JPS58190579A - Energy collection device - Google Patents

Energy collection device

Info

Publication number
JPS58190579A
JPS58190579A JP7425882A JP7425882A JPS58190579A JP S58190579 A JPS58190579 A JP S58190579A JP 7425882 A JP7425882 A JP 7425882A JP 7425882 A JP7425882 A JP 7425882A JP S58190579 A JPS58190579 A JP S58190579A
Authority
JP
Japan
Prior art keywords
water
pipe
water tank
liquid
hydraulic wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7425882A
Other languages
Japanese (ja)
Inventor
Kazushi Furukawa
古川 一志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP7425882A priority Critical patent/JPS58190579A/en
Publication of JPS58190579A publication Critical patent/JPS58190579A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To enhance the efficiency of energy collection by simple constitution, in an arrangement in which the liquid energy in liquid pipelines is collected in the form of electrical energy converted by a generating means coupled with a hydraulic wheel, by putting the upper and lower flow parts of said hydraulic wheel in communication with a water tank located at a certain specified level. CONSTITUTION:A hydraulic wheel 12 coupled with a generating means (an induction motor) 13 is installed in a liquid pipeline (main pipe) 11 to be equipped at a steel making yard etc., and the bottoms of No.1, No.2 lines 14, 15 stretching in the vertical direction are connected to the upper and lower flow parts 11a, 11b of this hydraulic wheel 12. The tops of these lines 14, 15 are connected in mutual communication through a coupling water tank 16, which is open to the atmosphere at a certain specified level H. This level H shall be such that water exists at least in No.1 line 14 regardless of the varying pressure at the upper flow part 11a of the main pipe 11, and when the increment of the rate of flow at the upper flow part 11a has exceeded the mean pressure, the surplus water shall overflow to No.2 line 15 from the water tank 16.

Description

【発明の詳細な説明】 本発明は、製鉄所等の産業施設あるいは上下水道等にお
いて設備された液体管路の液体エネルギーを電気エネル
ギーとして回収させるためのエネルギー回収装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an energy recovery device for recovering liquid energy in a liquid pipe line installed in an industrial facility such as a steelworks or in a water supply or sewerage facility as electrical energy.

従来、この種エネルギー回収装置として種々提案されて
おり、その代表的なものとして特開昭56−32078
号に開示されたものがある。
Various energy recovery devices of this type have been proposed in the past, and a representative example is JP-A-56-32078.
There is something disclosed in the issue.

このエネルギー回収装置は、基本的には、第1図に示す
如く、液体管路1に、流量検出器2およびその下流側に
配した第1制御弁3を夫々介設するとともに該第1制御
井30前後部分間を連通ずるバイパス4を連設し、該バ
イパス4に、第2制御弁5およびその下流側に配した水
fL6をそれぞれ介設して、流体管路lの流量変動を流
量検出器2で検出し、これに応じて制御盤7によって前
記両制御弁3,5を制御し、バイパス4を流れる液体の
流体エネルギーでもって水車6を回転させ、これによっ
て発電機8を作動させて電気エネルギーを電源母線9へ
と回収させるようにされたものである。
Basically, this energy recovery device, as shown in FIG. A bypass 4 that communicates between the front and rear parts of the well 30 is provided, and a second control valve 5 and a water fL6 disposed downstream thereof are interposed in the bypass 4, so that fluctuations in the flow rate of the fluid pipe line 1 are controlled by the flow rate. The detector 2 detects this, and the control panel 7 controls both the control valves 3 and 5 accordingly, and the water turbine 6 is rotated by the fluid energy of the liquid flowing through the bypass 4, thereby operating the generator 8. The electrical energy is recovered to the power supply bus 9.

したがって、かかる装置にあっては、液体管路1の流量
変動を検出するための流量検出器2および水車6を有効
に駆動させるべくバイパス4の流量を調整するための制
御弁3.5を最小限必要とし、かつ制御盤7による制御
弁3.5の制御が極めて複雑化することから、装置が極
めて高価で複雑になる欠点があった。
Therefore, in such a device, the control valve 3.5 for adjusting the flow rate of the bypass 4 to effectively drive the flow rate detector 2 for detecting the flow rate fluctuation of the liquid pipe line 1 and the water turbine 6 is set to a minimum. However, since the control of the control valve 3.5 by the control panel 7 is extremely complicated, the device becomes extremely expensive and complicated.

