JPS5818970B2 - Method for manufacturing high-strength thin steel sheets with excellent cold workability - Google Patents

Method for manufacturing high-strength thin steel sheets with excellent cold workability

Info

Publication number
JPS5818970B2
JPS5818970B2 JP10713978A JP10713978A JPS5818970B2 JP S5818970 B2 JPS5818970 B2 JP S5818970B2 JP 10713978 A JP10713978 A JP 10713978A JP 10713978 A JP10713978 A JP 10713978A JP S5818970 B2 JPS5818970 B2 JP S5818970B2
Authority
JP
Japan
Prior art keywords
less
temperature
steel sheet
sec
start temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10713978A
Other languages
Japanese (ja)
Other versions
JPS5534659A (en
Inventor
祥郎 坂元
庸 伊藤
昇一 滝沢
孝雄 池永
信男 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10713978A priority Critical patent/JPS5818970B2/en
Publication of JPS5534659A publication Critical patent/JPS5534659A/en
Publication of JPS5818970B2 publication Critical patent/JPS5818970B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 本発明は冷間加工性の優れた高張力薄鋼板の製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a high tensile strength thin steel sheet with excellent cold workability.

近年、高張力熱延薄鋼板の需要カー動車工業を始めとす
る各分野で増加しつつある。
In recent years, demand for high-tensile hot-rolled thin steel sheets has been increasing in various fields including the automobile industry.

このような用途においては、素材の薄鋼板はプレス加工
などの冷開成形工程を経るのが通常であり、その際優れ
た冷間加工性を具備していることが要求される。
In such applications, the thin steel sheet material is usually subjected to a cold-open forming process such as press working, and is required to have excellent cold workability.

これらの要求を満足せしめる方法の一つとして金属組織
をフェライト相とマルテンサイト相とを分散混合した組
織に調整する方法が知られている。
One known method for satisfying these requirements is to adjust the metal structure to a structure in which a ferrite phase and a martensitic phase are dispersed and mixed.

このような混合組織を有する鋼は降伏点が低く、かつ高
張力 ある独特の機械的性質を示し、冷間加工性が優れ
ている。
Steel with such a mixed structure exhibits unique mechanical properties such as a low yield point and high tensile strength, and has excellent cold workability.

かくの如(、フェライト−マルテンサイトの混合組織の
高張力薄鋼板が冷間加工性が優れているのは、軟質のフ
ェライト相によって低歪領域の強度が決り、硬質のマル
テンサイト相によって高歪領域の強度が決るので降伏比
が低(、延性に富むためである。
The reason why high-strength thin steel sheets with a ferrite-martensite mixed structure have excellent cold workability is that the soft ferrite phase determines the strength in the low strain region, and the hard martensite phase determines the strength in the high strain region. Since the strength of the region is determined, the yield ratio is low (because it is highly ductile).

しかも、これらの材料は加工時の加工硬化が著しく大き
く、更にその後の時効硬化によって強度が上昇するので
最終的な強度は従来の高張力鋼に劣らない高張力を得る
ことができる。
Moreover, these materials undergo extremely high work hardening during processing, and their strength increases through subsequent age hardening, making it possible to obtain a final strength as high as that of conventional high-tensile steel.

従来、このような鋼を製造するには、熱延鋼板をα+γ
2相域に再加熱し、しかる後焼入れるという工程を採っ
ていた。
Conventionally, to manufacture such steel, hot-rolled steel sheets were heated to α + γ.
The process involved reheating to a two-phase region and then quenching.

しかし、かかる方法は再加熱温度を正確に調整する必要
があり、コスト高になる欠点がある。
However, such a method requires precise adjustment of the reheating temperature, which has the drawback of increasing costs.

また、フェライト相とマルテンサイト相の混合組織の代
りにフェライト相とベイナイト相の混合組織であっても
、降伏比が前者よりも若干上昇するがその目的を達し得
ること、およびベイナイト相とマルテンサイト相の1種
または2種とフェライト相との混合組織、もしくはこの
混合組織に微量のパーライト相が存在しても差支えなく
、これらの混合組織を存する鋼の降伏比を低くし延性を
高めるには硬質相であるベイナイト相およびマルテンサ
イト相(以下低温変態相と総称する)の強度水準とその
量的比率だけではなく、その分散状態とフェライト粒度
の調整が重要であることが知られている。
Furthermore, even if a mixed structure of ferrite and bainite phases is used instead of a mixed structure of ferrite and martensite phases, the yield ratio will be slightly higher than the former, but the objective can be achieved, and the bainite phase and martensite There is no problem in the presence of a mixed structure of one or two types of phases and a ferrite phase, or a small amount of pearlite phase in this mixed structure, and in order to lower the yield ratio and increase the ductility of steel containing these mixed structures. It is known that it is important not only to adjust the strength level and quantitative ratio of the hard phases bainite phase and martensite phase (hereinafter collectively referred to as low-temperature transformed phases), but also to adjust their dispersion state and ferrite particle size.

しかし、かかる組織を有する鋼を製造するには従来、熱
延鋼板に対して条件を適正に選んだ熱処理を施すことに
よってのみ、その目的を達成していて、熱延条件および
熱延後の冷却条件を選ぶことにより直接上記の組織の鋼
を得る方法は提案されていなかった。
However, in order to manufacture steel with such a structure, the objective has traditionally been achieved only by subjecting hot-rolled steel sheets to heat treatment under appropriately selected conditions. No method has been proposed to directly obtain steel with the above structure by selecting conditions.

本発明の目的は、前記従来技術の欠点を克服し、熱延の
ままで低降伏比高張力鋼板を得ることができ、更に熱処
理を加えることによって従来よりも優れた材質の低降伏
比高張力鋼板を得ることができる冷間加工性の浸れた高
張力薄鋼板の製造方法を提供するにある。
The object of the present invention is to overcome the drawbacks of the prior art, to obtain a high tensile strength steel plate with a low yield ratio as hot-rolled, and to obtain a steel plate with a low yield ratio and high tensile strength that is superior to that of the conventional technology by further applying heat treatment. The object of the present invention is to provide a method for manufacturing a cold-workable dipped high-strength thin steel sheet that can yield a steel sheet.

本発明のこの目的は下記要旨の6発明によって達成され
る。
This object of the present invention is achieved by the following six inventions.

第1発明の要旨とするところは次の如(である。The gist of the first invention is as follows.

重量比にてC:0.05〜0.25%、Mn : 0.
1〜2.0%、Si:1.0%以下を含有し残部がFe
および不可避不純物より成る薄鋼板の製造方法において
、前記鋼板の熱延時の温度が平衡フェライト変態開始温
度以下で20〜80%の圧下を加える工程と、前記熱延
鋼板を平衡フェライト変態開始温度からフェライト変態
開始温度までの温度範囲を30℃/sec以上の200
℃/sec以下の平均冷却速度で、かつフェライト変態
開始温度からパーライト変態開始温度以上の温度範囲を
少くとも2秒以上の時間0.5℃/5ecJU上30℃
/就以下の平均冷却速度にて冷却する工程と、前記冷却
処理後頁に50℃/sec以上の200℃/sec以下
の平均冷却速度で冷却したる後ベイナイト変態開始温度
以下の温度にてコイルに巻取る工程と、を有して成り、
ベイナイト相とマルテンサイト相のいずれか1種または
2種とフェライト相との混合組織を形成し降伏比80%
以下であることを特徴とする冷間加工性の優れた高張力
薄鋼板の製造方法がある。
C: 0.05-0.25%, Mn: 0.05% by weight.
1 to 2.0%, Si: 1.0% or less, and the balance is Fe.
and a method for producing a thin steel sheet containing unavoidable impurities, the step of applying a reduction of 20 to 80% when the temperature during hot rolling of the steel sheet is below the equilibrium ferrite transformation starting temperature, and the step of rolling the hot rolled steel sheet from the equilibrium ferrite transformation starting temperature to the ferrite state. The temperature range up to the transformation start temperature is 200℃ over 30℃/sec.
At an average cooling rate of ℃/sec or less, and at a temperature range from the ferrite transformation start temperature to the pearlite transformation start temperature for at least 2 seconds or more, 30℃ over 0.5℃/5ecJU
cooling at an average cooling rate of 50° C./sec or more and 200° C./sec or less after the cooling treatment, and then cooling the coil at a temperature not higher than the bainite transformation starting temperature. and a step of winding the
Forms a mixed structure of one or both of bainite phase and martensite phase and ferrite phase, yielding ratio 80%
There is a method for producing a high-strength thin steel sheet with excellent cold workability, which is characterized by the following.

