JPS58190580A - Energy collection device - Google Patents

Energy collection device

Info

Publication number
JPS58190580A
JPS58190580A JP57074259A JP7425982A JPS58190580A JP S58190580 A JPS58190580 A JP S58190580A JP 57074259 A JP57074259 A JP 57074259A JP 7425982 A JP7425982 A JP 7425982A JP S58190580 A JPS58190580 A JP S58190580A
Authority
JP
Japan
Prior art keywords
pipe
fluid
water
generator
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57074259A
Other languages
Japanese (ja)
Inventor
Kazushi Furukawa
古川 一志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP57074259A priority Critical patent/JPS58190580A/en
Publication of JPS58190580A publication Critical patent/JPS58190580A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To ensure effective drive of a hydraulic wheel regardless of the varying pressure in pipelines, in an arrangement in which the fluid energy in fluid pipelines is collected in the form of electrical energy converted by a generating means coupled with a hydraulic wheel, by utilizing a water tank located at a certain specified level. CONSTITUTION:No.1 pipeline 12 stretching in the vertical direction is connected with the upper flow part 11a of a fluid line (main pipe) 11 to be equipped at a steel making yard etc., and the divergent point of the bottoms of No.2, No.3 lines 13, 14 is connected with the lower flow part 11b of this main pipe 11. Tops of these lines 12-14 are connected in mutual communication through a coupling water tank 15, which is open to the atmosphere side. This water tank 15 is located at such a specific level that the water rises in No.1 pipeline 12 to attain the tank 15 regardless of the varying pressure at the upper flow side of main pipe 11. A hydraulic wheel 16 coupled with a generator 17 is installed at the lower flow part of No.2 pipeline 13, and the generator 17 is connected to the source buss bar 22 through a switch 23, which will be opened when the revolving speed of the wheel 16 exceeds the synchronous speed of the generator 17.

Description

【発明の詳細な説明】 本発明は、製鉄所等の産業施設或いは上下水道等におい
て設備された、輸送流部が比較的多い流体管路の流体エ
ネルギーを電気的エネルギーとして回収させるためのエ
ネルギー回収装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an energy recovery method for recovering fluid energy as electrical energy in fluid pipes installed in industrial facilities such as steel plants, water supply and sewage facilities, etc., and which have a relatively large number of transport flow sections. It is related to the device.

従来からも、この種エネルギー回収装置として種々提案
されており、その代表的なものとして特開昭56−32
078号に開示されたものがある。
Various energy recovery devices of this type have been proposed in the past, and a representative example is the one disclosed in Japanese Patent Application Laid-open No. 56-32.
There is one disclosed in No. 078.

このエネルギー回収装置は、基本的には、第1図に示す
如く、流体管路1に、流量検出器2及びその下流側に配
して第1制御弁3を夫々介設すると共に該第1制御弁3
の前後部分間を連通ずるバイパス4を連設し、該バイパ
ス4に、第2制御弁5及びその下流側に配して水車6を
夫々介設して、流体管路lの流昂変動を流量検出器2で
検出し、これに応じて制御盤7iこよって前記両制御弁
3,5を制御し、バイパス4を流れる流体の流体エネル
ギーでもって水車6を駆動させ、これによって発電機8
′jf:作動させて電気的エネルギーを電源母線9へと
回収させるようなされた本のである1、 したがって、かかる装置にあっては、流体管路1の流−
変動を検出するための流都検出器2及び水車6を有効に
駆動させるべくバイパス(の流量を調整するための制(
財)弁3,5を最小限必要とし、且つ制御盤7による制
御弁3.5の制御が極めて複雑化することから、装着が
極めて高価且つ複雑なものとなる欠点があった。
Basically, this energy recovery device, as shown in FIG. control valve 3
A bypass 4 that communicates between the front and rear parts of the fluid pipe 1 is connected, and a second control valve 5 and a water turbine 6 disposed on the downstream side of the second control valve 5 are interposed in the bypass 4, respectively, to control the flow fluctuation of the fluid pipe 1. The flow rate is detected by the flow rate detector 2, and the control panel 7i controls both the control valves 3 and 5 accordingly, and the water turbine 6 is driven by the fluid energy of the fluid flowing through the bypass 4, thereby generating the generator 8.
'jf: A book 1 which is operated to recover electrical energy to the power supply bus 9. Therefore, in such a device, the flow of the fluid line 1 is
In order to effectively drive the flow rate detector 2 for detecting fluctuations and the water turbine 6, there is a control system for adjusting the flow rate of the bypass.
Since the valves 3 and 5 are required at a minimum and the control of the control valves 3 and 5 by the control panel 7 is extremely complicated, there is a drawback that the installation is extremely expensive and complicated.

