JPS58188671A - Wire dot printer head - Google Patents

Wire dot printer head

Info

Publication number
JPS58188671A
JPS58188671A JP7303182A JP7303182A JPS58188671A JP S58188671 A JPS58188671 A JP S58188671A JP 7303182 A JP7303182 A JP 7303182A JP 7303182 A JP7303182 A JP 7303182A JP S58188671 A JPS58188671 A JP S58188671A
Authority
JP
Japan
Prior art keywords
point
core
period
armature
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7303182A
Other languages
Japanese (ja)
Inventor
Hiroya Suzuki
鈴木 弘也
Hiroki Nakanishi
中西 寛紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7303182A priority Critical patent/JPS58188671A/en
Publication of JPS58188671A publication Critical patent/JPS58188671A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/22Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material
    • B41J2/23Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material using print wires
    • B41J2/27Actuators for print wires
    • B41J2/275Actuators for print wires of clapper type

Abstract

PURPOSE:To decrease power consumption for driving and to reduce the rising in a temp., by using a semi-hard magnet material in the magnetic circuit of an electromagnet part for driving the wire of a dot printer. CONSTITUTION:A semi-hard magnet core 10 is used with respect to the electromagnet for driving a wire pin 15. When a pulse current is passed through a coil 12 during the period of a point A- a point C, the core is magnetized and the magnetic flux of the core rises during the period of the point A- the point C. An armature 13 is moved toward the printing position after the point B and printing operation is carried out between a point G- a point H. During this period, when a pulse current with inverse polarity is flowed through the coil between a point D- a point F, the core is demagnetized and the magnetic flux of the core comes to almost zero during the period of the point D- the point F. The armature completing printing operation starts the movement toward a stationary position after the H point because the magnetic flux of the core already comes to zero and returned to the stationary position at a point I while again starts the next repeating operation after a point J.

Description

【発明の詳細な説明】 本発明は、ワイヤドツトプリンタヘッドにおいて、ワイ
ヤを駆動するための電磁石部の磁気回路に半硬質磁石材
料を用い、ヘッドの消費電力を低減し、温度上昇を少く
することをはかったものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a semi-hard magnetic material in the magnetic circuit of the electromagnet section for driving the wire in a wire dot printer head to reduce power consumption and temperature rise of the head. It was measured.

ワイヤドツトプリンタにおいては、印字速度の増加、印
字品質の向上が技術的な重ah題であり、これに対応す
べく種々の形式のワイヤ駆動機構が用いられているが、
従来もつとも広く用いられているものは電磁石式である
。これは、11磁石によりてアーマチュアを吸引させ、
このアーマチュアの運動により、ビンを駆動しド□ット
印字を行うものであった。この方式の欠点の一つは、印
字速度を増加させるためにアーマチユアの動作を早くす
る必要があり、電磁石を大電力で駆動しなければならず
、電磁石コイルの温度上昇が大きくなることである。
In wire dot printers, increasing printing speed and improving printing quality are important technical issues, and various types of wire drive mechanisms are used to address these issues.
The conventional and most widely used type is the electromagnetic type. This attracts the armature with 11 magnets,
The motion of this armature drove the bottle and printed dots. One of the disadvantages of this method is that in order to increase the printing speed, the armature must operate quickly, and the electromagnet must be driven with a large amount of power, which increases the temperature rise of the electromagnet coil.

本発明は、このような問題点の改善を目的とし。The present invention aims to improve such problems.

電磁石の磁気回路に半硬質磁性材料を用い、同材料部分
な着磁、減磁することによりてアーマチユアの動作、復
旧を行わせようとするものである。
A semi-hard magnetic material is used in the magnetic circuit of the electromagnet, and the armature is operated and restored by magnetizing and demagnetizing parts of the material.

従来用いられて来た電磁石方式でも、アーマチユアを駆
動するに足る最小限の巾のパルス電流を電磁石に印加し
、駆動電力を減らすようになっているが1本発明による
半硬質磁石を用いた方式では、本質的には、磁石の着減
磁に必要なきわめて短いパルス巾の駆動電流を印加すれ
ば良く、駆動電力の低減を可能としている。
Even in the conventional electromagnetic method, a pulse current of a minimum width sufficient to drive the armature is applied to the electromagnet to reduce the driving power, but the present invention uses a method using semi-hard magnets. Essentially, it is sufficient to apply a driving current with an extremely short pulse width necessary for magnetizing and demagnetizing the magnet, thereby making it possible to reduce the driving power.

