JPS58190581A - Energy collection device - Google Patents
Energy collection deviceInfo
- Publication number
- JPS58190581A JPS58190581A JP57074260A JP7426082A JPS58190581A JP S58190581 A JPS58190581 A JP S58190581A JP 57074260 A JP57074260 A JP 57074260A JP 7426082 A JP7426082 A JP 7426082A JP S58190581 A JPS58190581 A JP S58190581A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- fluid
- pressure
- water turbine
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/06—Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/16—Mechanical energy storage, e.g. flywheels or pressurised fluids
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、放棄や廃棄されている管路内の流体エネルギ
ーを電気エネルギーに変換して回収するエネルギー回収
装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an energy recovery device that converts fluid energy in abandoned or discarded pipes into electrical energy and recovers it.
一般に、多゛量の水を常時使用する製鉄工場や処理水の
排圧にいたるまで流体の流れがある下水処理場、圧力タ
ンクから圧力タンクへ流体を循環させる設備その他プラ
ント設備には、移動や廃棄される流体を流す管路部分が
存在している。そこでこの種の見捨てられている流体エ
ネルギーを電気エネルギーとして回収するエネルギー回
収装置が従来からも種々提案されており、その代表的な
ものとして特開昭56−32078号に開示されたもの
がある。In general, steel factories that constantly use large amounts of water, sewage treatment plants where fluid flows up to the exhaust pressure of treated water, equipment that circulates fluid from pressure tank to pressure tank, and other plant equipment are often There is a conduit section through which fluid is disposed of. Therefore, various energy recovery devices for recovering this kind of abandoned fluid energy as electrical energy have been proposed in the past, and one representative example is one disclosed in Japanese Patent Laid-Open No. 56-32078.
この従来のエネルギー回収装置は、基本的には、第1図
に示す如く、流体管路lに、流量検出器2およびその下
流側に第1制御弁3を夫々配設するとともに該第1制御
弁3の前後部分間を連通ずるバイパス4を連設し、該バ
イパス4に、第2制御弁5およびその下流側に水車6を
夫々配設して、流体管路1の流量変動を流…検出器2で
検出し、これに応じて制御盤7によってノ;イパス4を
流れる流体の流量を調整するべく前記両制御升3,5を
制御し、このバイパス4を流れる流体のエネルギーでも
って水車6を駆動させ、これによって発電機8を作動さ
せて電気エネルギーに変換しこの電気エネルギーを電g
m線9へと回収させるようなされたものである。Basically, this conventional energy recovery device, as shown in FIG. A bypass 4 that communicates between the front and rear portions of the valve 3 is provided, and a second control valve 5 and a water turbine 6 are provided on the downstream side of the second control valve 5, respectively, to channel flow rate fluctuations in the fluid pipe line 1. The detector 2 detects the detection, and the control panel 7 accordingly controls the control boxes 3 and 5 to adjust the flow rate of the fluid flowing through the bypass 4, and the energy of the fluid flowing through the bypass 4 is used to drive the water turbine. 6, which activates the generator 8 to convert it into electrical energy and convert this electrical energy into electricity.
It is designed to recover the m-line 9.
しだがって、かかる装置にあっては、流体管路1の流h
1.変Uノを検出するための流if l(た出隅2およ
び水車6を有効に駆動させるべくバイパス4の流hiを
調整するだめの制御弁3,5を最小限必四とし、■つ制
御盤7による制御弁3,5の制御が極めて複雑化するこ
とから、装置が極めて高価11つ複雑なものとなる欠点
があった。Therefore, in such a device, the flow h of the fluid conduit 1
1. The control valves 3 and 5, which are used to adjust the flow hi of the bypass 4 in order to effectively drive the outgoing corner 2 and the water turbine 6, are required to have at least four control valves, and Since the control of the control valves 3 and 5 by the panel 7 becomes extremely complicated, there is a drawback that the device becomes extremely expensive and complicated.