本発明は、L記した点に鑑みてなさt″L念もので、前
記の如き流量検出器および制御弁を必゛、要とせず、し
たがって複雑な制御システムを必要とせず、安価かつ構
造簡単なエネルギー回収装置を提供する。
The present invention was made in view of the points noted above, and does not require the above-mentioned flow rate detector and control valve, therefore does not require a complicated control system, is inexpensive, and has a simple structure. To provide energy recovery equipment.

本発明は上記目的を達成するために、次の如く構成した
ことを特徴としている。すなわち、本発明のエネルギー
回収装置は、液体流路の上流側の液体圧を利用して、液
体流路の上流側の液体を第1管路を介して上昇させ、さ
らにこれを同第1管路を介して液体管路の下流側へ位置
エネルギーを与えて還流させ、もって第1管路に介設し
た水車を4駆動させて、発電機によるエネルギー回収を
行わしめ、他方、液体管路の流体圧変動つまり流量変動
に応じて、水車を駆動させるに余剰の液体を第1管路の
上端部接続部分から第2管路へ溢流させて液体流路の下
流側へ還流させるよう工夫されたものである。
In order to achieve the above object, the present invention is characterized by the following configuration. That is, the energy recovery device of the present invention uses the liquid pressure on the upstream side of the liquid flow path to raise the liquid on the upstream side of the liquid flow path through the first pipe, and further raises the liquid on the upstream side of the liquid flow path through the first pipe. Potential energy is given to the downstream side of the liquid pipe line through the pipe to cause it to flow back, thereby driving the water turbine installed in the first pipe line to recover energy by a generator. In response to fluid pressure fluctuations, that is, flow rate fluctuations, the excess liquid used to drive the water turbine is designed to overflow from the upper end connection of the first pipe to the second pipe and return to the downstream side of the liquid flow path. It is something that

以下本発明の一実施例を図面を参照して説明する。An embodiment of the present invention will be described below with reference to the drawings.

第2図は、本発明に係るエネルギー回収装置νtを概略
的に示したもので、図中11は、製鉄所等において設備
された液体管路たる木管で、多量の水を循環使用する場
合に用いられるものである。
Fig. 2 schematically shows the energy recovery device νt according to the present invention, and numeral 11 in the figure is a wooden pipe serving as a liquid conduit installed in a steelworks or the like, and is used when a large amount of water is recycled. It is used.

12は発電手段(誘導電動機)13を連動連結せる水車
で、本管1に介設されている。
Reference numeral 12 denotes a water turbine to which a power generation means (induction motor) 13 is interlocked, and is interposed in the main pipe 1 .

14.15はそれぞれ上下方向に延びる第1および第2
管路で、第1管路14の下端部は水車12の流入側つま
り木管11の上流側部分11aの端部に接続されており
、第2管路15の下端部は水車12の吐出側つまり木管
11の下流側部分11bの端部に接続されている。
14 and 15 are first and second extending in the vertical direction, respectively.
The lower end of the first pipe 14 is connected to the inlet side of the water turbine 12, that is, the end of the upstream portion 11a of the wood pipe 11, and the lower end of the second pipe 15 is connected to the discharge side of the water turbine 12, that is, the end of the upstream portion 11a of the wood pipe 11. It is connected to the end of the downstream portion 11b of the wood pipe 11.

第1および第2管路14.15の各上端部は設定高さ位
置において大気側に開放された連結水槽16を介して互
に連通接続されており、第2管路15の上端部は、第1
管路14の上端部接続部分と連結水槽16が連結されて
いる。また、連結水槽16の設置位置つまり第1および
第2管路14.15の上端部接続部分の高さ位置は、本
管11の上流側部分11aの流体圧に応し、特に圧力変
動が予測される場合は、その・変動する流体圧の平均圧
に応じて設定されている。
The upper ends of the first and second pipes 14 and 15 are connected to each other via a connecting water tank 16 that is open to the atmosphere at a set height position, and the upper end of the second pipe 15 is 1st
The upper end connecting portion of the pipe line 14 and the connecting water tank 16 are connected. In addition, the installation position of the connecting water tank 16, that is, the height position of the upper end connecting portion of the first and second pipe lines 14.15, depends on the fluid pressure of the upstream portion 11a of the main pipe 11, especially when pressure fluctuations are predicted. If so, it is set according to the average pressure of the fluctuating fluid pressure.

