JPH0340714B2 - - Google Patents

Info

Publication number
JPH0340714B2
JPH0340714B2 JP12216181A JP12216181A JPH0340714B2 JP H0340714 B2 JPH0340714 B2 JP H0340714B2 JP 12216181 A JP12216181 A JP 12216181A JP 12216181 A JP12216181 A JP 12216181A JP H0340714 B2 JPH0340714 B2 JP H0340714B2
Authority
JP
Japan
Prior art keywords
printing
spring
vibration system
wire
reciprocating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12216181A
Other languages
Japanese (ja)
Other versions
JPS5822185A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12216181A priority Critical patent/JPS5822185A/en
Publication of JPS5822185A publication Critical patent/JPS5822185A/en
Publication of JPH0340714B2 publication Critical patent/JPH0340714B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/22Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material
    • B41J2/23Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material using print wires
    • B41J2/30Control circuits for actuators

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はインパクト式印字装置の中でライン式
及びワイヤードツト式等複数の印字ハンマー、印
字ワイヤーを駆動する印字装置に関し、印字機構
の小型化、高速化及び消費電力の低減を図ること
を目的とするものである。 インパクト式印字装置としては種々のものが知
られており、一般に印字ハンマー、印字ワイヤー
等の印字部材を駆動するのに電磁石を用いてい
る。ワイヤードツト式印字装置を例にとれば、第
1図に示すような構造が一般に用いられている。
放射状に配した複数個の印字ワイヤ駆動用電磁石
1によつて、プラテン2の方向に駆動される印字
ワイヤ3、アマチユア4を備え、印字信号に応じ
て電磁石1が選択的に動作し、印字ワイヤ3をイ
ンクリボン5を介し印字用紙6に文字及び記号等
を印字する。この方式は電磁石の動作速度が比較
的速いこと、構造が簡単であること等の特徴によ
り極めて多く用いられている。 しかし、電磁石は電気エネルギ−機械エネルギ
交換効率が悪く、印字に際して比較的大きな電気
エネルギを必要とする。その結果、電磁石の駆動
回路及び電源の大容量化が必要となり、コストが
高いと同時に装置自体が大型化している。したが
つてこのような複数の印字ワイヤ駆動用電磁石を
有する構造において、印字の高速化は装置の大型
化、消費電力の増大化に直接関わつてくる。ライ
ン式印字装置に関しても詳しい説明は省略する
が、複数の駆動用電磁石を有する限り同様の問題
点を持つている。現在、印字の高速化が進展して
いる中で、これらの欠点を解決する小型、低消費
電力化された印字装置の開発が増々要望されてい
る。 本発明はこれらの要望にそう印字装置を実現す
るものである。 以下本発明の構成をその一実施例を示す図面に
基づいて説明する。第2図は本発明をワイヤード
ツト式印字装置に応用した第1の実施例の印字状
態を現わす断面図であり、第3図は同じく非印字
状態を示す断面図である。第2図において、印字
ワイヤ3はその一端を軸受7で支持され、他端を
印字用バネ8に固定されて印字用紙6と略垂直方
向に往復運動可能に配置されている。印字用バネ
8は磁性材料から成り、前述のように固定した印
字ワイヤ3と反対面に吸着用チツプ9を固定さ
れ、その基端をマグネツト10とともにワイヤハ
ウジング11に固定支持されている。マグネツト
10の一端面には、磁性材料から成り、その一部
に選択用コイル12を巻装したL字型のヨーク1
3が固定され、該ヨーク13の先端面は印字用バ
ネ8が固定された吸着用チツプ9と空〓を有し対
向している。 復帰用電磁石14は通電時にその可動鉄芯に固
定した往復部材15を駆動して第3図のように印
字ワイヤ3を復帰位置に戻し、非通電時に吸引方
向と反対方向に付勢されるバネ16によりリセツ
トされる。 ここで印字ワイヤ3及び印字用バネ8によつて
構成される振動系に関し、印字ワイヤ3及び印字
用バネの可動質量をm印字用バネ8のバネ定数を
kとし、また往復部材15とバネ16によつて構
成される振動系に関し、可動質量M、バネ定数K
とおくとき、 k/m=K/M なる条件を満足するように、各振動系の可動質量
及びバネ定数を設定し、かつ復帰用電磁石14は
往復部材15及びバネ16によつて構成される振
動系の共振周波数で連続駆動される。 さらに往復部材15はその先端に係合部を有
し、第3図に示すように復帰用電磁石14の吸引
により印字用バネ8に当接し、吸着用チツプ9が
ヨーク13に接触するまで印字用バネ8を変形さ
せ、同時に印字ワイヤ3を復帰位置方向に移動さ
せる。 また、第4図に示すように、ワイヤハウジング
11はキヤリツジ17に固定され、該キヤリツジ
17はガイド軸8に印字用紙6に印字面と平行に
往復可能に取付けらており、モータ19により駆
動プーリ20a,20b、駆動ワイヤロープ21
を介して駆動される。キヤリツジ17には、互い
に対向させ配置した発光素子22a、受光素子2
2bより成る位置検出装置22が固定され、発光
素子22a及び受光素子22bの間〓には、印字
ワイヤ3が駆動されるべき位置と対応した透明な
スリツト23を有する帯状片24がガイド軸18
と平行に配置されている。 第5図において、復帰用電磁石4は駆動回路2
5により通電され、選択用コイル12は選択駆動
回路26より通電される。さらに、選択駆動回路
26の動作タイミングが駆動回路25の動作タイ
ミングに対し時間遅れを持つようにする選択制御
回路27を有している。また選択制御回路27は
印字制御回路29と位置検出装置22からタイミ
ング信号により制御される。 次にその動作について説明する。初期状態にお
いては、印字用バネ8はマグネツト10の保持力
により変形状態のまゝ保持されている。またキヤ
リツジ17がモータ19により所定の速度で駆動
され、印字ワイヤ3が駆動されるべき位置に来た
ことを位置検出装置22が検出してタイミング信
号を発すると、このタイミング信号により、駆動
回路25は復帰用電磁石14を動作して往復部材
15を復帰位置方向に駆動し、印字用バネ8を第
3図に示すように変形された状態でマグネツト1
0により保持さる位置まで移動させる。また往復
部材15は、可動質量、バネ16のバネ定数及び
粘性抵抗等により生ずる位相差のため、タイミン
グ信号に対し時間遅れをもつて動作する。そのた
め印字ワイヤ3はタイミング信号から位相差を含
み所定の時間遅れをもつて復帰位置に戻される。
そして選択駆動回路26は選択制御回路27によ
りタイミング信号より所定の時間だけ遅れてタイ
ミングで選択用コイル12の所定コイルにマグネ
ツト10の磁束を打ち消す方向に通電する。その
結果マグネツト10の保持力を打ち消し、所定の
印字用バネ8は拘束を解かれて印字ワイア3をプ
ラテン2の方向に駆動し、印字を行なう。なお、
このとき復帰用電磁石14は非通電状態となつて
おり、往復部材15はバネ16によりプラテン2
の方向に駆動されている。印字終了後、復帰用電