以下具体的な実施例について説明しよう。第1図は従来
用いられて来た電磁石方式のワイヤ駆動機構を示し、ま
た第2図はこの動作のタイミングを示す図である。以下
両図について、従来方式のものの動作を説明する。第1
図において、コアおよびヨーク1がコイル2に流れる電
流によって励磁されると、アーマチユア3は右方向に吸
引される。したがってビン(ドツトワイヤ)5はアーマ
チユアとともに右方向に移動し、プラテン9を圧す。こ
のとき、リボン7、紙8は、プラテン9とビン50間で
加圧され、リボンに含まれたインクにより紙にドツトが
印刷される。印刷後は、この時点では、コイルの励磁電
流は多になっており、アーマチユアに対する吸引力も零
になっているため、プラテン、紙、リボンからの反撥力
と復帰バネ4に予め付与されている左方向への>m力に
よってアーマチユアは左方に移動し、最初の位&に復帰
する。
A specific example will be explained below. FIG. 1 shows a conventionally used electromagnetic wire drive mechanism, and FIG. 2 is a diagram showing the timing of this operation. The operation of the conventional system will be explained below with reference to both figures. 1st
In the figure, when the core and yoke 1 are excited by the current flowing through the coil 2, the armature 3 is attracted to the right. Therefore, the bin (dot wire) 5 moves to the right together with the armature and presses against the platen 9. At this time, the ribbon 7 and paper 8 are pressurized between the platen 9 and the bottle 50, and dots are printed on the paper using the ink contained in the ribbon. After printing, at this point, the excitation current of the coil is high and the attraction force to the armature is zero, so the repulsive force from the platen, paper, and ribbon and the left >m force in the direction causes the armature to move to the left and return to the initial position &.

以上の動作を第2図について説明しよう。第2図はコイ
ル2に流れるt滝の時間的変化と、これに対応して動く
アーマチユア3の位置の時間的変化を1時間軸を合わせ
て示したものである。時間軸上λ点でコイルに電圧が印
加されると、コイル電流は増加しはじめる。アーマチユ
アは、電流が増加し、吸引力がある値に達したB点以降
運動を開始し、以下印字位置に向って急速に移動する。
The above operation will be explained with reference to FIG. FIG. 2 shows temporal changes in the T waterfall flowing through the coil 2 and temporal changes in the position of the armature 3 that moves in response to this, with the 1-time axis aligned. When a voltage is applied to the coil at point λ on the time axis, the coil current begins to increase. The armature begins to move after point B, where the current increases and the attractive force reaches a certain value, and thereafter rapidly moves toward the printing position.

アーマチュア動作速度はできるだけ大きいことが必要、
であり、このために1コイル電流はA点以後短期関K、
充分な電流値に達するように設計されている。反面、電
磁石の発熱による温度上昇は非常に大きくなるため、ア
ーマチユアが充分に加速された時点Cで、コイルへの印
加′電圧は零となり、つぎの動作のため再び電圧印加が
行われる0点までは、オフ期間となる。
The armature operating speed must be as high as possible,
Therefore, the current in one coil is a short-term function K after point A,
It is designed to reach a sufficient current value. On the other hand, the temperature rise due to the heat generated by the electromagnet becomes very large, so at point C when the armature is sufficiently accelerated, the voltage applied to the coil becomes zero, and the voltage is applied to the coil again until the 0 point for the next operation. is the off period.

一方、アーマチユアは、6点においてコイルの印加電圧
が零となってからも与えられた速度で動作方向に運動し
、D−B点で印字位置に達する。
On the other hand, the armature moves in the operating direction at a given speed even after the voltage applied to the coil becomes zero at six points, and reaches the printing position at point D-B.

このとき、ビン5はプラテン9を圧す状態になり。At this time, the bottle 5 is in a state of pressing against the platen 9.

