JPH0333510B2 - - Google Patents

Info

Publication number
JPH0333510B2
JPH0333510B2 JP12082781A JP12082781A JPH0333510B2 JP H0333510 B2 JPH0333510 B2 JP H0333510B2 JP 12082781 A JP12082781 A JP 12082781A JP 12082781 A JP12082781 A JP 12082781A JP H0333510 B2 JPH0333510 B2 JP H0333510B2
Authority
JP
Japan
Prior art keywords
printing
members
printing members
drive
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12082781A
Other languages
Japanese (ja)
Other versions
JPS5822191A (en
Inventor
Yoshiaki Harada
Yasuo Nishiwaki
Yoshito Urata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12082781A priority Critical patent/JPS5822191A/en
Priority to DE19823228546 priority patent/DE3228546A1/en
Priority to US06/403,878 priority patent/US4472072A/en
Publication of JPS5822191A publication Critical patent/JPS5822191A/en
Publication of JPH0333510B2 publication Critical patent/JPH0333510B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J19/00Character- or line-spacing mechanisms
    • B41J19/18Character-spacing or back-spacing mechanisms; Carriage return or release devices therefor
    • B41J19/20Positive-feed character-spacing mechanisms

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はインパクト式印字装置の中でライン式
及びワイヤードツト式等複数の印字ハンマー、印
字ワイヤを駆動する印字装置に関し、印字機構の
小型化、高速化及び消費電力の低減を図ることを
目的とするものである。 インパクト式印字装置としては種々のものが知
られており、一般に印字ハンマー、印字ワイヤ等
の印字部材を駆動するのに電磁石を用いている。
ワイヤードツト式印字装置を例にとれば、第1図
に示すような構造が一般に用いられている。放射
状に配した複数個の印字ワイヤ駆動用電磁石1に
よつて、プラテン2の方向に駆動される印字ワイ
ヤ3、アマチユア4を備え、印字信号に応じて電
磁石1が選択的に動作し、印字ワイヤ3をインク
リボン5を介し印字用紙6に文字及び記号等を印
字する。この方式は電磁石の動作速度が比較的速
いこと、構造が簡単であること等の特徴により極
めて多く用いられている。 しかし、電磁石は電気エネルギー機械エネルギ
変換効率が悪く、印字に際して比較的大きな電気
エネルギを必要とする。その結果、電磁石の駆動
回路及び電源の大容量化が必要となり、コストが
高いと同時に装置自体が大型化している。したが
つてこのような複数の印字ワイヤ駆動用電磁石を
有する構造において、印字の高速化は装置の大型
化、消費電力の増大化に直接関わつてくる。ライ
ン式印字装置に関しても詳しい説明は省略する
が、複数の駆動用電磁石を有する限り同様の問題
点を持つている。現在、印字の高速化が進展して
いる中で、これらの欠点を解決する小型、低消費
電力化された印字装置の開発が増々要望されてい
る。 本発明はこれらの要望にそう印字装置を実現す
るものである。 以下本発明の構成をその一実施例を示す図面に
基づいて説明する。第2図は本発明をワイヤード
ツト式印字装置に応用した第1の実施例の印字状
態を表わす断面図であり、第3図は同じく非印字
状態を示す断面図である。第2図において、印字
ワイヤ3はその一端を軸受7で支持され、他端を
印字用バネ8に固定されて印字用紙6と略垂直方
向に往復運動可能に配置されている。印字用バネ
8は磁性材料から成り、前述のように固定した印
字ワイヤ3と反対面に吸着用チツプ9を固定さ
れ、その基端をマグネツト10とともにワイヤハ
ウジング11に固定支持されている。マグネツト
10の一端面には、磁性材料から成り、その一部
に選択用コイル12を巻装したL字型のヨーク1
3が固定され、該ヨーク13の先端面は印字用バ
ネ8に固定された吸着用チツプ9と空隙を有し対
向している。 復帰用電磁石14は通電時にその可動鉄芯に固
定した往復部材15を駆動して第3図のように印
字ワイヤ3を復帰位置に戻し、非通電時に吸引方
向と反対方向に付勢されるバネ16によりリセツ
トされる。 ここで印字ワイヤ3及び印字用バネ8によつて
構成される振動系に関し、印字ワイヤ3及び印字
用バネ8の可動質量をm、印字用バネ8のバネ定
数をkとし、また往復部材15とバネ16によつ
て構成される振動系に関し、可動質量M、バネ定
数Kとおくとき、 k/m=K/M なる条件を満足するように、各振動系の可動質量
及びバネ定数を設定し、かつ復帰用電磁石14は
往復部材15及びバネ16によつて構成される振
動系の共振周波数で連続駆動される。 さらに往復部材15はその先端に係合部を有
し、第3図に示すように復帰用電磁石14の吸引
により印字用バネ8に当接し、吸着用チツプ9が
ヨーク13に接触するまで印字用バネ8を変形さ
せ、同時に印字ワイヤ3を復帰位置方向に移動さ
せる。 また、第4図に示すように、ワイヤハウジング
11はキヤリツジ17に固定され、該キヤリツジ
17はガイド軸18に印字用紙6の印字面と平行
に往復可能に取付けられており、モータ19によ
り駆動プーリ20a,20b、駆動ワイヤロープ
21を介して駆動される。キヤリツジ17には、
互いに対向させ配置した発光素子22a、受光素
子22bより成る位置検出装置22が固定され、
発光素子22a及び受光素子22bの間隙には、
印字ワイヤ3が駆動されるべき位置と対応した透
明なスリツト23を有する帯状片24がガイド軸
18と平行に配置されている。 第5図において、復帰用電磁石4は駆動回路2
5により通電され、選択用コイル12は選択駆動
回路26より通電される。さらに、選択の駆動回
路26の動作タイミングが駆動回路25の動作タ
イミングに対し時間遅れを持つようにする選択制
御回路27を有している。また復帰用電磁石14
の動作時に、印字した印字ワイヤ3の個数に応じ
て復帰用電磁石14に入力する電圧を増減する駆