磁石14は再び駆動回路25により通電される。
以上の連続動作により、連続印字が為される。 本実施例における選択用コイル12で与えられ
る電気エネルギは、マグネツト10を含む閉磁路
によつて生ずる保持力を打ち消すことのみに消費
され、前述の従来例のように、空〓を有する磁気
回路で印字部材を高速に移動するための吸引力を
発生させるに要する電気エネルギに比較し極めて
小さい。その結果、磁気回路の小型化が可能とな
る。また吸着用チツプ9、印字用バネ8、マグネ
ツト10、ヨーク13は閉磁路を形成するため、
磁気的効率が良く、磁気回路を小型化することが
可能となる。またマグネツト10をアルニコ系マ
グネツト材料を用い、ヨーク13をパーマロイ等
の高透磁率材料を用いることにより、マグネツト
10の保持力を低消費電力でもつて打ち消し動作
が実現できる。その結果、駆動回路及び電源の小
型化、低容量化が可能となり、低コスト化が図れ
る。 ここで、本実施例における復帰用電磁石14は
略一定周期で連続的に動作させることが可能であ
る。従つて、復帰用電磁石14を、印字ワイヤ3
と印字用バネ8で構成される振動系の共振周波数
で駆動することにより、復帰用電磁石14に対す
る、印字する印字ワイヤ3の個数の変化に伴なう
振動系の負荷変動を小さくすることが可能とな
り、復帰用電磁石14の入力電気エネルギを、印
字する印字ワイヤ3の個数に応じて制御すると言
う複雑な電気回路構成を必要としない。何故なら
ば、印字ワイヤ3と印字用バネ8によつて構成さ
れる振動系を共振点で駆動すると言うことは、所
定の振幅で駆動させる時に、最も小さな駆動力で
動作させることが可能と言うことであり、復帰用
電磁石14を単独に駆動する駆動力に対し、印字
ワイヤ3と印字用バネ8による振動系を動作させ
る駆動力が極めて小さいことにより、復帰用電磁
石14の駆動力の変動を小さくおさえることが可
能となる。本実施例に示す振動系の設定により、
復帰用電磁石14は印字する印字ワイヤ3の個数
の変化に伴なう振動系の変動に対し、常に共振態
で駆動することが可能となる。何故ならば、印字
ワイヤ3及び印字用バネ8で構成される振動系の
共振周波数は
The present invention relates to a printing device that drives a plurality of printing hammers and printing wires such as a line type and a wire dot type among impact type printing devices, and an object of the present invention is to reduce the size, speed, and power consumption of the printing mechanism. It is something to do. Various types of impact printing devices are known, and generally an electromagnet is used to drive a printing member such as a printing hammer or a printing wire. Taking a wire dot type printing device as an example, a structure as shown in FIG. 1 is generally used.
It includes a printing wire 3 and an armature 4 that are driven in the direction of the platen 2 by a plurality of printing wire driving electromagnets 1 arranged radially. 3, characters, symbols, etc. are printed on printing paper 6 via an ink ribbon 5. This method is extremely widely used due to its characteristics such as the relatively high operating speed of the electromagnet and the simple structure. However, electromagnets have poor electrical energy-mechanical energy exchange efficiency and require a relatively large amount of electrical energy for printing. As a result, it is necessary to increase the capacity of the electromagnet drive circuit and power supply, resulting in high costs and an increase in the size of the device itself. Therefore, in such a structure having a plurality of printing wire driving electromagnets, increasing the printing speed directly relates to an increase in the size of the device and an increase in power consumption. Although a detailed explanation will be omitted regarding line-type printing devices, they have similar problems as long as they have a plurality of driving electromagnets. Currently, as printing speeds are increasing, there is an increasing demand for the development of compact, low power consumption printing devices that solve these drawbacks. The present invention realizes a printing device that satisfies these demands. The configuration of the present invention will be explained below based on the drawings showing one embodiment thereof. FIG. 2 is a sectional view showing a printing state of a first embodiment in which the present invention is applied to a wire dot type printing device, and FIG. 3 is a sectional view showing a non-printing state. In FIG. 2, the printing wire 3 is supported at one end by a bearing 7 and fixed at the other end by a printing spring 8 so as to be able to reciprocate in a direction substantially perpendicular to the printing paper 6. The printing spring 8 is made of a magnetic material, has a suction tip 9 fixed on the opposite side to the fixed printing wire 3 as described above, and has its base end fixedly supported by the wire housing 11 together with the magnet 10. On one end surface of the magnet 10, there is an L-shaped yoke 1 made of a magnetic material and having a selection coil 12 wound around a part thereof.