本発¥11は、上記した点の改良を目的としてなされた
もので、[)ff記の如き流−:検出器および制御弁を
必要とせず、したがって複雑な制御システムを必要とせ
ず、安価且つ構造f7iT単なエネルギー回収装置を提
供するものである。The present invention, priced at ¥11, was made with the aim of improving the points mentioned above. Structure f7iT provides a simple energy recovery device.
本発明のエネルギー回収装置の原理は、流体管路の−1
−流側の流体を、その流体圧を利用して、−[↓所定高
さ位置に設けた密閉タンク内に管路を介して輸送させ、
これを別の管路を介して、水車の流入側部分へ位置エネ
ルギーを利用して還流させ、もって水車を’1JAUJ
させて、発電手段によるエネルギー回収を行わしめる。The principle of the energy recovery device of the present invention is that the -1
-Using the fluid pressure of the fluid on the downstream side, -[↓Transport the fluid through a pipe into a sealed tank installed at a predetermined height,
This water is returned to the inflow side of the water turbine through another pipe using potential energy, and the water turbine is
This will allow energy recovery by means of power generation.
しかも+ii+記密閉タンク内に空気部分と液体部分と
が存在するために、一定量の空気を保持するように構成
したものである。たとえば大気中−(′あれば液体管路
の上流側の流体圧に対応する流体の液面高さが相当に高
くなる場合であっても、上流側の流体圧に対して密閉タ
ンクを設けることにより、密閉タンク位置つまり管路の
配設高さを自在に低く設定できるものである。捷だ、流
体管路の流体圧変動つまり流M変動に応じて、水車を駆
動させるのに必要な流量に対して金利の流はを、密閉タ
ンクから水車の吐出側部分に連通させたオーバーフロー
管へ溢流させて流体管路の下流側へ還流させるようf失
されたものである。Furthermore, since there is an air portion and a liquid portion in the sealed tank, the tank is configured to hold a certain amount of air. For example, in the atmosphere - even if the liquid level of the fluid corresponding to the fluid pressure on the upstream side of the liquid pipeline becomes considerably high, a sealed tank must be provided for the fluid pressure on the upstream side. This allows the position of the sealed tank, that is, the installation height of the pipeline, to be set as low as possible.The flow rate required to drive the water turbine can be adjusted according to fluid pressure fluctuations in the fluid pipeline, that is, fluctuations in the flow M. On the other hand, the flow of interest is caused to overflow from the closed tank to an overflow pipe communicating with the discharge side of the water turbine and to be returned to the downstream side of the fluid pipeline.
以下本考案の一実施例を第2図を参照して説り1する。An embodiment of the present invention will be explained below with reference to FIG.
第2図は、本発明に係るエネルギー回収装置を概略的に
示したもので、図において、11は圧力の高いタンク1
2から圧力の低いタンク〕3へと流体管路たる木管で、
多聞の流体が輸送される場合に用いられるものである。FIG. 2 schematically shows the energy recovery device according to the present invention. In the figure, 11 is a high pressure tank 1.
From 2 to the low pressure tank] 3 is a wooden pipe that serves as a fluid conduit,
It is used when a large amount of fluid is transported.
14は水車(たとえばポンプ)であり、発電手段(たと
えば誘導雷u)機)15に連動連結されている。この水
rJL14は計画流量において、股高効率点で運転され
うるものが選定されている。Reference numeral 14 denotes a water turbine (for example, a pump), which is interlocked and connected to a power generation means (for example, an induction lightning machine) 15. This water rJL14 is selected so that it can be operated at the crotch efficiency point in the planned flow rate.
16は、水車14から所定高さ位置に設けられかつ空気
圧を設定圧力に維持するt#1タンクである。16 is a t#1 tank that is provided at a predetermined height position from the water turbine 14 and maintains the air pressure at a set pressure.
17.18はそれぞれ上下方向に延びる第1管路、第2
管路であり、これら第1および第2管路17.18の下
端部はそれぞれ、前記本管上流側部分11の及び前記水
車14の流入側部分14aに接続されている。17 and 18 are a first pipe line and a second pipe line extending in the vertical direction, respectively.