すなわち、本管11の上流側部分11aの圧力変動に即
して、少なくとも第1管路14内に水が存在するように
なっている1、シたがって、木管11の上流側部分11
aの水は1本の第1管路14内で人出流されるが、木管
11の上流側部分11aの圧力と昇つまり流量増加が平
均圧以上になると、必要流量の水は連結水槽16から第
1管路14で人出流されるとともに、その必要流計以外
の余剰水は連結水槽16から第2管路15べと溢流され
て、第2管路15には計画水量たるほぼ一定の水が流れ
うるようになされている。
That is, in response to pressure fluctuations in the upstream portion 11a of the main pipe 11, water is present in at least the first conduit 14. Therefore, the upstream portion 11 of the wood pipe 11
The water in a is drained away in one first pipe 14, but when the pressure rises in the upstream portion 11a of the wood pipe 11, that is, the increase in flow rate exceeds the average pressure, the required flow rate of water is drained from the connected water tank 16. At the same time as the people are drained away through the first pipe 14, the surplus water other than the required flow is overflowed from the connecting water tank 16 to the second pipe 15, and the second pipe 15 has an almost constant amount of water, which is the planned water volume. It is designed to allow water to flow.

前記水車12は、前記第1管路14によって確保された
有効実落差Hおよび上記計画水量を条件として、発電手
段13が最高効率点附近で運転されうるものが選定され
ている。
The water turbine 12 is selected so that the power generating means 13 can be operated near the maximum efficiency point under the conditions of the effective actual head H secured by the first pipe line 14 and the planned water amount.

17は水車12の流入側と第1管路14とに介設された
仕切弁、18は木管11の上、下流側部分11a、ll
brwJを接続せるバイパス19に介設された仕切弁、
20は水車12および発電手段13の回転速度(もしく
は回転数)を検出する出力接点材の回転検出器、21は
発電手段13に開閉器22を介して接続された電源母線
であり、23は回転検出器20による信号を受けて開閉
器22を開閉制御する制御盤で、水車12の回転速度が
発電手段13の設定回転速度以下になると、前記開閉器
22を開制御させるものである。次に本発明に係るエネ
ルギー回収装置によるエネルギー回収作用を、上記実施
例について説明する。
17 is a gate valve interposed between the inlet side of the water turbine 12 and the first pipe line 14; 18 is the upper and downstream portion 11a of the wood pipe 11;
A gate valve installed in the bypass 19 that connects brwJ,
20 is a rotation detector of an output contact material that detects the rotation speed (or number of rotations) of the water turbine 12 and the power generation means 13; 21 is a power supply bus connected to the power generation means 13 via a switch 22; and 23 is a rotation The control panel controls the opening and closing of the switch 22 in response to a signal from the detector 20, and controls the switch 22 to open when the rotational speed of the water turbine 12 becomes lower than the set rotational speed of the power generation means 13. Next, the energy recovery effect of the energy recovery device according to the present invention will be explained with reference to the above embodiment.

4ず、水車12の流入側の仕切弁17を開操作するとと
もにバイパス19の仕切弁18を閉操作すると、本管1
1の上流側部分11aの水は、第1管路14を上昇して
、連結水槽16内で水位を保ち、木管11の下流側部分
11bへ還流せしめられる。
4. When the gate valve 17 on the inflow side of the water turbine 12 is opened and the gate valve 18 of the bypass 19 is closed, the main pipe 1
The water in the upstream portion 11a of the wood pipe 11 ascends the first pipe line 14, maintains the water level in the connected water tank 16, and is returned to the downstream portion 11b of the wood pipe 11.