3 is fixed, and the distal end surface of the yoke 13 faces the adsorption tip 9, which has a printing spring 8 fixed thereto, with an air space therebetween. When energized, the return electromagnet 14 drives a reciprocating member 15 fixed to its movable iron core to return the printing wire 3 to the return position as shown in FIG. It is reset by 16. Regarding the vibration system constituted by the printing wire 3 and the printing spring 8, the movable mass of the printing wire 3 and the printing spring is m, the spring constant of the printing spring 8 is k, and the reciprocating member 15 and the spring 16 are Regarding the vibration system composed of, the movable mass M and the spring constant K
The movable mass and spring constant of each vibration system are set so as to satisfy the following condition: k/m=K/M, and the return electromagnet 14 is composed of a reciprocating member 15 and a spring 16. It is continuously driven at the resonance frequency of the vibration system. Furthermore, the reciprocating member 15 has an engaging portion at its tip, and as shown in FIG. The spring 8 is deformed and the printing wire 3 is simultaneously moved toward the return position. Further, as shown in FIG. 4, the wire housing 11 is fixed to a carriage 17, which is attached to a guide shaft 8 so as to be able to reciprocate parallel to the printing surface of the printing paper 6, and is driven by a drive pulley by a motor 19. 20a, 20b, drive wire rope 21
Driven through. The carriage 17 includes a light emitting element 22a and a light receiving element 2 arranged facing each other.
2b is fixed, and between the light emitting element 22a and the light receiving element 22b, a strip 24 having a transparent slit 23 corresponding to the position where the printing wire 3 is to be driven is attached to the guide shaft 18.
is placed parallel to. In FIG. 5, the return electromagnet 4 is connected to the drive circuit 2.
5 is energized, and the selection coil 12 is energized by the selection drive circuit 26. Furthermore, it has a selection control circuit 27 that causes the operation timing of the selection drive circuit 26 to have a time delay with respect to the operation timing of the drive circuit 25. Further, the selection control circuit 27 is controlled by timing signals from the print control circuit 29 and the position detection device 22. Next, its operation will be explained. In the initial state, the printing spring 8 is held in a deformed state by the holding force of the magnet 10. Further, when the carriage 17 is driven at a predetermined speed by the motor 19 and the position detection device 22 detects that the printing wire 3 has come to the position where it should be driven and issues a timing signal, this timing signal causes the drive circuit 25 to operates the return electromagnet 14 to drive the reciprocating member 15 in the direction of the return position, and the magnet 1 is moved in the deformed state of the printing spring 8 as shown in FIG.
Move it to the position held by 0. Furthermore, the reciprocating member 15 operates with a time delay relative to the timing signal due to a phase difference caused by the movable mass, the spring constant of the spring 16, viscous resistance, and the like. Therefore, the printing wire 3 is returned to the return position with a predetermined time delay including a phase difference from the timing signal.