動制御回路28を有している。また選択制御回路
27と駆動制御回路28は印字制御回路29と位
置検出装置22からのタイミング信号により制御
される。 次にその動作について説明する。初期状態にお
いては、印字用バネ8はマグネツト10の保持力
により変形状態のまゝ保持されている。またキヤ
リツジ17がモータ19により所定の速度で駆動
され、印字ワイヤ3が駆動されるべき位置に来た
ことを位置検出装置22が検出してタイミング信
号を発すると、このタイミング信号により、駆動
回路25及び駆動制御回路28は復帰用電磁石1
4を動作して往復部材15を復帰位置方向に駆動
し、印字用バネ8を第3図に示すように変形され
た状態でマグネツト10により保持される位置ま
で移動させる。このとき駆動制御回路28は、往
復部材5を復帰させるに際し、マグネツト10で
保持されていない印字ワイヤ3の個数(すなわち
前回の印字に使用された印字のワイヤ3の数)に
応じた負荷変動を補うため、その個数に応じて復
帰用電磁石14の入力電圧を制御する。また往復
部材15は、可動質量、バネ16のバネ定数及び
粘性抵抗等により生ずる位相差のため、タイミン
グ信号に対し時間遅れをもつて動作する。そのた
め印字ワイヤ3はタイミング信号から位相差を含
み所定の時間遅れをもつて復帰位置に戻される。
そして選択駆動回路26は選択制御回路27によ
りタイミング信号より所定の時間だけ遅れたタイ
ミングで選択用コイル12の所定コイルにマグネ
ツト10の磁束を打ち消す方向に通電する。その
結果マグネツト10の保持力を打ち消し、所定の
印字用バネ8は拘束を解かれて印字ワイヤ3をプ
ラテン2の方向に駆動し、印字を行なう。なお、
このとき復帰用電磁石14は非通電状態となつて
おり、往復部材15はバネ16によりプラテン2
の方向に駆動されている。印字終了後、復帰用電
磁石14は再び駆動制御回路28及び駆動回路2
5により通電される。以上の連続動作により、連
続印字が為される。 本実施例における選択用コイル12で与えられ
る電気エネルギは、マグネツト10を含む閉磁路
によつて生ずる保持力を打ち消すことのみに消費
され、前述の従来例のように、空隙を有する磁気
回路で印字部材を高速に移動するための吸引力を
発生させるに要する電気エネルギに比較し極めて
小さい。その結果、磁気回路の小型化が可能とな
る。また吸引用チツプ9、印字用バネ8、マグネ
ツト10、ヨーク13は閉磁路を形成するため、
磁気的効率が良く、磁気回路を小型化することが
可能となる。またマグネツト10をアルニコ系マ
グネツト材料を用い、ヨーク13をパーマロイ等
の高透磁率材料を用いることにより、マグネツト
10の保持力を低消費電力でもつて打ち消し動作
が実現出来る。その結果、駆動回路及び電源の小
型化、低容量化が可能となり、低コスト化が図れ
る。 また、従来例の電磁石1(第1図)は印字信号
に応じて動作しなければならないのに対し、本実
施例における復帰用電磁石14は略一定周期で連
続的に動作させることが可能である。従つて、本
実施例に示す振動系の設定により、復帰用電磁石
14は印字する印字ワイヤ3の個数の変化に伴な
う振動系の変動に対し、常に共振態で駆動するこ
とが可能となる。何故ならば、印字ワイヤ3及び
印字用バネ8で構成される振動系の共振周波数
は、
The present invention relates to a printing device that drives a plurality of printing hammers and printing wires such as a line type and a wire dot type among impact type printing devices, and an object of the present invention is to reduce the size, speed, and power consumption of the printing mechanism. It is something to do. Various types of impact printing devices are known, and generally an electromagnet is used to drive a printing member such as a printing hammer or a printing wire.
Taking a wire dot type printing device as an example, a structure as shown in FIG. 1 is generally used. It includes a printing wire 3 and an armature 4 that are driven in the direction of the platen 2 by a plurality of printing wire driving electromagnets 1 arranged radially. 3, characters, symbols, etc. are printed on printing paper 6 via an ink ribbon 5. This method is extremely widely used due to its characteristics such as the relatively high operating speed of the electromagnet and the simple structure. However, electromagnets have poor electrical-to-mechanical energy conversion efficiency and require a relatively large amount of electrical energy for printing. As a result, it is necessary to increase the capacity of the electromagnet drive circuit and power supply, resulting in high costs and an increase in the size of the device itself. Therefore, in such a structure having a plurality of print wire driving electromagnets, increasing the printing speed is directly related to an increase in the size of the device and power consumption. Although a detailed explanation will be omitted regarding line-type printing devices, they have similar problems as long as they have a plurality of driving electromagnets. Currently, as printing