このとき、木管11の上流部分11aの圧力変動つまり
流量変動に応じて、連結水槽16の水位は第1管路14
と第2管路15の上端部、&の間で変動されることにな
る。また、木管11の上流側部分113の流量増加が大
きいときには、連結水槽16の水位が上昇しようとする
がかかる余剰水は第2管路15の北端部から全て溢流排
出されて、本管11の下流側部分11bへ還流されるこ
とになるから、第1管路14を流れる水は、木管11の
、上流側部分11aの流動変動に拘わらず、常に略一定
の計画水相となる。1さらに、本管11の上流側部分1
1aの流量減少が大きいときは、連結水槽16の水位を
割り第1管路14内に水位が下るが、木管11の水は、
第1管路14f:経て、水車12に流し込める。
At this time, the water level of the connecting water tank 16 changes in accordance with the pressure fluctuations in the upstream portion 11a of the wood pipe 11, that is, the flow rate fluctuations.
and the upper end of the second conduit 15, &. Furthermore, when the increase in the flow rate in the upstream portion 113 of the wood pipe 11 is large, the water level in the connecting water tank 16 tends to rise, but all the excess water is overflowed from the north end of the second pipe 15 and is discharged from the main pipe 11. Therefore, the water flowing through the first conduit 14 always has a substantially constant planned water phase, regardless of flow fluctuations in the upstream portion 11a of the wood pipe 11. 1 Furthermore, the upstream portion 1 of the main pipe 11
When the decrease in the flow rate of 1a is large, the water level in the connected water tank 16 is divided and the water level falls in the first pipe 14, but the water in the wood pipe 11 is
First pipe line 14f: It can be poured into the water wheel 12 through the first pipe line 14f.

しかして、このことから、水車12は、常に最高効率点
以下でかつ電源母線21の周波数に同調しり、る発電手
段13の設定回転速度で駆動されることになり、この水
車12の回転、駆動によって発電手段13が作動されて
、電源母線21への電力供給つまり電気エネルギーの回
収が行われるのである。
Therefore, the water turbine 12 is always driven at the set rotational speed of the power generation means 13 which is below the maximum efficiency point and is tuned to the frequency of the power supply bus 21. The power generation means 13 is activated by this, and power is supplied to the power supply bus 21, that is, electrical energy is recovered.

このように、本発明に係るエネルギー回収装置によれば
、本管11の上流側部分11aに圧力変動もしくは流量
変動が生じたときにも、冒頭で述べた如き流量検出器お
よび制御弁による制御システムを何ら必要とすることな
く、エネルギーの回収を行うことができる。
As described above, according to the energy recovery device of the present invention, even when pressure fluctuations or flow rate fluctuations occur in the upstream portion 11a of the main pipe 11, the control system using the flow rate detector and control valve as described at the beginning can be used. Energy can be recovered without any need for.

また、連結水槽16の設置位@宝、本管11の上流側部
分11aの予測される平均圧に応じて設定しておくこと
によって、水は、常に該上流側部分11aから第1管路
14さらに連結水槽16を人出流されることになるが、
本管11の上流側部分11aの流体圧が前記平均圧より
降下して、水車12の回転速度が発電手段13の設定回
転速度以下になると、制御盤23により開閉器22をO
FF動作させ、そして発電手段13が必要回転数となれ
ば開閉器22をON動作させることによって、電源母線
21の周波数に同調しうる電力回収を可能としている。
In addition, by setting the installation position of the connecting water tank 16 @ Takara according to the predicted average pressure of the upstream side portion 11a of the main pipe 11, water is always transferred from the upstream side portion 11a to the first pipe line 14. Furthermore, people will be washed away from the connected water tank 16,
When the fluid pressure in the upstream portion 11a of the main pipe 11 drops below the average pressure and the rotational speed of the water turbine 12 becomes lower than the set rotational speed of the power generation means 13, the control panel 23 turns the switch 22 on.
By operating the FF and turning on the switch 22 when the power generation means 13 reaches the required rotation speed, it is possible to recover power that can be synchronized with the frequency of the power supply bus 21.

この場合、仕切弁18を開操作して、流水をバイパス1
9を介して本管11の下流側部分、1市へ流すこともで
きる。
In this case, open the gate valve 18 to divert the flowing water to bypass 1.
It is also possible to flow to the downstream part of the main pipe 11, 1 city, via the pipe 9.

さらに、電源母線に使用する周波数に限定を設けない場
合、本発明のエネルギー回収装置は第1管路14内に水
位が下っても、水車12に水を供給できる構成になって
いるので、発電手段13の発電可能な有効落差の水位、
流量にいたるまで、流体エネルギーを電気エネルギーと
して回収できる。
Furthermore, if there is no limitation on the frequency used for the power bus, the energy recovery device of the present invention is configured to be able to supply water to the water turbine 12 even if the water level in the first conduit 14 falls. The water level of the effective head capable of generating power of means 13,
Fluid energy can be recovered as electrical energy up to the flow rate.