Then, the selection drive circuit 26 energizes a predetermined coil of the selection coil 12 in a direction to cancel the magnetic flux of the magnet 10 at a timing delayed by a predetermined time from the timing signal by the selection control circuit 27. As a result, the holding force of the magnet 10 is canceled out, and the predetermined printing spring 8 is released from its restraint and drives the printing wire 3 toward the platen 2 to perform printing. In addition,
At this time, the return electromagnet 14 is in a non-energized state, and the reciprocating member 15 is held against the platen 2 by the spring 16.
is being driven in the direction of After printing is completed, the return electromagnet 14 is energized again by the drive circuit 25.
Continuous printing is performed by the above continuous operations. The electric energy given by the selection coil 12 in this embodiment is consumed only for canceling the holding force generated by the closed magnetic circuit including the magnet 10, and unlike the conventional example described above, the electric energy provided by the selection coil 12 is This is extremely small compared to the electrical energy required to generate the suction force to move the printing member at high speed. As a result, the magnetic circuit can be made smaller. In addition, since the adsorption chip 9, printing spring 8, magnet 10, and yoke 13 form a closed magnetic path,
It has good magnetic efficiency and allows the magnetic circuit to be miniaturized. Furthermore, by using an alnico magnet material for the magnet 10 and a high magnetic permeability material such as permalloy for the yoke 13, the holding force of the magnet 10 can be canceled out with low power consumption. As a result, the drive circuit and power supply can be made smaller and have lower capacity, resulting in lower costs. Here, the return electromagnet 14 in this embodiment can be operated continuously at approximately constant intervals. Therefore, the return electromagnet 14 is connected to the printing wire 3.
By driving at the resonance frequency of the vibration system composed of the printing spring 8 and the printing spring 8, it is possible to reduce the load fluctuation of the vibration system on the return electromagnet 14 due to a change in the number of printing wires 3 to be printed. Therefore, there is no need for a complicated electric circuit configuration for controlling the input electric energy of the return electromagnet 14 according to the number of printing wires 3 to be printed. This is because the vibration system composed of the printing wire 3 and the printing spring 8 is driven at the resonance point, which means that it is possible to operate with the smallest driving force when driving with a predetermined amplitude. This is because the driving force that operates the vibration system made up of the printing wire 3 and the printing spring 8 is extremely small compared to the driving force that drives the returning electromagnet 14 alone, so that fluctuations in the driving force of the returning electromagnet 14 are It is possible to keep it small. By setting the vibration system shown in this example,
The return electromagnet 14 can always be driven in a resonant state against fluctuations in the vibration system due to changes in the number of printing wires 3 to be printed. This is because the resonance frequency of the vibration system composed of the printing wire 3 and the printing spring 8 is