リボン7に含まれたインクによって紙8に印字が行われ
る。印字終了後は、グラデフ1紙、リボンからの反撥力
と、OII帰バネ4の復帰力とKよりて。
Printing is performed on paper 8 using ink contained in ribbon 7. After printing is completed, the repulsion force from the Gradeff 1 paper and ribbon, the return force of the OII return spring 4, and K are used.

(この時点では、アーマチ翼アには吸引力は働かないの
で)静止位置方向に運動を開始し、F点にて静止位置に
達し、以降若干の衝突はね返り期間の後、静止位置に停
止する。これで1回の印字動作が終了し、0点以降つぎ
の動作に入ることになる。
(At this point, there is no suction force acting on the armature blades) It starts moving toward the rest position, reaches the rest position at point F, and then stops at the rest position after some collision and rebound period. This completes one printing operation, and the next operation begins after the 0 point.

以上に述べた、従来の印字方式は、現在広く使用されて
いるが、その問題点の一つは&磁石部分の発熱が大きい
ことである。印字速度向上、したがってアーマチユアの
動作速度、加速度の増大をはかるため、前述したように
ヲィルには短時間ながら大電流が流される。したがって
、励磁のデユーディサイクルを考慮しても、電―石部分
は非常に高温となり、これが印字速度を制約する大きな
要素となっている。実際の例でも、ヘッドあたりの平均
消費電力は大きいものでは100Vv以上にまで達して
いる。
The conventional printing method described above is currently widely used, but one of its problems is that the magnet portion generates a large amount of heat. In order to improve the printing speed, and thus increase the operating speed and acceleration of the armature, a large current is passed through the coil for a short period of time as described above. Therefore, even when the excitation duty cycle is considered, the temperature of the electric stone becomes extremely high, and this is a major factor that limits printing speed. In actual examples, the average power consumption per head reaches 100 Vv or more in some cases.

つぎに、本発明によるワイヤ駆動機構の動作と特長を第
S図、第4図、第5図および第6図によりて説明しよう
Next, the operation and features of the wire drive mechanism according to the present invention will be explained with reference to FIGS. S, 4, 5, and 6.

第3図において、10は半硬質磁石コア、11はヨーク
、13は復帰バネ14によって支持されたアーマチユア
である。第3図は、静止状態を示す図であるが、以下の
ような順序によって動作する。
In FIG. 3, 10 is a semi-hard magnet core, 11 is a yoke, and 13 is an armature supported by a return spring 14. Although FIG. 3 is a diagram showing a stationary state, operations are performed in the following order.

コイル12にパルス電流を通じると、コア10は電流に
より磁化され着磁状態となる。したがってアーマチュア
13は、コア10、ヨーク11からなる磁気囲路によっ
て右方向に吸引される。ビン15もアーマチユアと共に
右方向に移動し、プラテン19を圧す、このとき、リボ
ン17のインクによって紙1Bにドツトが印刷される。
When a pulse current is passed through the coil 12, the core 10 is magnetized by the current and enters a magnetized state. Therefore, the armature 13 is attracted to the right by the magnetic circuit consisting of the core 10 and the yoke 11. The bottle 15 also moves to the right together with the armature and presses the platen 19. At this time, dots are printed on the paper 1B by the ink of the ribbon 17.

この間に、コイルに逆極性のパルス電流を通じると、コ
アはこれまで着磁されていたものが減磁される。パルス
電流値を適当に設定することによって、減磁後の残留磁
束はほとんど零となし得るやしたがってアーマチユアに
は吸引力は働らかず、ドツト印刷完了後は、アーマチユ
アはプラテン、紙、リボンからの反撥力と、復帰バネの
左方向への復帰力によって左方に移動し最初の位置に復
帰する。
During this time, when a pulse current of opposite polarity is passed through the coil, the previously magnetized core is demagnetized. By appropriately setting the pulse current value, the residual magnetic flux after demagnetization can be reduced to almost zero.Therefore, no attractive force is applied to the armature, and after dot printing is completed, the armature is free from the platen, paper, and ribbon. It moves to the left and returns to its initial position due to the repulsive force and the leftward return force of the return spring.