speeds are increasing, there is an increasing demand for the development of compact, low power consumption printing devices that can solve these drawbacks. The present invention realizes a printing device that satisfies these demands. The configuration of the present invention will be explained below based on the drawings showing one embodiment thereof. FIG. 2 is a sectional view showing a printing state of a first embodiment in which the present invention is applied to a wire dot type printing device, and FIG. 3 is a sectional view similarly showing a non-printing state. In FIG. 2, the printing wire 3 is supported at one end by a bearing 7 and fixed at the other end by a printing spring 8 so as to be able to reciprocate in a direction substantially perpendicular to the printing paper 6. The printing spring 8 is made of a magnetic material, has a suction tip 9 fixed on the opposite side to the fixed printing wire 3 as described above, and has its base end fixedly supported by the wire housing 11 together with the magnet 10. On one end surface of the magnet 10, there is an L-shaped yoke 1 made of a magnetic material and having a selection coil 12 wound around a part thereof.
3 is fixed, and the distal end surface of the yoke 13 faces the suction chip 9 fixed to the printing spring 8 with a gap therebetween. When energized, the return electromagnet 14 drives a reciprocating member 15 fixed to its movable iron core to return the printing wire 3 to the return position as shown in FIG. It is reset by 16. Regarding the vibration system constituted by the printing wire 3 and the printing spring 8, the movable mass of the printing wire 3 and the printing spring 8 is m, the spring constant of the printing spring 8 is k, and the reciprocating member 15 and Regarding the vibration system constituted by the spring 16, when the movable mass M and the spring constant K are set, the movable mass and spring constant of each vibration system are set so as to satisfy the following condition: k/m=K/M. , and the return electromagnet 14 is continuously driven at the resonance frequency of a vibration system constituted by a reciprocating member 15 and a spring 16. Furthermore, the reciprocating member 15 has an engaging portion at its tip, and as shown in FIG. The spring 8 is deformed and the printing wire 3 is simultaneously moved toward the return position. Further, as shown in FIG. 4, the wire housing 11 is fixed to a carriage 17, and the carriage 17 is attached to a guide shaft 18 so as to be able to reciprocate in parallel with the printing surface of the printing paper 6, and a drive pulley is driven by a motor 19. 20a, 20b, and are driven via a drive wire rope 21. In the carriage 17,
A position detection device 22 consisting of a light emitting element 22a and a light receiving element 22b arranged opposite to each other is fixed,
In the gap between the light emitting element 22a and the light receiving element 22b,
A strip 24 with a transparent slit 23 corresponding to the position in which the printing wire 3 is to be driven is arranged parallel to the guide shaft 18. In FIG. 5, the return electromagnet 4 is connected to the drive circuit 2.