【式】で表わされ、往 復部材15、バネ16で構成される振動系の共振
周波数は、
The resonance frequency of the vibration system composed of the reciprocating member 15 and the spring 16 is expressed by [Formula].

【式】で表わされ、かつ 印字する印字ワイヤの本数n本とすれば、復帰用
電磁石14によつて駆動されるすべての振動系の
共振周波数は、 で表わされ、前述の条件fi=fMからK/M=k/mを代 入し整理すると、 fT=fM=fi=fd が得られ、印字本数nにかかわらず振動系の共振
周波数fTは駆動周波数fdと一致する。従つて機械
仕事効率が著しく良好で復帰用電磁石14に消費
する電力は小さくて良い。さらに、復帰用電磁石
14の電気入力と往復部材15の変位との位相差
変動も小さくなり、印字動作の信頼性も向上す
る。 また、復帰用電磁石14を駆動する動作タイミ
ングに対し、選択動作を行なうための選択用コイ
ル12への通電タイミングを、復帰用電磁石14
の起振力と振幅の位相差を含む所定の時間だけ遅
延させることにより、印字ワイヤ3の選択動作の
信頼性を向上させることが出来る。 さらにモータ19によりキヤリツジ17を所定
の速度で駆動し、このとき位置検出装置22が発
するタイミング信号により復帰用電磁石14の動
作及び選択コイル12への通電を行なうので、キ
ヤリツジ17の定速性により印字ピツチのズレも
少なく印字品質の向上が図れる。この効果は、第
6図に示すように、所定の周期で連続的に基準パ
ルスを発する基準発振回路30を有し、この基準
パルスのタイミングにより復帰用電磁石14の動
作及び選択コイル12の通電を行ない、かつモー
タ19は位置検出装置22により連続的に発する
パルスと前記基準パルスとを同時させるためのモ
ータ制御回路31によつて駆動することによつて
も同様に得られる。 なお、本発明はライン式印字装置等、複数の印
字ハンマを高速かつ選択的に動作する印字装置に
ついても実施することが出来る。 以上本発明によれば、振動系を設定することに
より復帰用電磁石の電気−機械変換効率を著しく
向上させることが出来、低消費電力化および小型
化が実現出来る。また印字ワイヤ個数にかかわら
ず振動系全体の共振周波数変動が極めて小さいた
め、復帰用電磁石の電気入力と往復部材の変位と
の位相ずれも小さくおさえられ、選択動作の信頼
性も向上し、印字品質も良好になると言うすぐれ
た利点を有している。
If it is expressed by [Formula] and the number of printing wires to be printed is n, then the resonance frequency of all the vibration systems driven by the return electromagnet 14 is: By substituting K/M=k/m from the above-mentioned condition f i = f M and rearranging, f T = f M = f i = f d is obtained, and regardless of the number of prints n, the vibration system The resonant frequency f T coincides with the driving frequency f d . Therefore, the mechanical work efficiency is extremely good, and the power consumed by the return electromagnet 14 can be small. Furthermore, fluctuations in the phase difference between the electrical input of the return electromagnet 14 and the displacement of the reciprocating member 15 are also reduced, and the reliability of the printing operation is also improved. In addition, the timing for energizing the selection coil 12 for performing a selection operation is determined by adjusting the timing for energizing the selection coil 12 for the selection operation with respect to the operation timing for driving the return electromagnet 14.
By delaying by a predetermined time including the phase difference between the excitation force and the amplitude, the reliability of the selection operation of the printing wire 3 can be improved. Furthermore, the motor 19 drives the carriage 17 at a predetermined speed, and at this time, the timing signal issued by the position detection device 22 operates the return electromagnet 14 and energizes the selection coil 12, so the constant speed of the carriage 17 allows printing. Print quality can be improved with less pitch deviation. This effect, as shown in FIG. 6, has a reference oscillation circuit 30 that continuously emits a reference pulse at a predetermined period, and the timing of this reference pulse controls the operation of the return electromagnet 14 and the energization of the selection coil 12. The same result can also be obtained by driving the motor 19 by a motor control circuit 31 for synchronizing the pulses continuously emitted by the position detecting device 22 and the reference pulse. Note that the present invention can also be implemented in a printing device such as a line printing device that operates multiple printing hammers selectively at high speed. As described above, according to the present invention, by setting the vibration system, the electro-mechanical conversion efficiency of the return electromagnet can be significantly improved, and reduction in power consumption and size can be realized. In addition, regardless of the number of printing wires, the resonance frequency fluctuation of the entire vibration system is extremely small, so the phase shift between the electrical input of the return electromagnet and the displacement of the reciprocating member is kept small, improving the reliability of selection operation and improving printing quality. It also has the excellent advantage of improving performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図のワイヤードツト式印字装置の従来例を
示す印字ヘツド断面図、第2図および第3図は本
発明の一実施例の動作状態を示すワイヤードツト
式印字ヘツド部断面図、第4図は印字装置の外観
略図、第5図は印字装置のシステムブロツク図、
第6図は本発明の第2の実施例を示す印字装置の
システムブロツク図である。 3……印字ワイヤ、8……印字用バネ、9……
吸着用チツプ、10……マグネツト、12……選
択用コイル、13……ヨーク、14……復帰用電
磁石、15……往復部材、16……バネ、17…
…キヤリツジ、19……モータ、22……位置検
出装置、25……駆動回路、26……選択駆動回
路、27……選択制御回路、29……印字制御回
路、30……基準発振回路、31……モータ制御
回路。
FIG. 1 is a sectional view of a printing head showing a conventional example of a wire dot printing device, FIGS. 2 and 3 are sectional views of a wire dot printing head showing an operating state of an embodiment of the present invention, and FIG. 5 is a schematic diagram of the appearance of the printing device, and FIG. 5 is a system block diagram of the printing device.
FIG. 6 is a system block diagram of a printing device showing a second embodiment of the present invention. 3... Printing wire, 8... Printing spring, 9...
Adsorption chip, 10...Magnet, 12...Selection coil, 13...Yoke, 14...Returning electromagnet, 15...Reciprocating member, 16...Spring, 17...
... Carriage, 19 ... Motor, 22 ... Position detection device, 25 ... Drive circuit, 26 ... Selection drive circuit, 27 ... Selection control circuit, 29 ... Print control circuit, 30 ... Reference oscillation circuit, 31 ...Motor control circuit.