以上の動作を、第4図に対応させて説明するとつぎのよ
うになる。コイルKA点〜C点の期間中パルス電流を流
すと、コアは着磁し、コア磁束はA点〜C点の期間に立
上る。アーマチユアはB点以降印字位置に向りて運動し
、G点〜H点で印字動作を行う。この間でD点〜F点で
コイルに逆極性のパルス電流を流すとコアは減磁し、コ
ア磁束はD点〜F点の期間でほぼ零となる。印字動作を
完了したアーマチユアは、すでにコア磁束は零になって
いるので、H魚身後静止位置に向って運動を開始し、1
点で静止位置に帰着し、J点以降貴びつぎの繰返し動作
に入る。
The above operation will be explained as follows in conjunction with FIG. When a pulse current is applied to the coil during the period from point KA to point C, the core is magnetized, and the core magnetic flux rises during the period from point A to point C. The armature moves toward the printing position after point B, and performs a printing operation from point G to point H. During this period, when a pulse current of opposite polarity is passed through the coil between points D and F, the core is demagnetized and the core magnetic flux becomes almost zero during the period between points D and F. After completing the printing operation, the armature's core magnetic flux has already become zero, so it starts moving toward the stationary position after H fish, and 1
It returns to the stationary position at point J, and begins the next repeated operation from point J onward.

つぎに半硬質機石の着減磁について、第5図により説明
しよう。図において、伽)は半硬質磁石材料のB−H特
性曲線、Q))は半硬質磁石材料を着減磁する励磁電流
の時間的変化を示す図、(C)は励磁電流による半硬質
磁石コアの磁束の時間的変化を示す図である。
Next, the magnetization and demagnetization of semi-hard machine stones will be explained with reference to FIG. In the figure, 佽) is a B-H characteristic curve of a semi-hard magnet material, Q)) is a diagram showing the temporal change of an excitation current that magnetizes and demagnetizes a semi-hard magnet material, and (C) is a diagram showing a semi-hard magnet due to an excitation current. It is a figure showing the temporal change of the magnetic flux of a core.

第5図(a) において、半硬質磁石コアは当初減磁状
11にあり、動作点は0点である。これまで説明したご
とく、同図伽)でA点〜C点の期間に、最大値Pを示す
パルス電流を印加すると、磁化状態は同図(1)上で0
点から矢印方向に変化し、パルス電流の最大値Pに対応
した磁化状態L1に達した後、電流が零になった時点で
は4点(着磁状態)に達する。コアの磁束は、磁化状態
の変化に従って、同図(C)においてA点からP点、0
点と変化し着磁状態を維持する。
In FIG. 5(a), the semi-hard magnet core is initially in a demagnetized state 11, and the operating point is zero. As explained above, when a pulse current with the maximum value P is applied during the period from point A to point C in the same figure (1), the magnetization state becomes 0 in (1) of the same figure.
After changing from the point in the direction of the arrow and reaching the magnetization state L1 corresponding to the maximum value P of the pulse current, the current reaches point 4 (magnetized state) when the current becomes zero. The magnetic flux of the core changes from point A to point P and 0 in the same figure (C) as the magnetization state changes.
The magnet changes to a point and maintains its magnetized state.

つぎに、減磁時には、同図(b)でD点〜F点の期間に
最大値Qを示すパルス電流を印加すると、磁化状態は同
図(1)上でり3点から矢印方向に変化し、Ls点を経
て、パルを電流が零−となりた時点では再び0点(減磁
状態)に達する。コアの磁束は、磁化状態の変化に従っ
て、同図(C)においてD点からQ点、F点と変化し減
磁状態となる。第3図、第4図に示した本発明による印
字動作は、印加する正、逆極性のパルス電流の大きさを
、第5図に示したような所定の磁化状態が得られるよう
に設定するととによりて実現できることが理解されよう
Next, during demagnetization, when a pulse current showing the maximum value Q is applied during the period from point D to point F in the figure (b), the magnetization state changes in the direction of the arrow from point 3 at the top of the figure (1). However, when the pulse current reaches zero after passing through the Ls point, the pulse reaches the zero point (demagnetized state) again. As the magnetization state changes, the magnetic flux of the core changes from point D to point Q to point F in the figure (C), resulting in a demagnetized state. The printing operation according to the present invention shown in FIGS. 3 and 4 is achieved by setting the magnitude of the applied pulse current of positive and reverse polarity so as to obtain a predetermined magnetization state as shown in FIG. It will be understood that this can be achieved by