第2発明の要旨とするところは、前記第1発明の鋼の基
本組成に、更に0.5係以下のCr s 1.0係以下
のM □ s L 0%以下のN i s 1−0%
以下のCu、0.10%以下のNb、0.20%以下の
vlo、50%以下のTi、0.50%以下のZ r
sO,010%以下(7)B、0.10%以下(7)A
I、1.0係以下のWのうち1種もしくは2種以上を合
計量にて1.0%以下の限度にて含有させ残部がFeお
よび不可避不純物より成るものであって、その他の工程
は第1発明と同一である。
The gist of the second invention is that, in addition to the basic composition of the steel of the first invention, Cr s of 0.5 or less, M □ s L of 1.0 or less, and Ni s 1-0 of 0% or less. %
Cu less than or equal to 0.10%, Nb less than 0.20%, vlo less than 0.20%, Ti less than 50%, Zr less than 0.50%
sO, 0.10% or less (7) B, 0.10% or less (7) A
I, containing one or more types of W with a coefficient of 1.0 or less in a total amount of 1.0% or less, the remainder consisting of Fe and unavoidable impurities, and other processes are This is the same as the first invention.

第3発明の要旨とするところは、第1発明と同一組成の
熱延鋼板を、第1発明と同1工程をとって製造しコイル
に巻取った後、更に巻取った熱延鋼板をAc1変態点以
上の温度に再加熱したる後急冷する工程を加えたもので
、フェライト相とマルテンサイド相との混合組織を形成
し、降伏比を70係以下とすることができる方法である
The gist of the third invention is that a hot rolled steel sheet having the same composition as the first invention is manufactured by taking the same step as the first invention and wound into a coil, and then the hot rolled steel sheet is further wound into an Ac1 This method includes a step of reheating to a temperature higher than the transformation point and then rapidly cooling, forming a mixed structure of a ferrite phase and a martenside phase, and making it possible to have a yield ratio of 70 coefficients or less.

第4発明の要旨とするところは、第2発明と全(同一製
造工程をとってコイルに巻取った後、更に巻取った熱延
鋼板なAc、変態点以上の温度に再加熱したる後急冷す
る工程を加えたもので、第3発明と同様にフェライト相
とマルテンサイト相との混合組織を形成し降伏比を70
係以下にすることができる方法である。
The gist of the fourth invention is that after the second invention and the second invention, the hot rolled steel sheet is wound into a coil using the same manufacturing process, and is then further wound. A rapid cooling process is added, and a mixed structure of ferrite phase and martensitic phase is formed similarly to the third invention, resulting in a yield ratio of 70.
This is a method that can reduce the amount of time required.

第5発明の要旨とするところは、第3発明と全(同一の
製造工程をとって巻取った熱延鋼板をAct変態点以上
の温度に再加熱した後急冷する工程に、更に急冷した鋼
板をAct変態点以下の温度で焼戻する工程を加えたも
ので、この場合も降伏比が70係以下の優れた高張力薄
鋼板を得ることができる。
The gist of the fifth invention is that the steel sheet is further rapidly cooled in the same manufacturing process as the third invention, in which the hot-rolled steel sheet is reheated to a temperature equal to or higher than the Act transformation point and then quenched. In this method, an excellent high-tensile steel sheet with a yield ratio of 70 coefficients or less can be obtained.

第6発明の要旨とするところは、第4発明と全(同一の
製造工程をとって巻取った熱延鋼板をACI変態点以上
の温度に再加熱した後急冷する工程に、更にAc1変態
点以下の温度における焼戻し工程を加えたもので、この
方法も降伏比70係以下の特に冷間加工性に優れた高張
力薄鋼板を得ることができる製造方法である。
The gist of the sixth invention is that the same manufacturing process as that of the fourth invention is used to reheat the hot-rolled steel sheet to a temperature higher than the ACI transformation point and then quench it. This method, which includes a tempering step at the following temperature, is also a manufacturing method that can produce a high-tensile steel sheet with a yield ratio of 70 or less and particularly excellent cold workability.

かくの如く、本発明者らは、多くの研究を積重ねた結果
、基本的には、第1発明、第2発明に示した如き熱延の
ままで低降伏比の性質を示す冷間加工性の優れた高張力
薄鋼板を製造する製造条件を見出し、更に、これを熱処
理することにより従来見られなかった特に優れた冷間加
工性を有する高張力薄鋼板を得たものである。
As described above, as a result of numerous studies, the inventors of the present invention have found that basically, as shown in the first invention and the second invention, cold workability exhibiting properties of a low yield ratio in the hot-rolled state is obtained. By finding manufacturing conditions for producing a high-strength thin steel sheet with excellent properties and further heat-treating the same, a high-tensile thin steel sheet with particularly excellent cold workability, which has never been seen before, was obtained.

以下、本発明の限定条件の詳細について説明する。The details of the limiting conditions of the present invention will be explained below.

先づ、本発明の最も重要な熱間仕上圧延ならびに冷却条
件の限定理由について記載する。
First, the reasons for limiting the hot finish rolling and cooling conditions, which are most important in the present invention, will be described.

本発明によって、熱間圧延薄鋼板を製造するに際し、仕
上圧延時に後に説明する平衡フェライト変態開始温度(
以下Tsと略記する)以下の温度範囲で少くとも20髪
以上、最大80%以下の圧下率にて圧下を行え。
According to the present invention, when producing hot-rolled thin steel sheets, the equilibrium ferrite transformation start temperature (described later) during finish rolling (
(Hereinafter abbreviated as Ts) Perform rolling at a temperature range of at least 20 hairs or more and a maximum reduction rate of 80% or less.

この条件はオーステナイト粒を微細化し、更にオーステ
ナイト粒中に歪を導入して最終的には強度上昇に寄与す
る低温変態相の性質と分散状態を調整するために必須の
要件であって20%未満の圧下率の場合にはその効果が
期待困難であり、また80%を越える圧下率の場合には
歪誘起による変態を阻止することが極めて困難となり、
圧延中にフェライト相が生じ、このフェライト相に圧延
歪が与えられて製造鋼板の延性を低下させるので20〜
80%の圧下率に限定した。
This condition is essential for adjusting the properties and dispersion state of the low-temperature transformed phase that refines the austenite grains, introduces strain into the austenite grains, and ultimately contributes to an increase in strength, and is less than 20%. It is difficult to expect this effect when the rolling reduction is 80%, and it is extremely difficult to prevent strain-induced transformation when the rolling reduction exceeds 80%.
A ferrite phase is generated during rolling, and rolling strain is applied to this ferrite phase, reducing the ductility of the manufactured steel sheet.
The rolling reduction was limited to 80%.

次に冷却条件の第1としてTsから後で説明するフェラ
イト変態開始温度(以下TF と略記する)までの温度
範囲を平均冷却速度として30℃/sec以上200℃
/sec以下になるような条件で冷却する。
Next, as the first cooling condition, the temperature range from Ts to the ferrite transformation start temperature (hereinafter abbreviated as TF), which will be explained later, is an average cooling rate of 30°C/sec or more and 200°C.
/sec or less.

この冷却速度の下限は時間的に限られている熱サイクル
の中で次工程の徐冷サイクルの時間を長くとるという消
極的意味だけではなく、平衡変態温度以下で行われてい
る仕上圧延の終了時までフェライト変態を開始させない
ことと、更に次工程の徐冷処理時までオーステナイト相
中に加工歪を残存させることの2つの目的を有する積極
的な理由を有し30℃/sec未満の冷却速度ではこの
目的が達成されないからである。
This lower limit of cooling rate not only has a negative meaning of prolonging the slow cooling cycle in the next step within the thermal cycle which is limited in time, but also means that finish rolling, which is performed below the equilibrium transformation temperature, is terminated. The cooling rate is less than 30℃/sec for two purposes: to prevent ferrite transformation from starting until the next step, and to allow work strain to remain in the austenite phase until the next slow cooling process. This is because this purpose is not achieved.

また、その上限は冶金学的意義によって定まるものでは
ないが、圧延設備、製造コストおよび生産性の観点から
この間の冷却速度を200℃/就を超えて実施すること
は多(の困難を伴なうことから好ましくないためである
Furthermore, although the upper limit is not determined by metallurgical significance, it is often difficult to achieve a cooling rate of more than 200°C/application from the viewpoint of rolling equipment, manufacturing costs, and productivity. This is because it is not desirable.

冷却条件の第2として、TFから後に説明するパーライ
ト変態開始温度(以下TP と略記する)以上の温度ま
での温度範囲を0.5℃/sec以上30’C/sec
以下の平均冷却速度で少くとも2秒間、好ましくは5秒
以上の時間をとることである。
As the second cooling condition, the temperature range from TF to a temperature equal to or higher than the pearlite transformation start temperature (hereinafter abbreviated as TP), which will be explained later, is set at 0.5°C/sec or more and 30'C/sec.
The average cooling rate below is at least 2 seconds, preferably 5 seconds or more.

この目的は、一つにはフェライト変態時の過冷度を小と
してフェライト粒度を調整しながらフェライト変態を進
行させることと、更には残存オーステナイト中にCを拡
散濃縮させ次の急冷処理工程に低温変態相の形成を容易
にし、かつ生成低温変態相をより硬質とすることの2点
にある。
The purpose of this is to advance ferrite transformation while adjusting the ferrite grain size by reducing the degree of supercooling during ferrite transformation, and to diffuse and concentrate C in the remaining austenite so that it can be used at a low temperature in the next quenching process. The two points are to facilitate the formation of the transformed phase and to make the formed low-temperature transformed phase harder.

この要件における時間規制が通常の熱処理の場合に比し
て短時間でも有効な理由は、上述したように前工程の低
温圧延と急冷処理によってオーステナイト相中に釜が残
留している効果によるものと考えられ、この点も本発明
の技術的特徴の一つである。
The reason why the time limit under this requirement is effective even if it is shorter than in the case of normal heat treatment is due to the effect of the pot remaining in the austenite phase due to the low-temperature rolling and rapid cooling treatment in the previous process, as described above. This point is also one of the technical features of the present invention.

この温度範囲を通過するに要する時間が2秒以下の場合
には上記効果が薄(,5秒以上とすることが望ましい。
If the time required to pass through this temperature range is 2 seconds or less, the above effect will be weak (5 seconds or more is desirable).

なお、この通過時間の上限はパーライト変態開始条件の
時間依存性によって自ら決定される。
Note that the upper limit of this transit time is determined by the time dependence of the pearlite transformation initiation conditions.

また、TF−TP間の温度領域における冷却速度は、冶
金学的な観点からは遅いまど好ましい結果が得られるも
のである。
Further, from a metallurgical point of view, the cooling rate in the temperature range between TF and TP is slow, but preferable results can be obtained.

従って、通常の熱間圧延設備を用いて本発明を実施する
に際しては最も冷却速度が遅い条件となる空冷を選択す
ることが好ましい。
Therefore, when carrying out the present invention using ordinary hot rolling equipment, it is preferable to select air cooling, which provides the slowest cooling rate.

しかしながら、例えばランアウトテーブル中に加熱装置
等を設置するなどしてさらに遅い冷却速度を達成するこ
とができればさらに大きな効果が得られる。
However, even greater effects can be obtained if a slower cooling rate can be achieved, for example by installing a heating device or the like in the run-out table.

このような方法により実質的に実施可能な冷却条件の下
限として0.5℃/糾を定めるものである。
The lower limit of the cooling conditions that can be practically implemented by such a method is set at 0.5° C./boiled.

一方、冷却速度の上限を30℃/secとする理由は、
これを超えると上記TP−TF間の通過時間の規制を正
確に行なうことが困難となり、フェライト変態の進行並
びに残留オーステナイト中へのCの拡散濃化等が不十分
になり、本発明の効果が減殺されるので好ましくないた
めである。
On the other hand, the reason why the upper limit of the cooling rate is set to 30°C/sec is as follows.
If this exceeds this, it becomes difficult to accurately regulate the transit time between the TP and TF, and the progress of ferrite transformation and the diffusion and concentration of C into the retained austenite become insufficient, and the effects of the present invention become less effective. This is because it is not desirable because it reduces the number of deaths.

冷却条件の第3として、上記徐冷工程に引続いてTP以
上の温度から後に説明するベイナイト変態開始温度(以
下TB と略記する)以下の、温度までの範囲を50℃
/see以上200℃/sec以下の冷九速度で急冷し
、フェライト相と低温変態相との混合組織を得るもので
ある。
As the third cooling condition, following the slow cooling step, the temperature range is 50°C from a temperature higher than TP to a temperature lower than the bainitic transformation start temperature (hereinafter abbreviated as TB), which will be explained later.
A mixed structure of a ferrite phase and a low-temperature transformation phase is obtained by rapidly cooling at a cooling rate of not less than /see and not more than 200° C./sec.

この冷却速度の下限を50℃/secとする理由はパー
ライト変態を抑制し、必要量の低温変態相を生成するの
に必要なためである。
The reason why the lower limit of this cooling rate is set to 50° C./sec is that it is necessary to suppress pearlite transformation and generate a required amount of low-temperature transformed phase.

、また、上限を200℃/secなする理由は
、これを超える冷却速度を得るためには冷却設備への負
担が太き(なるばかりで、これによって得られる効果に
は大きな差がな(なるためである。
Also, the reason why the upper limit is set at 200°C/sec is that in order to obtain a cooling rate exceeding this, the burden on the cooling equipment will increase (it will only increase), and there will be no big difference in the effect obtained ( It's for a reason.

かくの如き冷却条件にて冷却した熱延鋼板を最終工程で
TB以下の温度でコイルに巻取る。
The hot-rolled steel sheet cooled under such cooling conditions is wound into a coil at a temperature below TB in the final step.

この場合巻取られたポットコイルは変態完了後の自己焼
鈍効果である程度焼戻しを受けるので、本発明の鋼板は
そのまま最終製品とすることができるが、更に強度の微
細な調整を行って降伏比の改善を図るために巻取った熱
延鋼板をAct変態点以上の温度に再加熱した後急冷す
ることにより、フェライト相とマルテンサイト相の混合
組織を形成し、これを最終製品とすることもできる。
In this case, the wound pot coil undergoes some degree of tempering due to the self-annealing effect after the completion of transformation, so the steel plate of the present invention can be used as a final product as is, but the yield ratio can be improved by making further fine adjustments to the strength. In order to improve this, by reheating the hot-rolled steel sheet to a temperature above the Act transformation point and then rapidly cooling it, a mixed structure of ferrite and martensitic phases is formed, which can be used as a final product. .

この場合の再加熱温度はAct変態点未満の温度ではそ
の効果がほとんど認められず友□変態点以上を必要とす
る。
In this case, the reheating temperature needs to be higher than the □transformation point because the effect is hardly recognized at a temperature lower than the Act transformation point.

更に前記焼入処理を施した熱延鋼板をAct変態点以下
の温度で暁戻し組織をフェライト相とマルテンサイト相
およびベイナイト相の混合組織としてその機械的性質を
更に改善した鋼板を最終製品としてもよい。
Furthermore, the mechanical properties of the hot-rolled steel sheet subjected to the above-mentioned quenching treatment are further improved by changing the structure to a mixed structure of ferrite phase, martensite phase, and bainite phase at a temperature below the Act transformation point. good.

この場合の焼戻温度についてはAct変態点を超える温
度範囲では強度、降伏比とも却って劣化し、Act変態
点以下の温度範囲で焼戻する場合には強度を向上させ、
降伏比を70%以下に低下する効果があるのでACI変
態点以下の温度に限定すべきである。
Regarding the tempering temperature in this case, in the temperature range exceeding the Act transformation point, both strength and yield ratio deteriorate, and when tempering in the temperature range below the Act transformation point, the strength is improved.
Since it has the effect of lowering the yield ratio to 70% or less, the temperature should be limited to the ACI transformation point or lower.

本発明による低降伏比高張力薄鋼板の製造方法におげろ
熱延条件、冷却条件は上記の如(、精密な加工熱処理的
技術であり、極めて広い範囲の化学組成を有する鋼に適
用可能であるが、経済性およびその用途において要求さ
れる材質特注、更に上記熱処理効果を最大限に発揮せし
めるためにその化学組成を規制した。
The hot rolling conditions and cooling conditions for the manufacturing method of the low yield ratio, high tensile strength thin steel sheet according to the present invention are as described above (this is a precise working heat treatment technique and is applicable to steels having an extremely wide range of chemical compositions). However, in order to achieve economical efficiency and to make the material custom-made as required for its use, and to maximize the heat treatment effect mentioned above, the chemical composition has been regulated.

これら各成分の限定理由は次の如くである。The reason for limiting each of these components is as follows.

C: 低温変態相による強化を図る上で少くとも0.05係以
上を必要とするが、0.25%を越えると溶接性、加工
性が悪化するので0.05〜0,25%の範囲とした。
C: At least a modulus of 0.05 or higher is required in order to achieve reinforcement through low-temperature transformation phases, but if it exceeds 0.25%, weldability and workability deteriorate, so it should be in the range of 0.05 to 0.25%. And so.

Mn: 加工熱処理効果を有効ならしめるために少くとも0.1
0%以上を必要とするが、2.0%を越えると溶接性、
加工性に悪影響を及ぼすので0.10〜2.0%の範囲
とした。
Mn: At least 0.1 in order to make the processing heat treatment effect effective
0% or more is required, but if it exceeds 2.0%, weldability
Since it has an adverse effect on workability, it is set in the range of 0.10 to 2.0%.

Si: 適量の範囲であれば低温変態相の生成に有利に作用する
が、1.0%を越える含有量の場合には熱処理効果が却
って阻害されて好ましくないので1.0チ以下に限定し
た。
Si: If the amount is within an appropriate range, it will have an advantageous effect on the formation of a low-temperature transformation phase, but if the content exceeds 1.0%, the heat treatment effect will be hindered, which is undesirable, so it was limited to 1.0% or less. .

以上の主要3元素を基本成分として本発明による低降伏
比の冷間加工性に優れた高張力薄鋼板を製造することが
できるが、更に次の各成分を各限定量の範囲内で1種も
しくは2種以上を含有せしめてより一層本発明の効果を
発揮させることができる。
A high-strength thin steel sheet with a low yield ratio and excellent cold workability can be produced according to the present invention using the above three main elements as basic components, and in addition, one kind of each of the following components is added within a limited amount. Alternatively, the effects of the present invention can be further exhibited by containing two or more kinds.

この場合のこれら各成分の合計量は1.0%以下に限定
される。
In this case, the total amount of each of these components is limited to 1.0% or less.

Cr、Mo、W: いずれも加工熱処理効果を向上させる元素であり、適量
の使用は好ましいが、Crの場合は0.50係、MOの
場合は1.0%、Wの場合も1.0%を越えると溶接性
が劣化するのでCrO,5%以下、Mo1.0%以下、
Wl、0%以下に限定した。
Cr, Mo, W: All are elements that improve the processing heat treatment effect, and it is preferable to use them in appropriate amounts. %, weldability deteriorates, so CrO, 5% or less, Mo 1.0% or less,
Wl was limited to 0% or less.

Ni−Cu: いずれも強度ならびに耐候性を付与する元素として1.
0%以下の範囲で使用しても、本発明の効果が阻害され
ず、元素本来の効果を付与して好ましいが、1.0%を
越えると本発明における熱処理効果に悪影響を及ぼすの
で、いずれも1.0fO以下に限定した。
Ni-Cu: 1. Both are elements that provide strength and weather resistance.
Even if it is used in the range of 0% or less, the effect of the present invention is not inhibited and the original effect of the element is imparted, which is preferable. However, if it exceeds 1.0%, it will have a negative effect on the heat treatment effect in the present invention, so it may not be used. was also limited to 1.0 fO or less.

Nb、Vt Tip Zr、B二 いずれもオーステナイト粒の未再結晶温度領域を拡大し
、加工熱処理効果を大とするために適量の使用は好まし
いが、Nbは0.1%、■は0.2%。
Nb, Vt Tip Zr, and B2 are all preferably used in appropriate amounts in order to expand the non-recrystallized temperature range of austenite grains and enhance the processing heat treatment effect, but Nb is 0.1% and ■ is 0.2%. %.

T ip Z rは0.5%、Bは0.01%を越して
使用してもその効果が飽和されるのでこの含有量を上限
とした。
Even if Tip Zr is used in excess of 0.5% and B in excess of 0.01%, the effect will be saturated, so these contents were set as the upper limits.

A1: 脱酸元素として鋼の内部性状を改善する目的に対し有用
な元素であるが、0.10%を越えると非金属介在物を
増加し好ましくないので0.10%以下に限定した。
A1: An element useful as a deoxidizing element for the purpose of improving the internal properties of steel, but if it exceeds 0.10%, nonmetallic inclusions will increase, which is undesirable, so it is limited to 0.10% or less.

次に本発明による製造条件設定の基準となる前記Ts、
TF、TP、TBについて説明する。
Next, the above Ts, which is a standard for setting manufacturing conditions according to the present invention,
TF, TP, and TB will be explained.

これらの変態温度は一般に化学成分、オーステナイト粒
度、オーステナイト相の残留加工歪量、冷却速度の影響
を受は変化するものである。
These transformation temperatures generally vary depending on the chemical composition, austenite grain size, residual processing strain in the austenite phase, and cooling rate.

従って、これを定量化する方法としては従来は成分の異
なる素材について個々に製造現場の加工熱処理履歴をシ
ミュレートした実験を行って、これを試行錯誤的に解析
する以外に適当な方法がなかっなか(の如き手法を本発
明に適用することは、煩雑かつ非現実的であることは云
うまでもない。
Therefore, in the past, the only suitable way to quantify this was to conduct experiments that simulated the processing and heat treatment histories of the manufacturing sites for materials with different components, and to analyze the results through trial and error. It goes without saying that applying such a method to the present invention is complicated and unrealistic.

本発明者は変態現象を上記要因の函数として定量的に計
算する数式モデルを開発し、先に特願昭52−1033
98号として開示した。
The present inventor developed a mathematical model for quantitatively calculating the metamorphosis phenomenon as a function of the above factors, and previously filed a patent application for
It was disclosed as No. 98.

その概要は次の如くである。The outline is as follows.

すなわち、化学成分、オーステナイト粒度、および加工
度を要因として計算される等温変態曲線と、与えられた
冷却曲線とを階段状に分割した近似冷却曲線を用いて変
態の潜伏期間については Σ(△t i/Z i (T i ) )=1・・・・
・・・・・(1)−0 ここにZi(Ti):温度の函数として定量化した等温
変態の各温度(Ti ) における潜伏期間 △ti:その温度−d階段状に等温保 持したとして近似した冷却 曲線の保持時間 なる(1)式より計算し、変態開始後は温度Tj1その
温度での保持時間△tjの間に進行する変態を等温変態
として計算し、その状態は次のステップT におい
ては未変態率が等しいtj+1の」+1 状態と等価として計算を継続するという論理で構成され
ている。
In other words, the incubation period of transformation is calculated using an approximate cooling curve obtained by dividing the isothermal transformation curve calculated based on the chemical composition, austenite grain size, and working degree into steps, and the given cooling curve. i/Z i (T i ) = 1...
...(1)-0 where Zi (Ti): Incubation period at each temperature (Ti) of isothermal transformation quantified as a function of temperature △ti: Approximate by assuming that the temperature is kept isothermally in stepwise manner After the transformation starts, the transformation that progresses during the holding time Δtj at that temperature is calculated as isothermal transformation, and the state is determined in the next step T. is constructed based on the logic that calculation is continued as being equivalent to the ``+1'' state of tj+1 where the untransformed rate is equal.

このモデルを用いれば任意の本発明の対象とする低合金
鋼の成分範囲で任意の冷却条件におけるT s p T
p t Tp 9TB s更にはマルテンサイト変態開
始温度TMの計算が再能であり、従って、本発明の製造
条件は圧延装置、技術上の制約条件および冷却装置の能
力から定まる制約条件の範囲で本発明の限定条件を満足
させる最適条件を容易に求めることができる。
Using this model, T s p T under any cooling condition in the composition range of the low alloy steel targeted by the present invention
p t Tp 9TB sFurthermore, it is possible to calculate the martensitic transformation start temperature TM, and therefore, the manufacturing conditions of the present invention are within the constraints determined by the rolling equipment, technical constraints, and cooling device capacity. Optimum conditions that satisfy the limiting conditions of the invention can be easily determined.

添附図面は以上説明した本発明による熱延履歴を示す模
式図である。
The accompanying drawings are schematic diagrams showing the hot rolling history according to the present invention described above.

図中の記号は次の如(である。The symbols in the figure are as follows.

Ts:平衡フェライト変態開始温度 TF:フエライト変態開始温度 TP:パーライト変態開始温度 TB:ペイナイト変態開始温度 CT:巻取温度 R: T 5−Tp間における総圧下率 C1: T s □Tp間の冷却速度 C2:TF−TP以上までの冷却速度 t :C2の冷却速度で冷却する時間 C3:TP以上〜CTまでの冷却速度 実施列 1 第1表にて示した供試材を使用し、前記添附図面のL
C□、c2*−tおよびC3を変えて熱間圧延し、いず
れも480℃でコイルに巻取った。
Ts: Equilibrium ferrite transformation start temperature TF: Ferrite transformation start temperature TP: Pearlite transformation start temperature TB: Paynite transformation start temperature CT: Coiling temperature R: Total rolling reduction ratio between T5 and Tp C1: Cooling between Ts □Tp Speed C2: Cooling rate to TF-TP or more t: Time to cool at the cooling rate of C2 C3: Cooling rate from TP to CT L in the drawing
Hot rolling was carried out while changing C□, c2*-t and C3, and all were wound into coils at 480°C.

各コイルより試験片を採取し、本発明鋼ならびに比較鋼
についてその降伏強さくYS)引張強さくTS)、伸び
(El )および降伏比(YS/TS)を測定した結果
は第2表に示すとおりである。
A test piece was taken from each coil and the yield strength (YS), tensile strength (TS), elongation (El), and yield ratio (YS/TS) of the inventive steel and comparative steel were measured. The results are shown in Table 2. That's right.

第2表より明らかな如く、本発明のすべての要件を満足
して熱延された本発明鋼は、いずれも降伏比80ヂ以下
となっているのに対し、本発明の要件を一つでも満足さ
せてない比較鋼は、いずれも降伏比80%以上になって
おり、強度が同、−水準の本発明鋼と比較鋼を対比すれ
ば本発明鋼の伸びがはるかに浸れている。
As is clear from Table 2, the steels of the present invention that were hot-rolled while satisfying all the requirements of the present invention all had a yield ratio of 80 degrees or less, whereas those that met even one of the requirements of the present invention The comparative steels that did not satisfy the requirements all had a yield ratio of 80% or more, and when comparing the inventive steel with the same strength and the comparative steel, the elongation of the inventive steel is much lower.

なお、第2表中比較鋼においてアンダーラインを付した
数値は本発明の要件を満たしていないものである。
Note that the underlined values for the comparative steels in Table 2 do not meet the requirements of the present invention.

実施例 2 第1表に示した供試材A2,3,4,5,6を用い、第
2表の記号Cの本発明による条件と記号りの本発明要件
を満たさない条件で熱延し、その機械的性質を比較した
結果は第3表に示すとおりである。
Example 2 Using the test materials A2, 3, 4, 5, and 6 shown in Table 1, hot rolling was carried out under conditions according to the present invention indicated by symbol C in Table 2 and conditions that did not satisfy the requirements of the present invention indicated by symbol C. The results of comparing their mechanical properties are shown in Table 3.

第3表より明らかなとおり、本発明の要件と異なる条件
で熱延した比較鋼では強度は上昇するものの降伏比の増
加も大であるのに対し、本発明鋼では強度が増加しても
降伏比の増加は極めて少(、いずれも80%以下の降伏
比を示し、全伸びもはるかに優れていることが判明した
As is clear from Table 3, the comparative steel hot-rolled under conditions different from the requirements of the present invention has an increased strength but also a large increase in yield ratio, whereas the steel of the present invention does not yield even though the strength increases. It was found that the increase in ratio was extremely small (all showed a yield ratio of less than 80%, and the total elongation was also much better).

実施例 3 第1表の供試材A1を用いて第2表の記号Cの本発明の
要件で熱延したコイルを連続焼鈍炉で加熱温度を変えで
焼鈍した後、いずれも急冷した。
Example 3 Coils hot-rolled using sample material A1 in Table 1 according to the requirements of the present invention indicated by symbol C in Table 2 were annealed in a continuous annealing furnace at different heating temperatures, and then quenched.

これらのコイルの機械的性質を調査すると共に、焼鈍後
急冷したコイルと熱延のままのコイルに焼戻し処理を行
い。
In addition to investigating the mechanical properties of these coils, we performed tempering treatment on the coils that had been rapidly cooled after annealing and the coils that were as hot-rolled.

加熱温度の影響を調査した。結果は第4表に示すとおり
である。
The influence of heating temperature was investigated. The results are shown in Table 4.

第4表より明らかなとおり、再加熱温度条件については
Act変態点以下の温度ではその効果がほとんど認めら
れないのに対し、Act変態点以上の温度では降伏比が
改善されることが判明したまた、焼戻し条件については
ACI変態点以上の温度で焼戻した場合には強度、降伏
比とも却って劣化し、Ac1変態点以下で焼戻しだ場合
には降伏比が70係以下に低下することが判明した。
As is clear from Table 4, regarding the reheating temperature conditions, it was found that the yield ratio was improved at temperatures above the Act transformation point, while almost no effect was observed at temperatures below the Act transformation point. Regarding the tempering conditions, it was found that when tempered at a temperature above the ACI transformation point, both strength and yield ratio deteriorated, and when tempered at a temperature below the Ac1 transformation point, the yield ratio decreased to below 70 coefficients.

本発明は上記多くの実施列にても明らかな如く熱間圧延
に際して仕上圧延およびこれに続く冷却工程における諸
条件を精密な加工熱処理的技術によって規制することに
よって熱延のままで降伏比が低(、従って冷間力計性の
浸れた高張力熱延薄鋼板の製造人法を提供することがで
きた。
As is clear from the many embodiments described above, the present invention achieves a low yield ratio while remaining hot-rolled by controlling various conditions during the finish rolling and subsequent cooling process during hot rolling using precise processing and heat treatment techniques. (Therefore, we were able to provide a method for manufacturing high-strength hot-rolled thin steel sheets with cold force measurement properties.

更にこの素材を熱処理する場合には従来の製造条件の熱
延板を素材とする場合よりもより優れた降伏比の低い高
張力薄鋼板を得ることができた。
Furthermore, when this material was heat-treated, a high-strength thin steel sheet with a lower yield ratio that was better than when a hot-rolled sheet under conventional manufacturing conditions was used as the material could be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

添附図面は本発明による冷間加工性の優れた高張力薄鋼
板の製造方法におげろ熱延履歴を示す模式図である。 Ts:平衡フェライト変態開始温度、TF:フェライト
変態開始温度、TP:バーライト変態開始温度、TB:
ベイナイト変態開始温度、CT:巻取り温度、R: T
s ”’=TF間における総圧下率、C1: T 5
−Tp間の冷却速度、C2:TF〜TP以上までの冷却
速度、t:02の冷却速度で冷却する時間、C3:TP
以上〜CTまでの冷却速度。
The accompanying drawings are schematic diagrams showing the hot rolling history of the method for producing high-strength thin steel sheets with excellent cold workability according to the present invention. Ts: Equilibrium ferrite transformation start temperature, TF: Ferrite transformation start temperature, TP: Barite transformation start temperature, TB:
Bainite transformation start temperature, CT: coiling temperature, R: T
s ”' = total rolling reduction rate between TF, C1: T 5
- Cooling rate between Tp, C2: Cooling rate from TF to TP or higher, t: Time to cool at the cooling rate of 02, C3: TP
Cooling rate from above to CT.

Claims (1)

【特許請求の範囲】 1 重量比にてC: 0.05〜0.25%、Mn:0
.1〜2.0%、Si:1.0%以下を含有し残部がF
eおよび不可避不純物より成る薄鋼板の製造方法におい
て、前記鋼板の熱延時の温度が平衡フェライト変態開始
温度以下で20〜80%の圧下な加える工程と、前記熱
延鋼板を平衡フェライト変態開始温度からフェライト変
態開始温度までの温度範囲を30℃/sec以上でかつ
200℃/就以下の平均冷却速度で、かつフェライト変
態開始温度からパーライト変態開始温度以上の温度範囲
を少くと−も2秒以上の時間0.5℃A以上30℃/s
ec以下の平均冷却速度にて冷却する工程と、前記冷却
処理後更に50℃/sec以上でかつ200℃/sec
以下の平均冷却で冷却したる後ベイナイト変態開始温度
以下の温度にてコイルに巻取る工程と、を有して成り、
ベイナイト相とマルテンサイト相のいずれか1種または
2種とフェライト相との混合組織を形成し降伏比80%
以下であることを特徴とする冷間加工性の優れた高張力
薄鋼板の製造方法。 2 重量比にてC: 0.05〜0.25%、Mn:0
.1〜2.0%、Si:1.0%以下を含み、更に0.
5%以下のCr、1.0%以下のMO,1,0%以下の
Ni、1.0%以下のCu、0.10%以下のNb、0
.20%以下(7)V、0.50%以下ノT 1sO0
50%以下のZr、0.010%以下のB、0.10係
以下のAI、1.0%以下のWのうち1種もしくは2種
以上を合計量にて1.0%以下の限度にて含有し残部が
Feおよび不可避不純物より成る薄鋼板の製造方法にお
いて、前記鋼板の熱延時の温度が平衡フェライト変態開
始温度以下で20〜80係の圧下を加える工程と、前記
熱延鋼板を平衡フェライト変態開始温度からフェライト
変態開始温度までの温度範囲を30℃/□□□以上でか
つ200℃/sec以下の平均冷却速度で、かつフェラ
イト変態開始温度からパーライト変態開始温度以上の温
度範囲を少くとも2秒以上の時間0.5℃/糾以上30
℃/(8)以下の平均冷却速度にて冷却する工程と、前
記冷却竺理後更に50℃/sec以上200℃ル以工の
平均冷却速度で冷却した後ベイナイト変態開始温度以下
の温度にてコイルに巻取る工程と、を有して成り、ベイ
ナイト相とマルテンサイト相のいずれか1種または2種
とフェライト相との混合組織を形成し降伏比80係以下
であることを特徴とする冷間加工性の優れた高張力薄鋼
板の製造方浩。 3 重量比にてC:0.05〜0.25%、Mn:0.
1〜2.0係、Si:1.0饅以下を含有し残部がFe
斜よび不可避不純物より成る薄鋼板の製造方法において
、前記鋼板の熱延時の温度が平衡フェライト変態開始温
度以下で20〜80%の圧下を加える工程と、前記熱延
鋼板を平衡フェライト変態開始温度からフェライト変態
開始温度までの温度範囲を30℃/5e=J’)、上で
200℃/式以下の平均冷却速度で、かつフェライト変
態開始温度からパーライト変態開始温度以上の温度範囲
を少くとも2秒以上の時間0.5℃/se以上で30℃
/Sω以下の平均冷却速度にて冷却する工程と、前記冷
却処理後更に50℃A以上200℃/sec以下の平均
冷却速度で冷却したる後ベイナイト変態開始温度以下の
温度にてコイルに巻取る工程′と、前記巻取った熱延鋼
板をAct変態7似上の温度に再加熱したる後急冷する
工程と、を有して成り、フェライト相とマルテンサイト
相との混合組織を形成し降伏比70%以下であることを
特徴とする冷間加工性の優れた高張力薄鋼板の製造方法
。 4 重量比にてC: 0.05〜0.25%、Mn:0
.1〜2.0チ、Si:1.0%以下を含み、更に0.
5係以下のCr、1.0%以下のMo、1.0%以下の
Ni、1.0%以下のCu、0.10%以下のNb、0
.20係以下のV、0.50%以下のT 15O050
%のZr、0.10%以下のB、0.10%以下のA1
.1.0%以下のWのうち1種もしくは2種以上を合計
量にて1.0係以下の限度にて含有し残部がFeおよび
不可避不純物より成る薄鋼板の製造方法において、前記
鋼板の熱延時の温度が平衡フェライト変態開始温度以下
で20〜80係の圧下を加える工程と、前記熱延鋼板を
平衡フェライト変態開始温度からフェライト変態開始温
度までの温度範囲を30℃/sec以上200℃/se
c以下の平均冷却速度で、かつフェライト変態開始温度
からパーライト変態開始温度以上の温度範囲を少くとも
2秒以上の時間0.5℃/sec以上30℃/sec以
下の平均冷却速度にて冷却する工程と前記冷却処理後更
に50℃/sec以上200℃/sec以下の平均冷却
したる後ベイナイト変態開始温度以下の温度にてコイル
に巻取る工程と、前記巻取った熱延鋼板をAc1変態点
以下の温度に再加熱したる後急冷する工程と、を有して
成り、フェライト相とマルテンサイト相との混合組織を
形成し降伏比70係以下であることを特徴とする冷間加
工性の優れた高張力薄鋼板の製造方法。 5 重量比にてC: 0.05〜0.25%、Mn:0
.1〜2.0係、Si:1.0%以下を含有し、残部が
Feおよび不可避不純物より成る薄鋼板の製造方法にお
いて、前記鋼板の熱延時の温度が平衡フェライト変態開
始温度以下で20〜80%の圧下を加える工程と、前記
熱延鋼板を平衡フェライト変態開始温度からフェライト
変態開始温度までの温度範囲を30℃/sec以上20
0℃/sec以下の平均冷却速度で、かつフェライト変
態開始温度からパーライト変態開始温度以上の温度範囲
を少(とも2秒以上の時間0.5℃/SeC以上30℃
/sec以下の平均冷却速度にて冷却する工程と、前記
冷却処理後更に50℃/sec以上200℃/sec以
下の平均冷却速度で冷却したる後ベイナイト変態開始温
度以下の温度にてコイルに巻取る工程と、前記巻取った
熱延鋼板をAct変態点以上の温度に再加熱したる後急
冷する工程と、前記急冷した鋼板をAc1変態点以下の
温度で焼戻しする工程と、を有して成り、降伏比が70
%以下であることを特徴とする冷間加工性の優れた高張
力薄鋼板の製造方法。 6 重量比にてC:0.05〜0.25%、Mn:0.
1〜2.0係、Si:1.0%以下を含み、更に0.5
係以下のCr、1.0%以下のMO,1,0%以下のN
1% 1i0%以下のCu、0.10%以下のNb、
0.20%以下のV、0.50%以下のT I %0.
50%以下のZr、0.010%以下のB、0.10係
以下のAt、 1.0%以下のWのうち1種もしくは
2種以上を合計量にて1.0%以下の限度にて含有し残
部がFeおよび不可避不純物より成る薄鋼板の製造方法
において、前記鋼板の熱延時の温度が平衡フェライト変
態開始温度以下で20〜80饅の圧下を加える工程と、
前記熱延鋼板を平衡フェライト変態開始温度からフェラ
イト変態開始温度までの温度範囲を30℃/sec以上
200℃/sec以下の平均冷却速度で、かつフェライ
ト変態開始温度や・らパーライト変態開始温度以上の温
度範囲を少くとも2秒以上の時間0.5℃/気以上30
℃/%以下の平均冷却速度にて冷却する工程と、前記冷
却処理後更に50℃/’SeC以上200℃/sec以
下の平均冷却速度で冷却したる後ベイナイト変態開始温
度以下の温度にてコイルに巻取る工程と、前記巻取った
熱延鋼板をAc1変態点以上の温度に再加熱したる後急
冷する工程と、前記急冷した鋼板をAc1変態点以下の
温度で焼戻しする工程と、を有して成り、降伏比が70
%以下であることを特徴とする冷間加工性の優れた高張
力薄鋼板の製造方法。
[Claims] 1. C: 0.05 to 0.25%, Mn: 0 in weight ratio
.. 1 to 2.0%, Si: 1.0% or less, and the balance is F.
e and unavoidable impurities, the method includes a step of applying a reduction of 20 to 80% at a temperature during hot rolling of the steel sheet below the equilibrium ferrite transformation starting temperature, and a step of rolling the hot rolled steel sheet from the equilibrium ferrite transformation starting temperature. The temperature range from the ferrite transformation start temperature to the pearlite transformation start temperature is at least 30°C/sec and the average cooling rate is at most 200°C/sec, and the temperature range from the ferrite transformation start temperature to the pearlite transformation start temperature is at least 2 seconds or more. Time 0.5℃A or more 30℃/s
A step of cooling at an average cooling rate of ec or less, and further cooling at an average cooling rate of 50° C./sec or more and 200° C./sec after the cooling treatment.
After cooling with the following average cooling, winding it into a coil at a temperature below the bainite transformation starting temperature,
Forms a mixed structure of one or both of bainite phase and martensite phase and ferrite phase, yielding ratio 80%
A method for producing a high-strength thin steel sheet with excellent cold workability, characterized by the following: 2 C: 0.05-0.25%, Mn: 0 in weight ratio
.. 1 to 2.0%, Si: 1.0% or less, and further 0.
5% or less Cr, 1.0% or less MO, 1.0% or less Ni, 1.0% or less Cu, 0.10% or less Nb, 0
.. 20% or less (7) V, 0.50% or less T 1sO0
One or more of the following: Zr of 50% or less, B of 0.010% or less, AI of 0.10% or less, and W of 1.0% or less in a total amount of 1.0% or less. In the method for manufacturing a thin steel sheet containing Fe and the remainder being Fe and unavoidable impurities, the hot-rolled steel sheet is subjected to a reduction of 20 to 80 degrees at a temperature at which the hot-rolled steel sheet is below the equilibrium ferrite transformation start temperature, and the hot-rolled steel sheet is balanced. The temperature range from the ferrite transformation start temperature to the ferrite transformation start temperature is 30 ° C / Both times are 0.5℃ for 2 seconds or more / 30℃ or more
A step of cooling at an average cooling rate of 50°C/sec or more and 200°C or less after the cooling process, and then cooling at a temperature not higher than the bainite transformation starting temperature. and a step of winding it into a coil, forming a mixed structure of one or both of bainite phase and martensite phase and ferrite phase, and having a yield ratio of 80 coefficients or less. A method for manufacturing high-strength thin steel sheets with excellent workability. 3 C: 0.05-0.25%, Mn: 0.3% by weight.
1 to 2.0, Si: contains 1.0 or less, and the balance is Fe
A method for manufacturing a thin steel sheet comprising diagonal and unavoidable impurities, comprising: applying a reduction of 20 to 80% when the temperature during hot rolling of the steel sheet is below the equilibrium ferrite transformation starting temperature, and rolling the hot rolled steel sheet from the equilibrium ferrite transformation starting temperature. The temperature range up to the ferrite transformation start temperature is 30°C/5e=J'), the average cooling rate is 200°C/equation or less, and the temperature range from the ferrite transformation start temperature to the pearlite transformation start temperature is at least 2 seconds. 30℃ for a period of 0.5℃/se or more
A step of cooling at an average cooling rate of /Sω or less, and after the cooling treatment, further cooling at an average cooling rate of 50 ° C A or more and 200 ° C / sec or less, and then winding into a coil at a temperature equal to or lower than the bainite transformation start temperature. and a step of reheating the coiled hot-rolled steel sheet to a temperature similar to Act transformation 7 and then rapidly cooling it to form a mixed structure of a ferrite phase and a martensitic phase and yielding. 1. A method for producing a high tensile strength thin steel sheet with excellent cold workability, characterized in that the steel sheet has a steel sheet of 70% or less. 4 C: 0.05-0.25%, Mn: 0 in weight ratio
.. 1 to 2.0%, Si: 1.0% or less, and further 0.
5 or less Cr, 1.0% or less Mo, 1.0% or less Ni, 1.0% or less Cu, 0.10% or less Nb, 0
.. V of 20 or less, T of 0.50% or less 15O050
% Zr, 0.10% or less B, 0.10% or less A1
.. In a method for producing a thin steel plate containing one or more types of W in a total amount of 1.0% or less in a limit of 1.0% or less, the remainder being Fe and unavoidable impurities, A step of applying a reduction of 20 to 80 degrees when the rolling temperature is below the equilibrium ferrite transformation start temperature, and a step of rolling the hot rolled steel sheet from the equilibrium ferrite transformation start temperature to the ferrite transformation start temperature in a temperature range of 30°C/sec or more and 200°C/sec. se
Cool the temperature range from the ferrite transformation start temperature to the pearlite transformation start temperature at an average cooling rate of 0.5°C/sec or more and 30°C/sec or less for at least 2 seconds at an average cooling rate of 0.5°C/sec or more and 30°C/sec or less. After the cooling treatment, the average cooling rate of 50° C./sec to 200° C./sec is further carried out, and then winding into a coil at a temperature below the bainite transformation start temperature, and the step of winding the wound hot rolled steel sheet to the Ac1 transformation point. reheating to the following temperature and then rapidly cooling, forming a mixed structure of a ferrite phase and a martensitic phase and having a yield ratio of 70 coefficients or less. A method for manufacturing excellent high-tensile steel sheets. 5 C: 0.05-0.25%, Mn: 0 in weight ratio
.. 1 to 2.0, Si: 1.0% or less, and the balance is Fe and unavoidable impurities. The step of applying a reduction of 80% and the temperature range from the equilibrium ferrite transformation start temperature to the ferrite transformation start temperature of the hot rolled steel sheet at a rate of 30°C/sec or more 20
At an average cooling rate of 0°C/sec or less, and in a small temperature range from the ferrite transformation start temperature to the pearlite transformation start temperature (2 seconds or more, 0.5°C/SeC or more 30°C
cooling at an average cooling rate of /sec or less, and after the cooling treatment, further cooling at an average cooling rate of 50 ° C / sec to 200 ° C / sec, and then winding into a coil at a temperature equal to or lower than the bainitic transformation start temperature. a step of reheating the coiled hot-rolled steel sheet to a temperature equal to or higher than the Act transformation point and then rapidly cooling it; and a step of tempering the rapidly cooled steel sheet at a temperature lower than or equal to the Ac1 transformation point. The yield ratio is 70
% or less. 6 C: 0.05-0.25%, Mn: 0.6% by weight.
1 to 2.0, Si: 1.0% or less, and further 0.5
Cr below 1.0%, MO below 1.0%, N below 1.0%
1% 1i0% or less Cu, 0.10% or less Nb,
V less than 0.20%, T I %0. less than 0.50%.
One or more of the following: Zr of 50% or less, B of 0.010% or less, At of 0.10% or less, and W of 1.0% or less in a total amount of 1.0% or less. A method for manufacturing a thin steel sheet containing Fe and the remainder comprising Fe and unavoidable impurities, the step of applying a rolling reduction of 20 to 80 degrees at a temperature during hot rolling of the steel sheet equal to or lower than the equilibrium ferrite transformation initiation temperature;
The hot rolled steel sheet is heated in a temperature range from the equilibrium ferrite transformation start temperature to the ferrite transformation start temperature at an average cooling rate of 30°C/sec to 200°C/sec, and from the ferrite transformation start temperature to the pearlite transformation start temperature. Temperature range: 0.5℃/30℃ for at least 2 seconds or more
A step of cooling at an average cooling rate of 50°C/'SeC or more and 200°C/sec or less after the cooling treatment, and then cooling the coil at a temperature less than the bainite transformation starting temperature. a step of reheating the wound hot rolled steel sheet to a temperature higher than the Ac1 transformation point and then rapidly cooling it; and a step of tempering the rapidly cooled steel sheet at a temperature lower than the Ac1 transformation point. The yield ratio is 70
% or less.
JP10713978A 1978-08-31 1978-08-31 Method for manufacturing high-strength thin steel sheets with excellent cold workability Expired JPS5818970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10713978A JPS5818970B2 (en) 1978-08-31 1978-08-31 Method for manufacturing high-strength thin steel sheets with excellent cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10713978A JPS5818970B2 (en) 1978-08-31 1978-08-31 Method for manufacturing high-strength thin steel sheets with excellent cold workability

Publications (2)

Publication Number Publication Date
JPS5534659A JPS5534659A (en) 1980-03-11
JPS5818970B2 true JPS5818970B2 (en) 1983-04-15

Family

ID=14451491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10713978A Expired JPS5818970B2 (en) 1978-08-31 1978-08-31 Method for manufacturing high-strength thin steel sheets with excellent cold workability

Country Status (1)

Country Link
JP (1) JPS5818970B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521562A (en) * 1998-07-24 2002-07-16 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Manufacturing method and manufacturing equipment for duplex stainless steel

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735663A (en) * 1980-08-11 1982-02-26 Kobe Steel Ltd Hot rolled steel plate for rim of wheel
US4501626A (en) * 1980-10-17 1985-02-26 Kabushiki Kaisha Kobe Seiko Sho High strength steel plate and method for manufacturing same
JPS57137426A (en) * 1981-02-20 1982-08-25 Kawasaki Steel Corp Production of low yield ratio, high tensile hot rolled steel plate by mixed structure
US4406713A (en) * 1981-03-20 1983-09-27 Kabushiki Kaisha Kobe Seiko Sho Method of making high-strength, high-toughness steel with good workability
US4472208A (en) * 1982-06-28 1984-09-18 Sumitomo Metal Industries, Ltd. Hot-rolled high tensile titanium steel plates and production thereof
JPS60152655A (en) * 1984-01-20 1985-08-10 Kobe Steel Ltd High-strength low-carbon steel material having superior heavy workability
JPS60152654A (en) * 1984-01-20 1985-08-10 Kobe Steel Ltd Steel material having superior resistance to hydrogen induced cracking, high strength, ductility and toughness and its manufacture
JPS6156264A (en) * 1984-08-24 1986-03-20 Kobe Steel Ltd High strength and high ductility ultrathin steel wire
JPS61130454A (en) * 1984-11-28 1986-06-18 Kobe Steel Ltd High-strength hot-rolled steel sheet having superior suitability to stretch flanging and ferrite-bainite structure and its manufacture
JPS61170518A (en) * 1985-01-25 1986-08-01 Kobe Steel Ltd Production of high-strength hot rolled steel sheet having excellent formability
JPS6196057A (en) * 1985-06-01 1986-05-14 Kobe Steel Ltd Hot-rolled steel plate having maximum strength
JPS6250436A (en) * 1985-08-29 1987-03-05 Kobe Steel Ltd Low carbon steel wire superior in cold wire drawability
US5213634A (en) * 1991-04-08 1993-05-25 Deardo Anthony J Multiphase microalloyed steel and method thereof
KR101751530B1 (en) 2015-12-28 2017-06-27 주식회사 포스코 Steel sheet for tool and method of manufacturing for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521562A (en) * 1998-07-24 2002-07-16 エス・エム・エス・デマーク・アクチエンゲゼルシャフト Manufacturing method and manufacturing equipment for duplex stainless steel

Also Published As

Publication number Publication date
JPS5534659A (en) 1980-03-11

Similar Documents

Publication Publication Date Title
JP7166396B2 (en) Method for producing high-strength steel sheet with improved strength, ductility and formability
JPS5818970B2 (en) Method for manufacturing high-strength thin steel sheets with excellent cold workability
JPH01230715A (en) Manufacture of high strength cold rolled steel sheet having superior press formability
JPS5983719A (en) Preparation of unnormalized high strength steel
JPH01272720A (en) Production of high ductility and high strength steel sheet with composite structure
JPS583922A (en) Production of class t-3 tin plate of superior aging property
JP3383017B2 (en) Method of manufacturing bake hardenable high strength cold rolled steel sheet with excellent workability
TWI711708B (en) Method for increasing spheroidization rate of chrome molybdenum steel material
JPS63169331A (en) Production of chromium stainless steel strip of high strength double phase structure having excellent ductility
JPS6167717A (en) Manufacture of high tension steel plate having superior strength and toughness in its weld heat-affected zone
JPH0317244A (en) High strength hot rolled steel plate high having excellent workability and weldability and its manufacture
JP3229107B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation
JPS6320414A (en) Production of high-toughness high-tensile steel plate
JPS6274051A (en) Thin cold rolled high tensile steel sheet having baking hardenability and its production
JPS62139821A (en) Production of high-ductility high-strength cold rolled steel sheet
JPH01168813A (en) Manufacture of high-strength hot-rolled thin steel sheet having excellent press workability
JPH0192317A (en) Manufacture of high-strength sheet metal excellent in stretch-flange workability
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JPS58120720A (en) Production of tempered steel
JPH04110422A (en) Production of 70kgf/mm2 class steel plate having superior weldability and low yield ratio
JPH01195242A (en) Manufacture of high tension steel plate having superior toughness at low temperature with uniformity in thickness direction
JPH10280036A (en) Wire rod for high strength bolt excellent in strength and ductility and its production
JPH0445227A (en) Production of steel product with low yield ratio
JPH07100823B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPH02175817A (en) Manufacture of hot-rolled high-tensile steel plate having dual-phase structure and excellent in workability