本発明は、上記した点に鑑みてなされたもので、前記の
如き流R検出器及び制命1弁を必要とせず、したがって
、複雑な制御ンステムを必要とせず、安価且つ構造簡単
なエネルギー回収装首を提供する。
The present invention has been made in view of the above points, and does not require the flow R detector and one control valve as described above, and therefore does not require a complicated control system, and is an inexpensive and simple energy recovery system. Provide a headdress.

この課題を解決した本発明のエネルギー回収装作は、流
体管路の上流側の流体圧全有効に利用して、流体流路の
上流側の流体を第1管路を介して一旦所定高さ位置まで
上昇させ、さらに路に介設した水車を1駆動させて、発
電機によるエネルギー回収を行わしめ、他方、流体管路
の圧力変動つまり離開変動に応じて、水車を、駆動させ
るに過剰の流体を第1及び第2管路の上端部接続部分か
ら第3管路へ溢流させて流1本管1俗の下流側へ排出さ
せ、もって前邑己第2管路番こは必要以上の流量が供給
されないよう1ニ夫したものである。
The energy recovery device of the present invention that solves this problem makes full use of the fluid pressure on the upstream side of the fluid pipe, and once the fluid on the upstream side of the fluid flow is raised to a predetermined height via the first pipe. The turbine is raised to the desired position, and the water turbine installed in the road is driven once to recover energy using a generator. On the other hand, in response to pressure fluctuations in the fluid pipeline, that is, fluctuations in separation, the water turbine The fluid overflows from the upper end connection part of the first and second pipes to the third pipe and is discharged to the downstream side of the main pipe, so that the number of the second pipe is more than necessary. This is done in two ways so that the flow rate is not supplied.

次に、その実施例′!il−’Fl 2図について説明
する。
Next, the example'! il-'Fl 2 diagram will be explained.

第2図は、本発明(こ係る工不lレギー回収装置行を概
略的に示したもので、図(こおいて、11は製鉄所等に
おいて設備された流体管1@たる木管で、多量の水を循
環使用する場合をご用いられるものである。
Fig. 2 schematically shows the construction equipment recovery equipment according to the present invention. This is used when water is recycled.

12、x3.14は夫々上丁方向【こ延ひる第1、第2
及び第3管路で、第1管路12の下端部は木管11の上
流側部分11at7)端部lこ接続されており、第2及
び第3管路13,14の各下端部は合流して木管11の
下流側部分11bの端部に接続されている。
12, x3.14 are respectively in the upper direction
and a third conduit, the lower end of the first conduit 12 is connected to the upstream end 11at7) of the wood pipe 11, and the lower ends of the second and third conduits 13 and 14 merge. and is connected to the end of the downstream portion 11b of the woodwind 11.

第11第2及び第3管路12,13.14の各上端部は
、大気側に開放された連結水槽15    ′を介して
斤に連通接続されており、第3管路14の上端部Qま、
第1及び第2管路12.13の」上端部接続部分より若
干部り高位において連結、水(1”/15に連結されて
いる。連結水槽15の設置位置つまり?fJ、1及び第
2管路12.13の上端部接続部分の高さ位置は、本管
11の上流側部分11aの流体圧に応じて、特に圧力変
動が予測され)場合は、その下限圧に応じて設定されて
いる。すなわち、木管11(i’)、h流側部分11a
の圧力変動に拘わらず、水が該−上流側部分11aから
第1管路12内を上昇して、少なくとも第1及び第2管
路12.13の上端部接続部分た\ る連結水槽15にまで達しうるように設定されている。
The upper end portions of the eleventh second and third pipe lines 12, 13, and 14 are connected to the loaf via a connecting water tank 15' open to the atmosphere, and the upper end portion Q of the third pipe line 14 is Ma,
The first and second pipes 12.13 are connected at a slightly higher level than the upper end connection part, and are connected to the water (1"/15). The height position of the upper end connection part of the pipe line 12.13 is set according to the fluid pressure of the upstream part 11a of the main pipe 11, especially when pressure fluctuation is predicted, according to its lower limit pressure. That is, the woodwind 11 (i'), the h downstream part 11a
Regardless of the pressure fluctuations, the water rises in the first conduit 12 from the upstream portion 11a to the connecting water tank 15 at least at the upper end connection portion of the first and second conduit 12.13. It is set up so that it can be reached.