さらに水車12の駆動を停止させる場合には仕切弁17
を閉操作すればよい。かくすれば第1管路14から連結
水槽I6にもたらされた水は、第2管路15から本管1
1の下流側部分11bに流出する。このように、仕切弁
1パフの開閉操作を行なうだけで、水車12の運転、停
止を行うことができるのである。また、連結水槽16等
の保持、点検を行う場合には、仕切弁18を開操作して
、水をバイパス19から本管11の下流側部分11bへ
流出させればよい。
Furthermore, when stopping the drive of the water turbine 12, the gate valve 17
All you have to do is close it. In this way, the water brought from the first pipe line 14 to the connecting water tank I6 is transferred from the second pipe line 15 to the main pipe 1.
1 flows out to the downstream portion 11b of 1. In this way, the water turbine 12 can be operated and stopped simply by opening and closing the gate valve 1. Furthermore, when maintaining or inspecting the connected water tank 16 or the like, the gate valve 18 may be opened to allow water to flow out from the bypass 19 to the downstream portion 11b of the main pipe 11.

なお、tifl記実施例では、大気側に開放した連結水
槽16を介して第1および第2管路14.、−15の上
端部間を連通接続させたが、余剰水を第2管路15から
溢流排出させるためには、少なくとも第2管路15の上
端部が大気側に開放されておればよいのであるから、た
とえば第3図に示す如く第1および第2管路を接続させ
ておくことが可能である。すなわち、第1および第2管
路14.15の上端部間を直接連結し、この第2管路1
5の上端部に大気側への開口部15a’i設けておいて
もよい。この場合、各管路14,15を貯水槽等の支持
柱として応用利用することもできる。
In the embodiment described above, the first and second pipes 14. , -15 are connected for communication, but in order to overflow and discharge excess water from the second pipe line 15, it is sufficient that at least the upper end part of the second pipe line 15 is open to the atmosphere. Therefore, it is possible to connect the first and second pipes as shown in FIG. 3, for example. That is, the upper ends of the first and second pipe lines 14.15 are directly connected, and the second pipe line 1
5 may be provided with an opening 15a'i to the atmosphere side. In this case, each of the pipes 14 and 15 can also be used as a support column for a water tank or the like.

以上の説明からあきらかのように、本発明のエネルギー
回収装置は、流体管路に発電手段を連動連結せる水車を
介設し、この水車の流入側に下端部を接続した第1管1
9を設け、前記水車の吐出側に下端部全接続した第2管
路を設け、これら第1、第2管路の北端部を設定高さ位
置において互に連通接続させ、この連通接続の上端部を
大気側に開放させであるから冒頭に述べた従来装置によ
る如く流量検出器および制御弁を何ら必要とすることな
く、しかも複雑な制御ンステムを必要とすることなく、
gt体管路の上流側の圧力変動に拘わらず、流体エネル
ギーを電気エネルギーとして良好に回収させることがで
き、装置の低廉化および構造の簡略化を有効に図ること
ができるのである。
As is clear from the above description, the energy recovery device of the present invention has a first pipe 1 which has a water wheel interlockingly connected to a power generation means in a fluid pipe line, and whose lower end is connected to the inflow side of the water wheel.
9, and a second pipe line whose lower ends are fully connected to the discharge side of the water turbine is provided, the north ends of these first and second pipes are connected to each other at a set height position, and the upper end of this communication connection is Since the part is opened to the atmosphere, there is no need for a flow rate detector or a control valve as in the conventional device mentioned at the beginning, and there is no need for a complicated control system.
Regardless of the pressure fluctuations on the upstream side of the gt body pipe, fluid energy can be recovered as electrical energy, and the cost of the device can be reduced and the structure can be simplified effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のエネルギー回収装置を示す概略側面図で
あり、第2図は本発明に係わるエネルギー回収装置の一
実施例を示す概略側面図であり、第3図は他の実施例を
示す要部の概略縦断面図である。 11・本管(液体管路)、lla  ・木管の丘流側部
分(水車の流入側)、llb  木管の下流側部分(水
車の吐出側)、12 ・水車、13発電手段、14 第
1管路、15・・第2管路。 特許出願人  久保田鉄工株式会社 代理人弁理士  鈴 江  孝 −
FIG. 1 is a schematic side view showing a conventional energy recovery device, FIG. 2 is a schematic side view showing one embodiment of the energy recovery device according to the present invention, and FIG. 3 is a schematic side view showing another embodiment. FIG. 3 is a schematic vertical cross-sectional view of the main part. 11・Main pipe (liquid pipe), lla ・Upstream side part of wood pipe (inflow side of water wheel), llb Downstream side part of wood pipe (discharge side of water wheel), 12 ・Water wheel, 13 Power generation means, 14 1st pipe Route, 15...Second pipeline. Patent applicant: Kubota Tekko Co., Ltd. Representative patent attorney: Takashi Suzue −