第6図は、第5図に示したものとは若干磁気特性の異な
る、いわゆる複合磁気特性を備えた半硬質磁石材料を用
いた場合の、励磁電流、コア磁束の関係を示す、他の例
である。第5図に示した構成、第4図の動作原理はまっ
たく同じでありて、半硬質磁石材料の着減磁の状態が若
干異なるものである。以下!s6図について説明しよう
。図において(a)は半硬質磁石材料のB−H特性曲線
、(b)は半硬質磁石材料を着減磁する励磁電流の時間
的変化を示す図、(C)は励磁電流による半硬質磁石コ
アの磁束の時間的変化を示す。46図(−1)において
、半硬質磁石コ・アは当初減磁状態にあり動作点は0点
にある。同図Φ)でA点〜C点の期間に、最大値Pを示
すパルス電流を印加すると、磁化状態は0点から矢印方
向に変化し、L3点を経てり、点(層d状M)K達する
。コアの磁束は磁化状態の変化に従って、同図(C)に
おいてA点からP点、0点と変化し、着磁状態を維持す
る。この間の動作は、第5図の場合と同様である。
Figure 6 is another example showing the relationship between exciting current and core magnetic flux when a semi-hard magnet material with so-called composite magnetic properties, which has slightly different magnetic properties than those shown in Figure 5, is used. It is. The configuration shown in FIG. 5 and the operating principle shown in FIG. 4 are exactly the same, but the state of magnetization and demagnetization of the semi-hard magnet material is slightly different. below! Let's explain about the s6 diagram. In the figure, (a) is the B-H characteristic curve of the semi-hard magnet material, (b) is a diagram showing the temporal change of the excitation current that magnetizes and demagnetizes the semi-hard magnet material, and (C) is the diagram showing the semi-hard magnet due to the excitation current. It shows the temporal change in the magnetic flux of the core. In Fig. 46 (-1), the semi-hard magnet core is initially in a demagnetized state and the operating point is at 0 point. When a pulse current showing the maximum value P is applied during the period from point A to point C at Φ in the same figure, the magnetization state changes from point 0 in the direction of the arrow, passes through point L3, and reaches point (layer d-shaped M). Reach K. As the magnetization state changes, the magnetic flux of the core changes from point A to point P to point 0 in the figure (C), and maintains the magnetized state. The operation during this time is the same as in the case of FIG.

つぎに減磁時に、第6図(b)でD点〜F点の期間に最
大値Qを示すパルス電流を印加すると、磁化状態は同図
(a)上でり1点から矢印方向に変化し、L。
Next, during demagnetization, when a pulse current showing the maximum value Q is applied during the period from point D to point F in Figure 6(b), the magnetization state changes in the direction of the arrow from the 1 point at the top of Figure 6(a). L.