したがって、木管11の上流側部分11aの水は第1管
Wj12から連結水槽15を経て第2管路′13へと流
入されるが、4(管11の上流側部分11aの圧力上昇
つまり流量増加が一定以上となると、水は連結水槽15
から第2管路13へ流入されると共に、その過剰水は連
結水槽15から第3管路14へと溢流されて、第2管W
t13には、常に計画水444.たる略一定の水損の水
が流れつるようになされている。
Therefore, the water in the upstream portion 11a of the wood pipe 11 flows from the first pipe Wj12 through the connecting water tank 15 to the second pipe '13, but the water in the upstream portion 11a of the pipe 11 is When the water exceeds a certain level, the water flows into the connected water tank 15.
At the same time, the excess water flows into the second pipe line 13 from the connecting water tank 15 and overflows into the third pipe line 14, and the excess water flows into the second pipe line 13.
At t13, the planned water 444. A barrel of almost constant water is made to flow.

16は第2管路13の下端側部分に介設された水車(例
えばポンプ)で、発電機(例えば誘導電動機)17に連
動連結されている。この水車16は、前記第2管路13
によって確保され入有効落差H及び上記計画水量を条件
として、発電機17の同期速度で最高効率点運転さI′
lうるものが選定される。
Reference numeral 16 denotes a water wheel (for example, a pump) interposed in the lower end portion of the second pipe line 13, and is interlocked and connected to a generator (for example, an induction motor) 17. This water turbine 16 is connected to the second pipe line 13
The maximum efficiency point is operated at the synchronous speed of the generator 17 under the conditions of the input effective head H secured by and the above planned water volume I'
The ones that can be used are selected.

18は水車16よりも上流側の第2管路13部分に介設
された仕切弁、19は本管11の上下流側部分11a、
llbの端部間全接続せるバイパス20に介設された仕
切弁、21は水車16及び発電機17の回転速度(若し
くは回転数)全検出する出力接点性の回転検出器、22
は発電機17に開閉器23金介して接続された電源母線
1あり、24は回転検出器21による信++を受けて開
閉器23を開閉制御する制御盤で、水車16の回転速度
が発電機17の同期速度以Fになると、前記開閉器23
を開制御させるものである。
18 is a gate valve installed in the second pipe line 13 part upstream of the water turbine 16; 19 is the upstream and downstream part 11a of the main pipe 11;
21 is a rotation detector with an output contact that detects all rotational speeds (or rotational speeds) of the water turbine 16 and the generator 17; 22;
There is a power supply bus 1 connected to the generator 17 via a switch 23, and 24 is a control panel that controls the opening and closing of the switch 23 in response to signals from the rotation detector 21. When the synchronous speed of 17 or higher is F, the switch 23
This is to control the opening of the

次に、本発明に係るエネルギー回収裂開によるエネルギ
ー回収作用を、上記実施例につい、て説明子る。
Next, the energy recovery effect by energy recovery cleavage according to the present invention will be explained with reference to the above embodiment.

今、■2管路13の仕切弁18′f:開操作すると共に
バイパス20の仕切弁19の閉操作すると、木管11の
上流側部分11aの水は、第1管路12を上昇して、連
結水槽15から第2管W、13へと流−rLiAみ、さ
らに木管11の下流側部分11bへ還流せしめられる。
Now, when the gate valve 18'f of the second pipe 13 is opened and the gate valve 19 of the bypass 20 is closed, the water in the upstream portion 11a of the wood pipe 11 rises through the first pipe 12. The flow -rLiA flows from the connecting water tank 15 to the second pipes W and 13, and is further returned to the downstream portion 11b of the wood pipe 11.

このとき、木管11の上流側部分11aの圧力変動つま
り流−li+変動に応じて、連結水槽15の水位は第1
及び第2管路12,130ト端部接続部分と第3管路1
4の上端部との間で変動されることになるが、この変動
畑は極く僅かhであるから、有効落差Hは略一定に確保
される。
At this time, the water level of the connected water tank 15 changes to the first
and the second pipe line 12, 130, the end connecting portion and the third pipe line 1
4, but since this fluctuation field is extremely small h, the effective head H is secured to be approximately constant.