Claims (1)

【特許請求の範囲】 1 印字位置と復帰位置とを往復可能で、印字位
置において衝撃力により印字を行なう複数の印字
部材と、該印字部材が復帰位置にあるとき、変形
し保持され、その歪エネルギで前記印字部材に復
帰位置から印字位置に向けての駆動力を付与する
第1のばねと、往復自在な往復部材と、該往復部
材を弾性的に支持する第2のばねと、前記往復部
材を所定の周期で連続的に往復動作させる駆動力
を付与する駆動手段と、衝撃印字すべき印字部材
に対応する第1のばねの保持を選択的に解除する
選択駆動手段とを有し、かつ前記往復部材の駆動
周波数を、前記印字部材と前記第1のばねによつ
て構成される振動系の共振周波数と実質的に一致
させることを特徴とする印字装置。 2 印字部材と第1のばねによつて構成される振
動系における可動質量とばね定数の比と、往復部
材と第2のばねによつて構成される振動系の可動
質量とばね定数の比とを実質的に一致させたこと
を特徴とす特許請求の範囲第1項記載の印字装
置。
[Scope of Claims] 1. A plurality of printing members that can reciprocate between a printing position and a return position and perform printing by impact force at the printing position, and when the printing members are at the return position, they are deformed and held, and the distortion a first spring that uses energy to apply a driving force to the printing member from the return position to the printing position; a reciprocating member that is reciprocable; a second spring that elastically supports the reciprocating member; It has a driving means that applies a driving force to continuously reciprocate the member at a predetermined period, and a selection driving means that selectively releases the holding of the first spring corresponding to the printing member to be subjected to impact printing, A printing device characterized in that the driving frequency of the reciprocating member is made substantially equal to the resonance frequency of a vibration system constituted by the printing member and the first spring. 2. The ratio of the movable mass to the spring constant in the vibration system composed of the printing member and the first spring, and the ratio of the movable mass to the spring constant of the vibration system composed of the reciprocating member and the second spring. 2. The printing device according to claim 1, wherein the printing device has substantially the same number of characters.
JP12216181A 1981-08-03 1981-08-03 Printer Granted JPS5822185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12216181A JPS5822185A (en) 1981-08-03 1981-08-03 Printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12216181A JPS5822185A (en) 1981-08-03 1981-08-03 Printer