The lower ends of the first and second pipes 17, 18 are connected to the upstream portion 11 of the main pipe and the inlet portion 14a of the water turbine 14, respectively.
19はオーバーフロー管で、下端部は前記水虫14の吐
出側部分14bに接続されている。Reference numeral 19 denotes an overflow pipe, the lower end of which is connected to the discharge side portion 14b of the athlete's foot 14.
第1および第2管路17.18ならびにオーバーフロー
管19の各11端部は、前記密閉タンク16に接続され
ており、オーバーフロー管19の上端部は、第1および
第2管路17.18の上端部接続部分より若干til:
h高位において密閉タンク16に連結されている。密
閉タンク16の設置位置つまり第1および第2贅路17
゜18の上端部接続部分の高さ位置は、本管11の上流
側部分11aの流体圧に応じて設定できるものである。The 11 ends of the first and second pipes 17.18 and the overflow pipe 19 are connected to the sealed tank 16, and the upper end of the overflow pipe 19 is connected to the upper end of the first and second pipes 17.18. Slightly tiled from the upper end connection part:
It is connected to a closed tank 16 at a high level. The installation position of the sealed tank 16, that is, the first and second passages 17
The height position of the upper end connecting portion of the main pipe 11 can be set according to the fluid pressure of the upstream portion 11a of the main pipe 11.
すなわち、流体の液面は、密閉タンク16の空気圧と、
液面の高さによる圧力の和が本管上流側11aの流体圧
と均衡する位置まで上昇するものであるから、本管11
の上流側部分11aの流体圧がわかれば、密閉タンク1
6の設置位置を決めることができる。なお、密閉タンク
160オーバー70−管19は液面高さがある範囲に設
定される。That is, the liquid level of the fluid is determined by the air pressure in the closed tank 16, and
The main pipe 11 rises to a position where the sum of the pressures due to the height of the liquid level is balanced with the fluid pressure on the upstream side 11a of the main pipe.
If the fluid pressure in the upstream portion 11a of the tank 1 is known, the closed tank 1
6 installation position can be determined. Note that the closed tank 160 over 70-pipe 19 is set within a certain range of liquid level height.
そして、本管11の上流側部分11aの流体圧が、変動
する場合は、その下限圧が密閉タンク16内の液面高さ
と々るように設置しておけばより、シたがって、本管1
1の上流側部分11aの流体は第1管路17から密閉タ
ンク16を経て第2唸路18へと流入するが、木管11
の1−流、側部分11a9圧力上昇つ捷り流11)・増
加が一走風I−となると流体は密閉タンク16から第2
管路18へ流入するとともに、その金利流体は密閉タン
ク16からオーバーフロー管1 gへと溢流して、第2
管路18には計画流量たる略一定の流t+(の流体が流
れうるようになされている。If the fluid pressure in the upstream portion 11a of the main pipe 11 fluctuates, it would be better to install it so that the lower limit pressure is equal to the liquid level in the sealed tank 16. 1
The fluid in the upstream portion 11a of the wood pipe 11 flows from the first pipe line 17 through the sealed tank 16 to the second whirlpool pipe 18.
1-flow, side part 11a9 pressure rises and torrent flow 11).When the increase becomes one-stroke wind I-, the fluid flows from the closed tank 16 to the second flow.
At the same time as flowing into the conduit 18, the interest fluid overflows from the closed tank 16 into the overflow pipe 1g and flows into the second
The conduit 18 is designed to allow a substantially constant flow t+ (of fluid, which is a planned flow rate) to flow therethrough.