点を経てパルス電流が零となった時点では再び0点(減
磁状11)に達する。コアの磁束は、磁化状態の変化に
従って、同図(C)においてD点からQ点F点と変化し
減磁状態となる。ここで、複合磁気特性材料を用いたこ
との利点が生ずる。いま、もし減磁時のパルス電流の大
きさが変動し、第6図(b)において、D点 Q/点、
F点の曲線で示すように大きくなったと仮定しよう。こ
の場合、磁化状態の変化はり1点から出発し、L′S点
を経てσ点に達するようKなる。複合磁気特性を有し、
B−H特性曲線がり1点からLz点の間で段状になって
いるために、パルス電流の最大値がQ点でなく Q’点
であるごとく相当変動しても、パルス電流が零になった
後の残留磁束はあまり大きくはならず、0点と0′点と
の差に対応する種変でしかない。複合磁気特性を有しな
い第5図(a)のような半硬質磁石材料を用いると、減
磁パルスの電流値が大きくなった場合逆方向の残貿磁束
によりて再着磁状態となるおそれのあることは容Jl想
像できよう。このよ5な複合磁気特性をもつ材料は、種
々のものが実用化されており、適当な特性のものを選択
することによって、減磁パルス電流の最大値の許容範囲
を広くすることができる。
When the pulse current becomes zero after passing through this point, it again reaches the 0 point (demagnetized state 11). As the magnetization state changes, the magnetic flux of the core changes from point D to point Q and point F in the figure (C), resulting in a demagnetized state. This is where the advantage of using a material with composite magnetic properties arises. Now, if the magnitude of the pulse current during demagnetization fluctuates, in Figure 6 (b), point D, point Q,
Let's assume that it has grown as shown by the curve at point F. In this case, the change in the magnetization state starts from one point, passes through the L'S point, and reaches the σ point. Has composite magnetic properties,
Since the B-H characteristic curve is stepped between point 1 and point Lz, the maximum value of the pulse current is not at point Q but at point Q' and even if the pulse current fluctuates considerably, the pulse current becomes zero. After that, the residual magnetic flux does not become very large, and is only a variation corresponding to the difference between the 0 point and the 0' point. If a semi-hard magnet material like the one shown in Figure 5(a), which does not have composite magnetic properties, is used, there is a risk of re-magnetization due to residual magnetic flux in the opposite direction when the current value of the demagnetizing pulse becomes large. You can imagine that. Various materials having such composite magnetic properties have been put into practical use, and by selecting a material with appropriate properties, the allowable range of the maximum value of the demagnetizing pulse current can be widened.

以上述べた説明によって、第4図におけるアーマチユア
の印字動作は、第2図に示した従来形の電磁石・方式の
場合と同様であるが、第4図の本発明による方式では、
正、逆両方向のノくルス電流によって半硬′に磁石から
なるコアの着磁状態を制御し、アーマチユアを動作させ
ていることが理解されよう。また、第4図相当の動作を
、ノ(ルス励磁によらず電磁石によって磁界を発生させ
ようとした場合は、第4図でA点〜D点の期間中電磁石
を励磁しておく必要があるが、)くルス励磁によればλ
点〜C点、D点〜F点の短かい二つのノ(ルスな与えれ
ばよいことが理解できると考える。A点〜D点に和尚す
る期間としては、200μs〜500μsが一般的であ
る。一方半硬質磁石な着磁、減磁するに必畳な時間は、
励磁条件にもよるがそれぞれ50μ3ないし200μm
度以下にすることが可能である。
According to the above explanation, the printing operation of the armature in FIG. 4 is the same as that in the conventional electromagnet method shown in FIG. 2, but in the method according to the present invention shown in FIG.
It will be understood that the armature is operated by controlling the magnetization state of the core made of a semi-hard magnet by using the Norms current in both the forward and reverse directions. In addition, if you try to generate a magnetic field by an electromagnet without using Norse excitation in the operation equivalent to Figure 4, it is necessary to excite the electromagnet during the period from point A to point D in Figure 4. However, according to Curls excitation, λ
I think it can be understood that it is sufficient to give two short nodules, points from point to point C and point from point D to point F. The period to reach points from point A to point D is generally 200 μs to 500 μs. On the other hand, the required time for magnetizing and demagnetizing a semi-hard magnet is
Depending on the excitation conditions, 50μ3 to 200μm, respectively.
It is possible to reduce the