Publications (2)

Publication Number Publication Date
JPS5822185A JPS5822185A (en) 1983-02-09
JPH0340714B2 true JPH0340714B2 (en) 1991-06-19

Family

ID=14829095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12216181A Granted JPS5822185A (en) 1981-08-03 1981-08-03 Printer

Country Status (1)

Country Link
JP (1) JPS5822185A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1754657A2 (en) 2005-08-19 2007-02-21 Yamaha Hatsudoki Kabushiki Kaisha Seat height adjusting device for motorcycle
JP4501539B2 (en) * 2004-06-09 2010-07-14 スズキ株式会社 Motorcycle seat equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912648U (en) * 1982-07-14 1984-01-26 日本電気株式会社 Spring charge type printing hammer
JPH044553Y2 (en) * 1986-07-07 1992-02-10

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501539B2 (en) * 2004-06-09 2010-07-14 スズキ株式会社 Motorcycle seat equipment
EP1754657A2 (en) 2005-08-19 2007-02-21 Yamaha Hatsudoki Kabushiki Kaisha Seat height adjusting device for motorcycle

Also Published As

Publication number Publication date
JPS5822185A (en) 1983-02-09

Similar Documents

Publication Publication Date Title
US4233894A (en) Print hammer mechanism having dual pole pieces
US4049108A (en) Actuator for a matrix print head
US4389131A (en) Printer with electromagnetic drive yokes
JPH0340714B2 (en)
US4539905A (en) Dot matrix line printer and print element driver assembly therefor
US4472072A (en) Printing apparatus
JPH0333510B2 (en)
US4302115A (en) System for driving print wires for printers
JPH0356187B2 (en)
US4264219A (en) Device for driving dot printing bars in a dot printer
JPS5822192A (en) Printer
EP0343965A2 (en) Impact dot printing head
EP0365267A2 (en) A printing head for an impact dot printer
JPH0133340Y2 (en)
JPH0211338A (en) Wire dot printer
US6231250B1 (en) Method of controlling reciprocal movement of hammer rank in print device
JP2855792B2 (en) Dot line printer
JPH08273927A (en) Printing actuator
JP4036241B1 (en) Drive control apparatus and image forming apparatus
JPH10119323A (en) Wire dot print head and manufacture thereof
JP3084338B2 (en) Print head print control method
JPS582076B2 (en) How to assemble the print head
JPS60240473A (en) Printer apparatus
JPS6387252A (en) Dot printer
JPS5845985A (en) Printing pitch varying system