25は水車14の流入側部分1’4aの第2管路18部
分に介設された仕切弁、26は本管11の−h、下流側
部分11a、llb間を接続せるバイパス27に介設さ
れた仕切弁、28は水車14および発電手段15の回転
速度(もしくは回転数)を検出する回転検出器、29は
発電手段15に開閉器30を介して接続された電源m線
である。31は回転検出器28による信号を受けて開閉
器30を開閉制御する制御盤であり、水車140回転速
度が発電手段15の必要速度以下になると、前記開閉器
30を開制御させるものである。25 is a gate valve installed in the second pipe line 18 section of the inflow side portion 1'4a of the water turbine 14, and 26 is installed in the bypass 27 that connects -h of the main pipe 11, the downstream portion 11a, and llb. 28 is a rotation detector that detects the rotational speed (or number of rotations) of the water turbine 14 and the power generation means 15, and 29 is a power supply m line connected to the power generation means 15 via a switch 30. A control panel 31 controls the opening and closing of the switch 30 in response to a signal from the rotation detector 28, and controls the switch 30 to open when the rotational speed of the water turbine 140 becomes lower than the required speed of the power generation means 15.
次に、本発明に係るエネルギー回収装置によるエネルギ
ー回収作用を、上記実施例について説明する。Next, the energy recovery effect of the energy recovery device according to the present invention will be explained with reference to the above embodiment.
まず、第2管路18の仕VJ弁25を開操作するととも
に、バイパス27の仕切弁26を閉操作すると、本管1
1の−L流側部分11aの流体は、第1管路17を上昇
して、密閉タンク16から第2管路18へと流れ込み、
さらに水車14の流入側部分14aへ還流せしめられる
。First, when the gate VJ valve 25 of the second pipe line 18 is opened and the gate valve 26 of the bypass 27 is closed, the main pipe 1
The fluid in the −L flow side portion 11a of 1 rises in the first pipe line 17, flows from the closed tank 16 into the second pipe line 18,
Further, the water is returned to the inflow side portion 14a of the water wheel 14.
このとき、本管11の上流側部分11aの圧力変−1つ
まり流祉質動に応じて密閉タンク16内の液面高さは第
1および第2管WT17.]8の1一端部接続部分とオ
ーバーフロー管19の一ト端部との間で変動することに
なるが、この変動−は僅かhであるから、流#dは略一
定に確保される。At this time, the liquid level in the closed tank 16 changes depending on the pressure change-1 in the upstream portion 11a of the main pipe 11, that is, the flow rate movement in the first and second pipes WT17. ] 8 and the one end of the overflow pipe 19, but since this variation is only h, the flow #d is maintained substantially constant.
さらに、本管11の上流側部分11aの流皐増加が大き
いと・きには、密閉タンク16内の液面高さが1−配置
1ljJ fl、 h以上に」1昇しようとするが、か
かる余!?!1流量はオー・パーフロー管19の」二端
部から全て溢流排出されて、本管11の下流側部分11
bつまり水車14の吐出側部分14bへ還流されること
になるから、第2管路18を流れる流体は、木管11の
上流側部分11aの流1−変動に拘わらず、常に略一定
の計画流けとなる。Furthermore, when the increase in the flow of the upstream portion 11a of the main pipe 11 is large, the liquid level in the closed tank 16 attempts to rise above 1-1 h, but Me! ? ! 1 flow is completely overflowed from the second end of the overflow pipe 19 and discharged to the downstream part 11 of the main pipe 11.
b In other words, the fluid flowing through the second pipe 18 is returned to the discharge side portion 14b of the water turbine 14, so that the fluid flowing through the second pipe 18 always maintains a substantially constant planned flow regardless of the flow 1-fluctuations in the upstream portion 11a of the wood pipe 11. Become a loser.
しかして、このことから、水車14は常に最高効率点付
近でかつ発電手段15の必要速度に一致した回転速度て
駆動されることになり、この水車14の同転によって発
電手段15が駆動されて電源母線29へ電気供給が行な
われつ捷り電気エネルギーの回収が行われるのである。Therefore, the water turbine 14 is always driven near the highest efficiency point and at a rotational speed that matches the required speed of the power generation means 15, and the power generation means 15 is driven by the same rotation of the water turbine 14. Electricity is supplied to the power supply bus 29 and the electrical energy is recovered.