Claims (1)

【特許請求の範囲】[Claims] 流体管路に発電手段を連動連結せる水車を介設し、この
水車の流入側に下端部を接続した第1管路を設け、前記
水車の吐出側に下端部を接続した第2管路を設け、これ
ら第11第2管路の上端部を設定高さ位置にお10て互
に連通接続させ、この連通接続の上端部を大気側に開放
させであることを特徴とするエネルギー回収装置。
A water wheel to which a power generating means is interlocked and connected to the fluid pipe is interposed, a first pipe whose lower end is connected to the inflow side of the water turbine, and a second pipe whose lower end is connected to the discharge side of the water turbine. An energy recovery device characterized in that the upper end portions of these eleventh second conduits are connected to each other at a set height position 10, and the upper end portions of this communication connection are opened to the atmosphere.
JP7425882A 1982-04-30 1982-04-30 Energy collection device Pending JPS58190579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7425882A JPS58190579A (en) 1982-04-30 1982-04-30 Energy collection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7425882A JPS58190579A (en) 1982-04-30 1982-04-30 Energy collection device

Publications (1)

Publication Number Publication Date
JPS58190579A true JPS58190579A (en) 1983-11-07

Family

ID=13541937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7425882A Pending JPS58190579A (en) 1982-04-30 1982-04-30 Energy collection device

Country Status (1)

Country Link
JP (1) JPS58190579A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097910U (en) * 1983-12-09 1985-07-04 積水ハウス株式会社 External wall panel mounting structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124031A (en) * 1974-03-15 1975-09-29
FR2475145A1 (en) * 1980-02-05 1981-08-07 Monange Jacques Water tower drive for hydroelectric turbines - uses reservoir driven coaxial columns to provide vertical waterfall

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124031A (en) * 1974-03-15 1975-09-29
FR2475145A1 (en) * 1980-02-05 1981-08-07 Monange Jacques Water tower drive for hydroelectric turbines - uses reservoir driven coaxial columns to provide vertical waterfall

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097910U (en) * 1983-12-09 1985-07-04 積水ハウス株式会社 External wall panel mounting structure
JPH0133686Y2 (en) * 1983-12-09 1989-10-13

Similar Documents

Publication Publication Date Title
US4941771A (en) Hydroelectric plant
US6508944B1 (en) Vacuum flush assist system and process for handling machining cutting fluid
JP2008163622A (en) Inverted siphon structure of sewer
CN107372026A (en) A kind of mountain region compensates irrigation system and method automatically
US4381645A (en) Power unit for dam
CN206110073U (en) Multi -functional full through -flow lock chamber pump station
JPS58190579A (en) Energy collection device
CN211172272U (en) System for flushing and shunting municipal sewage pipe
JPS5717024A (en) Discharge flow rate automatic control method for motive power recovering device
CN210776334U (en) Liquid level control system
CN109813504A (en) A kind of tightness check device of valve
JPS58190580A (en) Energy collection device
CN108589774A (en) A kind of integrated drainage system of Urban Underground pipe gallery
KR900000216B1 (en) Tubular gate
CN2193381Y (en) Power station water power sand discharge unit
JPS58190581A (en) Energy collection device
CN105756177B (en) Hydraulic-floating non-return Vatch basin
JP2000273853A (en) Power generating method by utilizing maintenance discharge from existing power generating dam
KR900006641A (en) Steam turbine systems
JPS628385Y2 (en)
CN220538581U (en) Dam water discharge structure
KR200160680Y1 (en) Recovery device over flow material for tank
CN2388470Y (en) Multi-functional protecting device for high-pressure delivery pipeline
SU652275A1 (en) Water level lowering apparatus
EP0111480A1 (en) System for generation of electrical power