したがって、励磁時間は本発明による場合、従来の電磁
石方式よりも短縮することができ、消費電力の節減をは
かり5ることが明らかである。
Therefore, it is clear that the excitation time according to the present invention can be shorter than that of the conventional electromagnetic method, and power consumption can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来用いられて来た電磁石方式のワイヤドツト
プリンタヘッドのワイヤ駆動機構、第2図は、第1図に
示した従来方式のワイヤ駆動機構の動作のタイミングを
示す図、第5図は半硬質磁石材料をコアに用いた、本発
明によるワイヤ駆動機構、第4図は第S図に示した本発
明によるワイヤ駆動機構の動作のタイミングを示す図、
第5図は半硬質磁石材料として通常のものを用いた場合
の同機構の磁気回路の磁気的変化を示す図、また第6図
は半硬質磁石材料として、複合形の磁気特性を示すもの
を用いた場合の磁気的変化を示す図である。 1 ::f7:tdjヒi!−り、2 :コイル、3ニ
ア−マチ島ア、4:復帰バネ、5:ピン、6:ガイド、
7:リボン、8:紙、9ニブラテン、10:コア、11
:ヨーク、12;コイル、15ニア−マチ暴ア、14:
復帰バネ、15.ヒ/、16:ガイド、17:第11 第3口 第2圃 r 第4床 第5口 (6) 第2凶 コ
Figure 1 shows the wire drive mechanism of a conventionally used electromagnetic wire dot printer head, Figure 2 shows the timing of the operation of the conventional wire drive mechanism shown in Figure 1, and Figure 5 A wire drive mechanism according to the present invention using a semi-hard magnetic material for the core, FIG. 4 is a diagram showing the timing of the operation of the wire drive mechanism according to the present invention shown in FIG.
Figure 5 is a diagram showing the magnetic changes in the magnetic circuit of the same mechanism when a normal semi-hard magnet material is used, and Figure 6 is a diagram showing the magnetic characteristics of a composite type as a semi-hard magnet material. It is a figure which shows the magnetic change when using. 1::f7:tdjhi! -ri, 2: coil, 3 near-gusset island, 4: return spring, 5: pin, 6: guide,
7: Ribbon, 8: Paper, 9 Nibraten, 10: Core, 11
: Yoke, 12; Coil, 15 near-mesh, 14:
Return spring, 15. Hi/, 16: Guide, 17: 11th 3rd exit 2nd field r 4th floor 5th exit (6) 2nd bad boy

Claims (1)

【特許請求の範囲】 (り  ワイヤを駆動するための電磁石部の磁気回路に
半硬質磁石材料を用いたことを%像とするワイヤドツト
プリンタヘッド。 (2、特許請求の範囲第1項記載のものにおいて、上記
半硬質磁石材料として複合形磁気特性をもつ材料を使用
したことを特徴とするワイヤドツトプリンタヘッド。
[Claims] (2) A wire dot printer head that uses a semi-hard magnetic material in the magnetic circuit of the electromagnet section for driving the wire. A wire dot printer head characterized in that a material having composite magnetic properties is used as the semi-hard magnetic material.
JP7303182A 1982-04-30 1982-04-30 Wire dot printer head Pending JPS58188671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7303182A JPS58188671A (en) 1982-04-30 1982-04-30 Wire dot printer head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7303182A JPS58188671A (en) 1982-04-30 1982-04-30 Wire dot printer head

Publications (1)

Publication Number Publication Date
JPS58188671A true JPS58188671A (en) 1983-11-04

Family

ID=13506568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7303182A Pending JPS58188671A (en) 1982-04-30 1982-04-30 Wire dot printer head

Country Status (1)

Country Link
JP (1) JPS58188671A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190390480A1 (en) * 2018-02-21 2019-12-26 Axuator OY Digital lock

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190390480A1 (en) * 2018-02-21 2019-12-26 Axuator OY Digital lock
US10844632B2 (en) * 2018-02-21 2020-11-24 Axtuator OY Digital lock

Similar Documents

Publication Publication Date Title
US3741113A (en) High energy print hammer unit with fast settle out
US3973661A (en) Wire-matrix printers, and electromagnetic actuator mechanisms useful in such printers
JPS58188671A (en) Wire dot printer head
US3946851A (en) Electromagnetic assembly for actuating a stylus in a wire printer
JPH0520990B2 (en)
JPS5829680A (en) Printing head
EP0365267A2 (en) A printing head for an impact dot printer
JPS55152072A (en) Magnetic circuit construction for printing head of wire dot printer
JPS6149850A (en) Printing head
JPH0239388B2 (en)
JPH0340714B2 (en)
JPH0467957A (en) Impact dot print head for printer
JPH0211338A (en) Wire dot printer
JPH04361061A (en) Impact dot head
JPH04247964A (en) Wire dot printing head
JPH01159259A (en) Printing head
JPS6210137Y2 (en)
JPH0396369A (en) Serial printer
JPS60109860A (en) Printing hammr of printer
JPS56105978A (en) Dot printer
JPH05260790A (en) Motor drive circuit
JPH0712680B2 (en) Print wire drive mechanism
JPH0356187B2 (en)
JPH0313353A (en) Impact dot head
JPS5833476A (en) Printing head