さらに、木管11の、上流側部分11aの流州増加が大
きいときには、第2管路13には水車16を有効に駆動
させるに必要な水量以上の水が流入されんとするが、か
かる過剰水は第3管路14の北端部から全て溢流排出さ
れて、本管11の下流側部分11bへ還流されることに
なるから。
Furthermore, when the increase in flow in the upstream portion 11a of the wood pipe 11 is large, water in excess of the amount of water required to effectively drive the water turbine 16 will flow into the second pipe 13; This is because all of the water is overflowed from the north end of the third pipe line 14 and is returned to the downstream portion 11b of the main pipe 11.

第2管路13を流れる水は、木管11の上流側部分11
aの流量変動に拘わらず、流量調節を行わずとも、常に
略一定の計画水量となる。
The water flowing through the second pipe 13 flows through the upstream portion 11 of the wood pipe 11.
Regardless of the flow rate fluctuation of a, the planned water volume will always be approximately constant even without flow rate adjustment.

而して、このことから、水車16は、常に最高重点付近
で且つ発電機17の計画速度に一致した回転速度で駆動
されることになり、この水車16の回転駆動によって発
電機17が作動されて、電源母線22への電力供給つま
り電気的エネルギーの回収が行われるのである。
Therefore, the water turbine 16 is always driven near the highest point and at a rotation speed that matches the planned speed of the generator 17, and the generator 17 is operated by the rotational drive of the water turbine 16. Thus, power is supplied to the power supply bus 22, that is, electrical energy is recovered.

このように、本発明に係るエネルギー回収装置によれば
、木管11の上流側部分11aに圧力変動若しくは流量
変動が生じたときにも、冒頭で述べた如き流量検出器及
び制御弁による制白1システムを何ら必要とすることな
く、エネルギーの回収を良好に行うことができる。
As described above, according to the energy recovery device of the present invention, even when pressure fluctuations or flow rate fluctuations occur in the upstream portion 11a of the woodwind 11, the control valve 1 can be controlled by the flow rate detector and control valve as described at the beginning. Good energy recovery can be achieved without requiring any system.

また、連結水槽15の設置位@を、木管11のh流側部
分11aの予61“1される下限圧に応じて設定してお
くことによって、水は、常に該上流側部分11aから第
1管路12更に連結水槽15を経て第2管路13へ流入
されることになるが、木管11の上流側部分11aの流
体1F、疋10記下限圧よりも降下して、第1管路12
から第2管路13への水の供給が停止されたときには、
水車16の回転速度が発電機17の同期速度以下となり
、制(財)盤24により開閉器23が開制薗される。こ
のような制(財)システムは、極めて簡単且つ単純なも
のである。
Furthermore, by setting the installation position of the connecting water tank 15 in accordance with the predetermined lower limit pressure of the upstream portion 11a of the wood pipe 11, water is always supplied from the upstream portion 11a to the first The pipe 12 further flows into the second pipe 13 via the connecting water tank 15, but the fluid 1F in the upstream portion 11a of the wood pipe 11 drops below the lower limit pressure described in 10, and the first pipe 12
When the supply of water to the second pipe line 13 is stopped,
The rotation speed of the water turbine 16 becomes lower than the synchronous speed of the generator 17, and the switch 23 is opened by the control panel 24. This type of regulatory (wealth) system is extremely simple and simple.

この場合、仕切弁19を開操作すれば、水をバイパス2
0を介して木管11の下流側部分1市へ流すことができ
る。
In this case, by opening the gate valve 19, the water can be diverted to the bypass 2.
It can flow to the downstream part 1 of the woodwind 11 via the pipe 0.

また、本管11の上流側部分11aの流体圧が前記下限
圧以下に降下していないときにおいて、水車16の駆動
を停止させる場合には、仕切′jP18を閉操作すれば
よい。かくすれば、第1管路12から連結水槽15にも
たらされた水は、全て第3管路14から木管11の下流
側部分11bに流出する。
Further, when the fluid pressure in the upstream portion 11a of the main pipe 11 has not fallen below the lower limit pressure, in order to stop driving the water turbine 16, the partition 'jP18 may be closed. In this way, all the water brought from the first pipe line 12 to the connecting water tank 15 flows out from the third pipe line 14 to the downstream portion 11b of the wood pipe 11.

このように、仕切弁18の開閉操作を行うだけで、水車
16の運転、停止を行うことができるのである。
In this way, the water turbine 16 can be operated or stopped simply by opening and closing the gate valve 18.

さらに、連結水槽15等の保守、点検を行う場合には、
仕切弁19全開操作して、水をバイパス20から木管1
1の下流側部分l1l)−\流出させればよい。
Furthermore, when performing maintenance and inspection of the connected water tank 15, etc.,
Fully open the gate valve 19 to drain water from the bypass 20 to the woodwind 1.
It is only necessary to let the downstream part of 1 l1l)-\ flow out.

なお、前記実施例では、大気側に開放せる連結水槽15
を介して第1、第2及び第3管路12.13.14の上
端部間を連通接続させたが、過剰水を第3管路14から
溢流排出させるためには、少なくとも第3管路14の北
端部が大気側に開放されておればよいのであるから、例
えば第3図に示す如く第1〜第3管路12〜14を接続
させておくことが可能である。
In the above embodiment, the connected water tank 15 is opened to the atmosphere.
Although the upper ends of the first, second, and third pipes 12, 13, and 14 are connected to each other via the Since it is sufficient that the north end of the channel 14 is open to the atmosphere, it is possible to connect the first to third pipelines 12 to 14 as shown in FIG. 3, for example.

すなわち、第1及び第2管路12.13の上端部間を直
接連結し、さらに第1管路12の上端部に第3管路14
の上端部を連結して、該第3管路14の上端部に大気側
への開口部14aを設けておいてもよい。この場合、各
管路12゜13.14(i”貯水槽等の支持柱として利
用するこ吉もできる。
That is, the upper ends of the first and second pipe lines 12.13 are directly connected, and the third pipe line 14 is connected to the upper end of the first pipe line 12.
The upper ends may be connected and an opening 14a to the atmosphere may be provided at the upper end of the third conduit 14. In this case, each pipe 12° 13.14 (i") can also be used as a support pillar for a water tank, etc.

以りの説明から理解されるように、本発明のエネルギー
回収装置は、下端部を流体管路の玉流fit!lに接続
した第1管路の上端部と、各々下端部を前記流体管路の
下流側に接続した第2及び第3管路の各−上端部とを、
前記流体管路の上流側の流体圧に応じた所定高さ位置に
おいて互に連通接続させ、前記第2管路の下端側部分に
、発電機に連動連結した水車を介設させ、さらに少なく
とも前記第3管路の上端部を、第1及び第2管路の上端
部接続部分から第3管路への潅流を許容させるべく、大
気側に開放させたものであるから、冒頭に述べた従来装
着による如く流量検出器及び制御弁を何ら必要とするこ
となく、しかも複雑な制御システムを必要とすることな
く、流体管路の上流側の圧力変動若しくは流量変動に拘
わらず、水車を有効に1駆動させて流体エネルギーを電
気的エネルギーとして良好に回収させることができ、装
置の低廉化及び構造簡略化全有効に図ることができるの
である3、
As can be understood from the following description, the energy recovery device of the present invention has a lower end portion that fits into the ball flow of the fluid pipe! an upper end of a first conduit connected to the fluid conduit, and an upper end of each of second and third conduits each having a lower end connected to the downstream side of the fluid conduit;
The fluid pipes are connected to each other at a predetermined height position according to the fluid pressure on the upstream side, and a water turbine interlocked with a generator is interposed at the lower end portion of the second pipe, and further, at least the The upper end of the third conduit is open to the atmosphere to allow perfusion from the upper end connecting portion of the first and second conduits to the third conduit; The water turbine can be operated effectively regardless of pressure fluctuations or flow rate fluctuations on the upstream side of the fluid pipeline, without requiring any flow rate detectors and control valves, and without requiring a complicated control system. The fluid energy can be effectively recovered as electrical energy by driving, and the cost of the device can be reduced and the structure can be simplified.3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のエネルギー回収装置を示す概略側面図で
あり、第2図は本発明に係るエネルギー回収装置の一実
施例を示す概略側面図であり、第3図は他の実施例を示
す要部の概略j従断[+l1面図である。 11 本管(流体管路)、  lla  ・本管の−に
流側部分、  llb  本管の下流側部分、12・・
第1管路、 13 第2管路、  14第3管路、  
16 ・水車、  17 発電機。 特許出願人  久保田鉄工株式会社 代理人弁理士  鈴 江  孝 −
FIG. 1 is a schematic side view showing a conventional energy recovery device, FIG. 2 is a schematic side view showing one embodiment of the energy recovery device according to the present invention, and FIG. 3 is a schematic side view showing another embodiment. This is a schematic sectional view of the main part. 11 Main pipe (fluid pipeline), lla - downstream part of the main pipe, llb downstream part of the main pipe, 12...
1st pipe line, 13 second pipe line, 14 third pipe line,
16 ・Waterwheel, 17 Generator. Patent applicant: Kubota Tekko Co., Ltd. Representative patent attorney: Takashi Suzue −

Claims (1)

【特許請求の範囲】[Claims] 下端部を流体管路の上流側に接続した第1管路の上端部
と、各々下端部を前記流体管路の下流側に接続した第2
及び第3管路の各上端部とを、前記流体管路のL流側の
流体圧に応じた所定高さ位置において互に連通接続させ
、前記第2管路の下端側部分に、発電機に連動連結した
水車を介設させ、さらに少なくとも前記第3管路の上端
部を、第1及び第2管路の上端部接続部分から第3管路
への溢流を許容させるべく、固気側に開放させであるこ
とを特徴とするエネルギー回収装置。
an upper end of a first pipe whose lower end is connected to the upstream side of the fluid pipe; and a second pipe whose lower end is connected to the downstream side of the fluid pipe.
and the upper end portions of the third conduit are connected to each other at a predetermined height position corresponding to the fluid pressure on the L flow side of the fluid conduit, and a generator is connected to the lower end portion of the second conduit. A water wheel interlocked with the pipe is interposed, and at least the upper end of the third pipe is made of solid air to allow overflow from the upper end connecting portion of the first and second pipes to the third pipe. An energy recovery device characterized by being open to the side.
JP57074259A 1982-04-30 1982-04-30 Energy collection device Pending JPS58190580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57074259A JPS58190580A (en) 1982-04-30 1982-04-30 Energy collection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57074259A JPS58190580A (en) 1982-04-30 1982-04-30 Energy collection device

Publications (1)

Publication Number Publication Date
JPS58190580A true JPS58190580A (en) 1983-11-07

Family

ID=13541964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57074259A Pending JPS58190580A (en) 1982-04-30 1982-04-30 Energy collection device

Country Status (1)

Country Link
JP (1) JPS58190580A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124031A (en) * 1974-03-15 1975-09-29
FR2475145A1 (en) * 1980-02-05 1981-08-07 Monange Jacques Water tower drive for hydroelectric turbines - uses reservoir driven coaxial columns to provide vertical waterfall

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124031A (en) * 1974-03-15 1975-09-29
FR2475145A1 (en) * 1980-02-05 1981-08-07 Monange Jacques Water tower drive for hydroelectric turbines - uses reservoir driven coaxial columns to provide vertical waterfall

Similar Documents

Publication Publication Date Title
US4352025A (en) System for generation of electrical power
US4578188A (en) Sewerage flow diverter
JP2008163622A (en) Inverted siphon structure of sewer
CN205035779U (en) Construction branch tunnel suitable for pressure regulating of water delivery tunnel and maintenance traffic
JPS58190580A (en) Energy collection device
CN1125256C (en) Method and device for heating valve system
CN211172272U (en) System for flushing and shunting municipal sewage pipe
JPS5717024A (en) Discharge flow rate automatic control method for motive power recovering device
JPS58190579A (en) Energy collection device
CN108086968B (en) Coal bed gas cluster well skid-mounted device
CN109208532A (en) Water supply and drainage device for hydraulic engineering
JPH11122845A (en) Pumping and drainage system for power generation
JPS58190581A (en) Energy collection device
CN208202011U (en) A kind of constant pressure economize on electricity water system for intermediate frequency furnace
CN1110607C (en) River channel sand-flushing desilting method
CN208533670U (en) A kind of municipal sewage pipe network improvement project device
CN105756177B (en) Hydraulic-floating non-return Vatch basin
SU1629391A1 (en) Double-level drainage system
JPS59180072A (en) Hydroelectric generator
CN219713087U (en) Drainage pipeline flushing and blocking system of coal gas separator
CN221798659U (en) Municipal road split-flow drainage pipeline
SU1509485A1 (en) Drying/watering system
SU964079A1 (en) System of watering water supply
JP3416271B2 (en) Water supply device
US1722438A (en) Hydraulic power plant