このように、本発明に係るエネルギー回収装置によれば
、本管11の−L流側部分11aに圧力変動つ捷り、流
6+:変動が生じたときにも、冒頭で述べた如き流量検
出器および制御弁による複雑な制御システムがなく、エ
ネルギーの回収を行うことができる。As described above, according to the energy recovery device of the present invention, even when pressure fluctuations occur in the -L flow side portion 11a of the main pipe 11, the flow rate detection as described at the beginning is possible. Energy can be recovered without the need for a complicated control system using a device and control valve.
木管11の」1流側部分11aの流体圧が前記下限F「
以下に降下していないときにおいて、水車14の回弘を
停止させる場合には、仕切弁25を閉操作すればよい乙
かくすれば密閉タンク16内の液面高さが上昇し、流体
はオーバーフロー管19から本管11の下流側部分11
bに流出する。The fluid pressure in the first stream side portion 11a of the woodwind 11 is below the lower limit F.
To stop the circulation of the water turbine 14 when the water has not descended below the level below, the gate valve 25 can be closed. In this way, the liquid level in the sealed tank 16 will rise and the fluid will overflow. Downstream portion 11 of main pipe 11 from pipe 19
It flows out to b.
なお、本発11ulは上記実施例のものに限定するもの
でなく第3図に示すように、に記実施例の第1および第
2管路17.18を1本にまとめて、この1本の管路3
2て水車14の流入側部分14a吉液体管路である本管
11の上流側部分11aとを密閉タンク16に接続した
ものであってもよい。In addition, the present invention 11ul is not limited to that of the above embodiment, but as shown in FIG. pipe line 3
2. The inflow side portion 14a of the water turbine 14 and the upstream side portion 11a of the main pipe 11, which is a liquid conduit, may be connected to the closed tank 16.
以−に説E!II してきたように本発す1によれば冒
頭に述へた従来装置の如く流量検出器および制御弁など
、複雑で応答の遅い制御系を何ら必要とすることなく、
シかも流体愉路における圧力変:#もしくは流量、変動
の影′Xを受けることなく、流体エネルギーを電気エネ
ルギーとして良好に回収するととがてきる。才だ、密閉
タンクの設置1q位置は、管路の上流側部分の流体圧を
基準にして、位置を設定することができ、概設の設備に
装備する際に、その設備に対応して設計できる。More theory E! II As mentioned above, according to the present invention, there is no need for a complex and slow-response control system such as a flow rate detector and a control valve as in the conventional device mentioned at the beginning.
It is also possible to recover fluid energy as electrical energy in a good manner without being affected by pressure changes or flow rate fluctuations in the fluid flow path. The installation position of the sealed tank can be set based on the fluid pressure in the upstream part of the pipeline, and when it is installed in the general equipment, it can be designed according to the equipment. can.
このように零発1ツ]のエネルギー回収装置は、装置の
低廉化および構造の簡略化を有効に図ることができる。In this way, an energy recovery device that uses zero and one energy can effectively reduce the cost of the device and simplify the structure.
第1図は従来のエネルギー回収装置を示す概略側面図で
あり、第2図は本発りJに係るエネルギー回収装置の一
実施例を示す概略側面図であり、第3図は他の実施例を
示す概略側面図である。
11・・・木管(流体管路)、lla・・・本管の−に
流側部分、llb・・・本管の下流側部分、14・・・
水車、lja・・・水車の流入側部分、14b・・・水
車の吐出側部分、15・・・発電手段(誘導電動機)、
16・・・密閉タンク、17・・・第1管路、18・・
・第2tt%、19・・・オーバーフロー管。
特許出願人 久保FTI鉄工株式会社代理人弁理士
鈴 江 孝 −FIG. 1 is a schematic side view showing a conventional energy recovery device, FIG. 2 is a schematic side view showing an embodiment of the energy recovery device according to Honbatsu J, and FIG. 3 is a schematic side view showing another embodiment of the energy recovery device. FIG. 11... Wood pipe (fluid pipe), lla... downstream part of the main pipe, llb... downstream part of the main pipe, 14...
Water turbine, lja... Inflow side part of the water turbine, 14b... Discharge side part of the water turbine, 15... Power generation means (induction motor),
16... sealed tank, 17... first pipe line, 18...
