) Solid electrolytic capacitors
JPS61107716A (en) Solid electrolytic capacitor
JP2902679B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0744131B2 (en) Method for manufacturing solid electrolytic capacitor
JP3162738B2 (en) Solid electrolytic capacitors
JP2999842B2 (en) Organic semiconductor solid electrolytic capacitors
JP2000277389A (en) Solid electrolytic capacitor and its manufacturing method
JPH0337854B2 (en)
JP3438900B2 (en) Solid electrolytic capacitors
JPH04206922A (en) Solid-state electrolytic capacitor
JPS62204514A (en) Solid electrolytic capacitor
JPH06151257A (en) Manufacture of organic semiconductor solid electrolytic capacitor
JPH0374028B2 (en)
JP2001085277A (en) Solid electrolytic capacitor and its manufacture
JPH03237707A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees