JPS58189564A - Maximum value storage type converter - Google Patents

Maximum value storage type converter

Info

Publication number
JPS58189564A
JPS58189564A JP57071878A JP7187882A JPS58189564A JP S58189564 A JPS58189564 A JP S58189564A JP 57071878 A JP57071878 A JP 57071878A JP 7187882 A JP7187882 A JP 7187882A JP S58189564 A JPS58189564 A JP S58189564A
Authority
JP
Japan
Prior art keywords
voltage
current
accident
fault
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57071878A
Other languages
Japanese (ja)
Inventor
Kazuhide Watanabe
渡辺 数英
Kazuyuki Meguro
目黒 和行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIWA DENKI KK
Original Assignee
MIWA DENKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIWA DENKI KK filed Critical MIWA DENKI KK
Priority to JP57071878A priority Critical patent/JPS58189564A/en
Publication of JPS58189564A publication Critical patent/JPS58189564A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/04Measuring peak values or amplitude or envelope of ac or of pulses

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To measure and store the maximum value of a current or voltage gennerated at the time of an accident of a transmission and distribution line system, by integrating a current or voltage at the time of an accident alternately at every one cycle by two integrators, comparing and selecting its result, and updating an output. CONSTITUTION:A current or voltage at the time of an accident is integrated alternately at every one cycle by zero phase auxiliary current transformers 1A-1D of four banks, etc. of the same transmission and distribution line system having resistances 2A-2D of secondary winding being freely attachable and detachable, an impedance amplifier 4, a higher harmonic portion eliminating BPF6, and two integrators 10, 20. This integration result is compared by comparators 30, 40, a switch S5 turns on in accordance with a comparison result, and a measuring output beta is generated through a pulse counting circuit 50 and a D/A converting circuit 60. The output beta is used as a reference value of these comparators 30, 40, and the output beta is updated whenever it becomes larger than the immediately previous output beta. According to this constitution, it is possible to measure and store the maximum value of a current or voltage generated at the time of an accident of a transmission and distribution line system whose ground system, etc. are different.

Description

【発明の詳細な説明】 本発明は、送配電線系統の事故時に発生する電圧または
電流を測定するための装置に関し、特に1その種の電圧
または’II流の最大値を計測しN1憶するための最大
値記憶形変換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring voltage or current occurring during a fault in a power transmission/distribution line system, and in particular to a device for measuring and storing the maximum value of voltage or current of a type. The present invention relates to a maximum value storage type converter for

送配電系統の地絡事故によって発生する異常電圧等は、
健全な他の電力機器に対して急動◆を与え、長時間事故
が継続した場合、他の機器が破壊され、事故を拡大する
ことになる。こわを防止するために、一般的には、送配
電線の中性点を接地して異常電圧発生を防ぎ、地絡事故
時に発生する零相電圧■0、零相電流IOを検出して事
故部分を切り離し事故の拡大を防止する手段を講じてい
る。
Abnormal voltages caused by ground faults in power transmission and distribution systems are
If other healthy power equipment is subjected to sudden movements◆ and the accident continues for a long time, other equipment will be destroyed and the accident will spread. In order to prevent stiffness, the neutral point of power transmission and distribution lines is generally grounded to prevent abnormal voltage generation, and the zero-sequence voltage ■0 and zero-sequence current IO that occur in the event of a ground fault are detected and the accident is detected. Measures are being taken to prevent the accident from spreading by separating the parts.

送電線は、地絡故障時の異常電圧防止、保護継電器の確
実な動作等の理由で、その中性点は数棟の方式で接地さ
れている。それら接地方式は、主として送11m圧によ
って適当なものが採用されているが、代表的なものとし
ては、直接接地方式、抵抗接地方式および消弧リアクト
ル接地方式がある。
The neutral point of power transmission lines is grounded in several ways for reasons such as preventing abnormal voltage in the event of a ground fault and ensuring reliable operation of protective relays. These grounding methods are mainly adopted depending on the feed pressure of 11 m, and representative ones include a direct grounding method, a resistance grounding method, and an arc extinguishing reactor grounding method.

この種系統の事故は、故障電流が大きな値となることか
多く、そのため、接続機器の■気菌、機械的損傷がひど
くなり、再1=Qiφ用が困難となるため、故障のある
線路区間は、短時間の内に切り離されるようにされてい
る。このようなことがら事故時の計測もそのような切り
離しがなさ才するまでにP女、後処理のために1ト駅(
+?な記憶させる機器が必要とされている。このような
知り開山での計測を行ないその計測値を記憶できるもの
として、本出願人は、特開昭5A −/ / 2g /
 7号公報に開示されたような送配電線事故時電圧11
流測定装置を開発した。この測定製蓋は、極めて短時間
にて電圧又はN1流を測定し記憶できるという点では好
ましいものであるが、故VIk電圧又は’Wi、mの所
定時間内の平均価しか計測できないので、次のような必
要には十分に答えらねない。
Accidents in this type of system often occur when the fault current becomes a large value, and as a result, the connected equipment becomes severely damaged due to air pollution and mechanical damage, making it difficult to use 1=Qiφ again. are designed to be separated within a short period of time. Because of this, there is no such separation when it comes to measurements at the time of an accident.
+? There is a need for a device that can store data. As a device capable of performing such measurements at the open mountain and storing the measured values, the present applicant has proposed the following:
Voltage at the time of a transmission/distribution line fault as disclosed in Publication No. 711
Developed a flow measuring device. This measurement lid is preferable in that it can measure and store voltage or N1 current in a very short time, but it can only measure the average value of VIk voltage or 'Wi,m within a predetermined time, so it is not suitable for the following cannot adequately answer such needs.

すなわち、系統事故時の事故継続時間は、系統の接地方
式や変電所に設省゛さねる検出保膿継電方式やしゃ断器
の開閉速度等により異なるものであ   ゛る。例えば
、直接接地方式の場合では、その事故時の零相W流1o
  の継続時間は0.7秒程度であり、抵抗接地方式の
場合では、その事故時の零相電圧vO1零相電流1o 
 の継続時間は/秒萌後であり、消弧リアクトル接地方
式の場合では、その事故時の零相電圧Vo 、零相電流
10の継続時間はθ、OA秒程度である。このように、
系統事故時の事故継続時間は、一般に、約60ミリ秒か
ら7秒以上までの広範囲に亘っているのであるから、事
故発生から一定時間内の平均値を計測しただけでは神々
な事故状態を完全に把握することができない。そこで、
どのような事故継続時間に対しても計測条件を同じにし
て各事故の状態を区別して把握するためKは、事故継続
中における事故電圧又は11tk。
In other words, the duration of a system fault will vary depending on the grounding method of the system, the detection and preservation relay system installed at the substation, the opening/closing speed of the breaker, etc. For example, in the case of a directly grounded type, the zero-phase W flow 1o at the time of the accident
The duration time of
The duration of the fault is approximately θ, OA seconds, and in the case of the arc-extinguishing reactor grounding type, the duration of the zero-sequence voltage Vo and zero-sequence current 10 at the time of the fault is approximately θ, OA seconds. in this way,
The duration of a system accident generally ranges over a wide range from approximately 60 milliseconds to more than 7 seconds, so it is impossible to completely determine the accident state by simply measuring the average value within a certain period of time from the occurrence of the accident. can't figure it out. Therefore,
In order to distinguish and understand the state of each accident by keeping the measurement conditions the same for any accident duration, K is the fault voltage or 11tk during the fault duration.

の最大値を計測し記憶することが必要とされてくる0 本発明の目的は、前述したような必要にがんがみて、送
配電線系統の事故時に発生する電圧または電流の最大値
を計画し記憶するための最大flti記憶形記憶器変換
器することである。
The purpose of the present invention is to measure and store the maximum value of voltage or current that will occur in the event of a fault in a power transmission/distribution line system, taking into consideration the above-mentioned needs. It is possible to convert the maximum flti storage type storage device for storage.

次に、添付図面に基づいて本発明の実施例について本発
明の詳細な説明する。
Next, the present invention will be described in detail with regard to embodiments of the present invention based on the accompanying drawings.

添付図面は、本発明の一実施例としての最大イ(−配憶
形変換器の概略回路図である。この実施例は、事故W#
の最大値を計測記憶させるために構成されたもので、補
助変流器IA、IB、IC及び10は、同一系統のtつ
のバンクの各々の零相電流をピックアップする零相変#
器に接続されるものである。これら補助変流stA、t
e、1c及び10のa次巻線端には、それぞれ抵抗・ぞ
ツケージ2^、2B、2C及び2Dが着脱自在に接続さ
れるよう罠なっている。これら抵抗パッケージ2^、2
B、2C及び2Dは、各バンクにおける零相変流器の変
流比が一般には柚々異なるものであることからして、各
対応する零相変流器の変流比に応じた抵抗値を有するも
のとして、各バンクに流れる零相電流の加算値に比例し
て1!I庄が出力端子3に出力されるように、直列に接
続されている。これら抵抗〕9ツケージは、補助変流器
の2次巻線端に着脱自在のプラグイン方式のものとされ
ているので、各バンクに異なる変流、比の零相変流器が
1置されている場合には、その変流比に応じて別の抵抗
値を有する抵抗/?ツケージに差し換えることによって
、各パンクの零相電流の加算値に正確に比例した合成電
圧信号を出力端子3に与えることが容易にできる。
The attached drawing is a schematic circuit diagram of a maximum storage type converter as an embodiment of the present invention.
The auxiliary current transformers IA, IB, IC, and 10 are configured to measure and store the maximum value of
It is connected to the device. These auxiliary current transformations stA, t
Resistor cages 2^, 2B, 2C and 2D are connected to the ends of the a-th windings of windings e, 1c and 10 in a detachable manner, respectively. These resistor packages 2^, 2
Since the current transformation ratio of the zero-phase current transformer in each bank is generally different, B, 2C, and 2D are resistance values according to the current transformation ratio of each corresponding zero-phase current transformer. 1!, which is proportional to the sum of the zero-sequence currents flowing through each bank. They are connected in series so that the output terminal 3 is outputted to the output terminal 3. These 9 resistors are designed to be plug-in types that can be attached and detached to the secondary winding end of the auxiliary current transformer, so each bank has one zero-phase current transformer with a different current transformation and ratio. If so, resistor with different resistance value depending on its current transformation ratio/? By replacing the pump with the pump, it is easy to provide the output terminal 3 with a composite voltage signal that is exactly proportional to the sum of the zero-sequence currents of each puncture.

出力端子3に与えられる計測の合5!交i催号は、イン
ピーダンス変換増巾器4を介してバンドパスフィルタ5
に加えられる。バンドパスフィルタ5は、その交流信号
から事故時の直流分、高調波分を取り除き、基本事故電
流または電圧分のみを全波整流回路6へ印加する。この
信号は、全波整流回路6にて直流変換される。また、出
力端子3に4見られる計測の合成交流信号は、インピー
ダンス変換増巾器4を介して制御部7へも入力され、制
御部7にて基準値と比較されて、事故発生の有無がチェ
ックされ、制御部7は、事故発生を確認すると、スイッ
チS/、S2、S3及びS+へ指示信号を送り、そのオ
ン、オフを制御する。
The sum of the measurements given to output terminal 3 is 5! The alternating signal is passed through an impedance conversion amplifier 4 to a bandpass filter 5.
added to. The bandpass filter 5 removes the DC component and harmonic components at the time of a fault from the AC signal, and applies only the basic fault current or voltage component to the full-wave rectifier circuit 6. This signal is converted into DC by a full-wave rectifier circuit 6. In addition, the measured composite AC signal seen at the output terminal 3 is also input to the control unit 7 via the impedance conversion amplifier 4, and is compared with a reference value in the control unit 7 to determine whether or not an accident has occurred. When the control unit 7 confirms that an accident has occurred, it sends an instruction signal to the switches S/, S2, S3, and S+ to control their on/off states.

第7の積分器10は、コンデンサ11と、増巾器12と
から構成され、第2の積分器20は、コンデンサ21と
、増巾器22とから構成されている。これら積分器10
及び20は、後述するように、交互に事故電流又は電圧
の/サイクル1tJh間の積分を行いその間の事故信号
の平均値を得るためのものである。こへで、積分期間を
/サイクルとしたのは、これ以下の期間では事故発生晧
の位相による(り返し娯差が発生したり儂流器や補助変
流器の残留磁束の影i1により半サイクル単位で値が異
なり変換飼養を招くためである。また、積分器を2回路
使用したのは、積分器の放電期間による不感帯時間を除
くためで、これにより、本変換器の入力に対する応答時
間は、コサイクル分すなわち入力の周波数が!; OH
z  のとき、IIOミリ秒となり、継続時間ダ0 ミ
IJ秒の系統事故時の零相電圧、零相電流も計1lII
可能となる。
The seventh integrator 10 includes a capacitor 11 and an amplifier 12, and the second integrator 20 includes a capacitor 21 and an amplifier 22. These integrators 10
and 20, as will be described later, are used to alternately integrate the fault current or voltage over a period of 1tJh per cycle and obtain the average value of the fault signal during that period. Here, the reason why the integration period is set to /cycle is that if the period is shorter than this, it will depend on the phase at the time of the accident occurrence (repetitive stress difference will occur or the residual magnetic flux of the current transformer and the auxiliary current transformer will be affected by the residual magnetic flux i1). This is because the values differ in each cycle, leading to conversion feeding.Also, the reason why two integrator circuits are used is to eliminate the dead band time due to the discharge period of the integrator, which reduces the response time to the input of this converter. is the cocycle, that is, the input frequency!; OH
When z, it is IIO milliseconds, and the zero-sequence voltage and zero-sequence current at the time of a system fault with a duration of 0 milliJ seconds are also 1lII in total.
It becomes possible.

制御部7は、事故が無い状態においては、スイッチS/
、S3をオフ状態、スイッチS2、s+をオン状態とす
る。スイッチS2、S4tをオン状態とすることにより
、コンデンサ11及び21は放電状態となる。制御s7
は、事故が発生すると、先ススイッチS/、SIIをオ
ン状態とし、スイッチS2、S3をオフ状態とし、第1
の績分銖10が積分動作を行なうようにし、事故発生か
ら/サイクル期間後、スイッチS/、SIIをオフ状態
とし、スイッチS−、S3をオン状態とし、筆コの積分
器20が積分動作を行なうようにする。そして、制御部
7は、事故が発生している間、このような動作が交互に
繰り返されるような制御な行なう。この制御状態をまと
めると次の表の如くなる。
The control unit 7 controls the switch S/S when there is no accident.
, S3 are turned off, and switches S2 and s+ are turned on. By turning on the switches S2 and S4t, the capacitors 11 and 21 are placed in a discharged state. control s7
When an accident occurs, the first switch S/ and SII are turned on, the switches S2 and S3 are turned off, and the first
After a cycle period has elapsed since the occurrence of the accident, the switches S/ and SII are turned off, the switches S- and S3 are turned on, and the integrator 20 of the pen is set to perform an integral operation. Make sure to do the following. Then, the control unit 7 performs control such that such operations are alternately repeated while an accident occurs. This control state is summarized as shown in the following table.

このような動作によって、積分器10及び20から、事
故電流の/サイクル毎の平均値信号が、事故継続中、連
続して得られることになる。積分器10からの平均値信
号(積分された計!5lll信号)は、第1の比較器3
0の一方の入力に如上られ、積分器20からの平均値イ
ぎ号は、第2の比較器40の一方の入力に如上られ、こ
ねら比較器30及び40は、それら平均値信号とパルス
計数回路50に記憶された記憶値との比較を行う。積分
器10からの平均値信号をα4、積分器20からの平均
値信号なα  /’Pルス計数回路50に記憶さ1 れた記憶値であってデジタル−アナログ変換回路60に
てアナログイーに変換されたアナログ粗(憎値をβとす
ると、α、〉β またはα2〉β のとき、比較器30
又は40は、オア回路70に指示信吟を入力し、オア回
路70は、それに応じてスイッチ15をオン状態とする
信号を出力する。逆に、α、〈βまたはα2くβのとき
、比較器30又は40はオア回路70を介してスイッチ
S5をオフ状態とするようになっている。
By such an operation, the integrators 10 and 20 continuously obtain a cycle-by-cycle average value signal of the fault current while the fault continues. The average value signal from the integrator 10 (total integrated !5lll signal) is sent to the first comparator 3
0, the average value signal from the integrator 20 is applied to one input of the second comparator 40, and the comparators 30 and 40 combine the average value signal and the pulse signal. A comparison is made with the stored value stored in the counting circuit 50. The average value signal from the integrator 10 is α4, and the average value signal from the integrator 20 is α/'P. When the converted analog roughness value is β, the comparator 30
Alternatively, 40 inputs an instruction signal to the OR circuit 70, and the OR circuit 70 outputs a signal to turn on the switch 15 in response. Conversely, when α, <β or α2×β, the comparator 30 or 40 turns off the switch S5 via the OR circuit 70.

スイッチS5がオン状態のとき、・母ルス計数回路50
は、基準ノヤルス発生器80がらスイッチ3.3−を通
して送られてくる基準パルスを計数し、α、=βまたは
α2二βになるまで計数を続ける。
When the switch S5 is in the on state, the base pulse counting circuit 50
counts the reference pulses sent from the reference pulse generator 80 through the switch 3.3-, and continues counting until α,=β or α22β.

α、=βまたはα2=βになったとき、比較器3゜又は
40はオア回路70を介してスイッチs、1をオフ状態
とし、・母ルス計数回路500計数を停【ヒさせる。こ
の動作により、・臂ルス計数口路5oには、事故発生か
ら事故継続中の全体における事故電流の/サイクル毎の
平均値計測信号のうちの最大値が記憶されることKなる
When α, = β or α2 = β, the comparator 3° or 40 turns off the switch s, 1 via the OR circuit 70, and stops the counting of the pulse counting circuit 500. As a result of this operation, the maximum value of the average value measurement signals for each cycle of the fault current over the entire period from the occurrence of the accident to the time the accident continues is stored in the arm count counting port 5o.

パルス計数回路50に記憶された蝦大平均値計測伯号は
、デジタル−アナログ変換回路6oにてアナログ量に変
換して、出力増巾器90を介して、事故中の最大平均値
計測出力信号として伝送されてもよいし、又は、・母ル
ス計数回路50かも直接的にデジタル量として伝送され
てもよい。
The shrimp average value measurement number stored in the pulse counting circuit 50 is converted into an analog quantity by the digital-to-analog conversion circuit 6o, and is outputted as the maximum average value measurement output signal during the accident via the output amplifier 90. Alternatively, the base pulse counting circuit 50 may also be directly transmitted as a digital quantity.

また、この計測値の分解能は、基準パルス発生器80の
発振周波数と比較器30及び40の比較能力により決定
されるもので、それらを適当に選定することKより非常
KAい分解能のものとすることができる。更にまた、事
故前の初期状態は、ノタルス計数回路50をリセット(
計数OII帰)することによって得られる。
Furthermore, the resolution of this measurement value is determined by the oscillation frequency of the reference pulse generator 80 and the comparison ability of the comparators 30 and 40, and by appropriately selecting them, it is possible to obtain a resolution much higher than K. be able to. Furthermore, in the initial state before the accident, the notarus counting circuit 50 is reset (
It is obtained by counting OII (reduction).

本発明の最大値配憶形変換器は、前述したような構成で
あるので、事故継続時間が種々大巾に変化しても、事故
発生から事故継続中の全体における事故電流の/サイク
ル毎の平均値計1lIll信号のうちの最大値が計測さ
れ記憶されるので、本故の状態をより完全に把抛できる
ようなデータを与えることが可能である。
Since the maximum value storage type converter of the present invention has the above-described configuration, even if the fault duration varies widely, the fault current per cycle from the occurrence of the fault to the duration of the fault can be reduced. Since the maximum value of the average signal is measured and stored, it is possible to provide data that allows a more complete understanding of the actual state.

尚、前述の実施例では、事故電流を計測するものとして
補助変流器IA〜10を零相変流器に接続する場合につ
いて説明したのであるが、事故電圧を計測する場合には
、これら補助変流器を補助変圧器に変史し、事故電圧を
ピックアップする電圧変成器に接続すればよ(、本発明
はこのような場合も含むものである。
In the above-mentioned embodiment, the case where the auxiliary current transformers IA to 10 are connected to the zero-phase current transformer was explained to measure the fault current, but when measuring the fault voltage, these auxiliary current transformers The current transformer may be converted into an auxiliary transformer and connected to a voltage transformer that picks up the fault voltage (the present invention also includes such a case).

【図面の簡単な説明】[Brief explanation of drawings]

添付1面は本発明の一実施例としての最大値配憶形変換
器の析略回路図である。 1^、1B、IC,ID・・・・・・補助変流器、2^
、2B、2C,2D・・・・・・m 抗)母ツケージ、
3・・・・・・出力端子、 4・・・・・・インピーダ
ンス変換増巾器、  5・・・・・・パントノ母スフイ
ルタ、  6・・・・・・全波整流回路、 7・・・・
・・制御部、 lO・・・・・・華/の積分器、 20
・・・・・・第二の積分器、  30・・・・・・第1
の比較器、 40・・・・・・第二の比較器、50・・
・・・・パルス計数回路、 60・・・・・・デジタル
−アナログ変換回路、  70・・・・・・オア回路、
80・・・・・・基準・9ルス発生器、 90・・・・
・・出力増巾器、 S/、S、2、S3、slI、s、
t・・・・・・スイッチ。
Attached page 1 is an analytical circuit diagram of a maximum value storage type converter as an embodiment of the present invention. 1^, 1B, IC, ID...Auxiliary current transformer, 2^
, 2B, 2C, 2D...m anti)mother cage,
3... Output terminal, 4... Impedance conversion amplifier, 5... Pantone motherboard filter, 6... Full wave rectifier circuit, 7...・
・・Control unit, lO・・・・Hana/integrator, 20
・・・・・・Second integrator, 30・・・・・・First
Comparator, 40...Second comparator, 50...
...Pulse counting circuit, 60...Digital-to-analog conversion circuit, 70...OR circuit,
80...Reference/9 pulse generator, 90...
...output amplifier, S/, S, 2, S3, slI, s,
t...Switch.

Claims (1)

【特許請求の範囲】 送配電線系統に生ずる事故電流又は事故電圧をピックア
ップしてそれに比例した事故電流又は電圧信号を発生す
る事故電流又は電圧信号発生手段と、該事故電流又は電
圧信号発生手段からの事故電流又は電圧信号を積分する
ための第1及び第一の積分器と、事故電流又は電圧の発
生に応答して前記第1及び第一の積分器の積分動作をそ
の事故電流又は電圧の所定サイクル毎に交互に開始させ
たり停止させたりするための制御部と、前記第7及び第
一の積分器からの積分値を記憶するための記憶部と、前
記第1の積分器からの新しい積分値と前記記憶部に記憶
された前記積分値とを比較して前記新しい積分値の方が
大きいときに所定の出力を発生する第1の比較器と、前
記第一の積分器からの新しい積分値と前記記憶部に記憶
された前記積分値とを比較して前記新しい積分値の方が
太きいときに所定の出力を発生する第一の比較器と、前
記第1の比較器からの前Eph定の出力又は前記第二の
比較器からの前記所定の出力に応答して前記舅己憚部の
紀憶仙を前記新しい積分値に更新させる手段とを備★る
ことを特徴とする最太値舊【已憶形変換器。
[Scope of Claims] Fault current or voltage signal generation means for picking up fault current or fault voltage occurring in a power transmission and distribution line system and generating a fault current or voltage signal proportional to the fault current or fault voltage, and from the fault current or voltage signal generation means. first and first integrators for integrating a fault current or voltage signal of the fault current or voltage; a control section for alternately starting and stopping the integrated values for each predetermined cycle, a storage section for storing the integrated values from the seventh and first integrators, and a new integrated value from the first integrator. a first comparator that compares the integral value with the integral value stored in the storage unit and generates a predetermined output when the new integral value is larger; a first comparator that compares the integral value with the integral value stored in the storage unit and generates a predetermined output when the new integral value is thicker; and means for updating the Kikusen of the Eph constant to the new integral value in response to the output of the previous Eph constant or the predetermined output from the second comparator. Value code [memory converter.
JP57071878A 1982-04-28 1982-04-28 Maximum value storage type converter Pending JPS58189564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57071878A JPS58189564A (en) 1982-04-28 1982-04-28 Maximum value storage type converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57071878A JPS58189564A (en) 1982-04-28 1982-04-28 Maximum value storage type converter

Publications (1)

Publication Number Publication Date
JPS58189564A true JPS58189564A (en) 1983-11-05

Family

ID=13473210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57071878A Pending JPS58189564A (en) 1982-04-28 1982-04-28 Maximum value storage type converter

Country Status (1)

Country Link
JP (1) JPS58189564A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204289A (en) * 1984-03-26 1985-10-15 Konishiroku Photo Ind Co Ltd Self-diagnosing device of copying machine
JPS6290551A (en) * 1984-12-17 1987-04-25 Sony Tektronix Corp Peak value detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114669A (en) * 1974-07-24 1976-02-05 Hitachi Kiden Kogyo Kk PARETSUTOROODA
JPS51146869A (en) * 1975-06-11 1976-12-16 Chino Works Ltd Peak tracking circuit
JPS5630654A (en) * 1979-08-21 1981-03-27 Toyo Electric Mfg Co Ltd Peak value detection system
JPS56112817A (en) * 1980-02-12 1981-09-05 Miwa Electric Transmission line fault time voltage and current measuring device
JPS5712235A (en) * 1980-06-24 1982-01-22 Sanshin Seinetsu Kogyo Kk Heating system by solar energy for hothouse for agriculture and fishery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114669A (en) * 1974-07-24 1976-02-05 Hitachi Kiden Kogyo Kk PARETSUTOROODA
JPS51146869A (en) * 1975-06-11 1976-12-16 Chino Works Ltd Peak tracking circuit
JPS5630654A (en) * 1979-08-21 1981-03-27 Toyo Electric Mfg Co Ltd Peak value detection system
JPS56112817A (en) * 1980-02-12 1981-09-05 Miwa Electric Transmission line fault time voltage and current measuring device
JPS5712235A (en) * 1980-06-24 1982-01-22 Sanshin Seinetsu Kogyo Kk Heating system by solar energy for hothouse for agriculture and fishery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204289A (en) * 1984-03-26 1985-10-15 Konishiroku Photo Ind Co Ltd Self-diagnosing device of copying machine
JPS6290551A (en) * 1984-12-17 1987-04-25 Sony Tektronix Corp Peak value detector
JPH032430B2 (en) * 1984-12-17 1991-01-16 Sony Tektronix Corp

Similar Documents

Publication Publication Date Title
CN1786726B (en) System and method of locating ground fault in electrical power distribution system
JP3172166B2 (en) Electronic circuit breaker using digital circuit with instantaneous trip function
EP2510599B1 (en) Line fault detector
US8031447B2 (en) Transformer through-fault current monitor
JPH05501043A (en) Loss of neutral or ground protection circuit
CA2038213C (en) Transformer differential relay
DE102014221720A1 (en) Residual current device with mains voltage-dependent and mains voltage-independent detection
JP2002311061A (en) Processor for electric power
JP4110747B2 (en) Harmonic monitoring system in power system
EP0506035B1 (en) Method and device for detecting saturation in current transformers
EP2196812A1 (en) Monitoring device for detecting earth faults
JPS58189564A (en) Maximum value storage type converter
CN109031180B (en) Method and device for detecting residual voltage state of capacitor voltage transformer
CN101435843B (en) Method for recognizing short circuit fault of power distribution network by dynamically regulating over current fixed value
WO2020011740A1 (en) Ground fault detection circuit and device
RU61893U1 (en) SYSTEM OF AUTOMATED CONTROL OF THE CONDITION UNDER THE OPERATING VOLTAGE OF PAPER-OIL INSULATION OF THE CONDENSER TYPE OF THE GROUP OF THREE-PHASE ELECTRICAL EQUIPMENT
US20240106225A1 (en) System and method for restraining differential bias
JP2969905B2 (en) Fault detection device for distribution line
JP2000030761A (en) Charge/discharge testing system
CN113267670A (en) Fault phase current acquisition circuit of feeder terminal device
JP3230241B2 (en) Modulation equipment protection relay
SU1029310A1 (en) Device for earth (frame) fault protection of synchronous generator in single point of excitation circuit
SU947938A1 (en) Device for relay protection of electric installation
JPH0280977A (en) Use limit detection system of zinc oxide type lightning arrester
JPH0817532B2 (en) Ground fault detector