- 2nd tt%, 19...overflow pipe. Patent applicant: Kubo FTI Iron Works Co., Ltd. Representative Patent Attorney
Takashi Suzue −
Claims (1)
て発電を得るエネルギー回収装置において、前記水車か
ら所定高さ位置に密閉タンクを設け、前記水車の流入側
部分とmf記管路の上流側部分とをそれぞれ管路を介し
て密閉タンクに接続し、前記水車の吐出側部分と前記管
路の下流側部分との間に密閉タンクからのオーバーフロ
ー管を接続し、前記密内タンク内に空気を一定量保持さ
せたことを特徴とするエネルギー回収装置。In an energy recovery device that generates electricity by rotating a water turbine to which a power generation means is interlocked and connected using fluid in a pipeline, a sealed tank is provided at a predetermined height from the water turbine, and a sealed tank is provided at a predetermined height position from the water turbine, and the inflow side portion of the water turbine and the mf pipeline and an overflow pipe from the sealed tank is connected between the discharge side portion of the water turbine and the downstream portion of the pipe, and the water inside the closed tank is An energy recovery device characterized by holding a certain amount of air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57074260A JPS58190581A (en) | 1982-04-30 | 1982-04-30 | Energy collection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57074260A JPS58190581A (en) | 1982-04-30 | 1982-04-30 | Energy collection device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58190581A true JPS58190581A (en) | 1983-11-07 |
Family
ID=13541992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57074260A Pending JPS58190581A (en) | 1982-04-30 | 1982-04-30 | Energy collection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58190581A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50124031A (en) * | 1974-03-15 | 1975-09-29 | ||
FR2475145A1 (en) * | 1980-02-05 | 1981-08-07 | Monange Jacques | Water tower drive for hydroelectric turbines - uses reservoir driven coaxial columns to provide vertical waterfall |
-
1982
- 1982-04-30 JP JP57074260A patent/JPS58190581A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50124031A (en) * | 1974-03-15 | 1975-09-29 | ||
FR2475145A1 (en) * | 1980-02-05 | 1981-08-07 | Monange Jacques | Water tower drive for hydroelectric turbines - uses reservoir driven coaxial columns to provide vertical waterfall |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1179238A (en) | Hydropower turbine system | |
JPS5735166A (en) | Control method and unit for water turbine operation | |
JP2011074915A (en) | Method for producing power using excess pressure in natural gas pipeline | |
US1481397A (en) | Chain turbine | |
CN1125256C (en) | Method and device for heating valve system | |
JPS58190581A (en) | Energy collection device | |
JPS5717024A (en) | Discharge flow rate automatic control method for motive power recovering device | |
CN203866795U (en) | Standby water source of water turbine main shaft seal | |
JP2000273853A (en) | Power generating method by utilizing maintenance discharge from existing power generating dam | |
JPS628385Y2 (en) | ||
JPS59136579A (en) | Irrigation canal installing type hydraulic power plant | |
SU1548333A1 (en) | Drainage manifold mouth | |
JPS58190580A (en) | Energy collection device | |
US1722438A (en) | Hydraulic power plant | |
JPS58190579A (en) | Energy collection device | |
RU2771427C1 (en) | Blast-furnace gas cleaning system | |
CN218174753U (en) | Improved membrane treatment tank of integrated sewage treatment equipment | |
JP2018035543A (en) | Power generator and power generation method utilizing subsoil water | |
JPS57188779A (en) | Method and installation to obtain hydraulic motive power | |
JPS58183869A (en) | Ascending and descending type power plant | |
US1757927A (en) | Hydraulic-power plant | |
JPS54134237A (en) | Tidal electric generator | |
RU2114243C1 (en) | Hydroelectric power plant | |
KR20220079790A (en) | Hydroelectric power plant using pressure energy according to flow velocity difference | |
DE2964480D1 (en) | A method of recovering heat from waste water in a purifying plant and a purifying plant for carrying out the method |