5 is energized, and the selection coil 12 is energized by the selection drive circuit 26. Furthermore, it has a selection control circuit 27 that causes the operation timing of the selected drive circuit 26 to have a time delay with respect to the operation timing of the drive circuit 25. Also, the return electromagnet 14
It has a drive control circuit 28 that increases or decreases the voltage input to the return electromagnet 14 in accordance with the number of printed printing wires 3 during operation. Further, the selection control circuit 27 and the drive control circuit 28 are controlled by timing signals from the print control circuit 29 and the position detection device 22. Next, its operation will be explained. In the initial state, the printing spring 8 is held in a deformed state by the holding force of the magnet 10. Further, when the carriage 17 is driven at a predetermined speed by the motor 19 and the position detection device 22 detects that the printing wire 3 has come to the position where it should be driven and issues a timing signal, this timing signal causes the drive circuit 25 to and the drive control circuit 28 is the return electromagnet 1
4 to drive the reciprocating member 15 in the direction of the return position, and move the printing spring 8 to a position where it is held by the magnet 10 in a deformed state as shown in FIG. At this time, when returning the reciprocating member 5, the drive control circuit 28 controls the load fluctuation according to the number of printing wires 3 that are not held by the magnet 10 (i.e., the number of printing wires 3 used in the previous printing). In order to compensate, the input voltage of the return electromagnet 14 is controlled according to the number. Further, the reciprocating member 15 operates with a time delay relative to the timing signal due to a phase difference caused by the movable mass, the spring constant of the spring 16, viscous resistance, and the like. Therefore, the printing wire 3 is returned to the return position with a predetermined time delay including a phase difference from the timing signal.
Then, the selection drive circuit 26 energizes a predetermined coil of the selection coil 12 in a direction to cancel the magnetic flux of the magnet 10 at a timing delayed by a predetermined time from the timing signal by the selection control circuit 27. As a result, the holding force of the magnet 10 is canceled out, and the predetermined printing spring 8 is released from its restraint and drives the printing wire 3 toward the platen 2 to perform printing. In addition,
At this time, the return electromagnet 14 is in a non-energized state, and the reciprocating member 15 is held against the platen 2 by the spring 16.
is being driven in the direction of After printing is completed, the return electromagnet 14 is connected to the drive control circuit 28 and the drive circuit 2 again.
It is energized by 5. Continuous printing is performed by the above continuous operations. The electric energy given by the selection coil 12 in this embodiment is consumed only to cancel the holding force generated by the closed magnetic circuit including the magnet 10, and unlike the conventional example described above, printing is performed using a magnetic circuit with an air gap. This is extremely small compared to the electrical energy required to generate the suction force to move the member at high speed. As a result, the magnetic circuit can be made smaller. In addition, since the suction chip 9, printing spring 8, magnet 10, and yoke 13 form a closed magnetic path,
It has good magnetic efficiency and allows the magnetic circuit to be miniaturized. Furthermore, by using an alnico magnetic material for the magnet 10 and a high magnetic permeability material such as permalloy for the yoke 13, the holding force of the magnet 10 can be canceled out with low power consumption. As a result, the drive circuit and power supply can be made smaller and have lower capacity, resulting in lower costs. Furthermore, whereas the conventional electromagnet 1 (FIG. 1) must operate in response to a print signal, the return electromagnet 14 in this embodiment can be operated continuously at approximately constant intervals. . Therefore, by setting the vibration system shown in this embodiment, the return electromagnet 14 can always be driven in a resonant state against fluctuations in the vibration system caused by changes in the number of printing wires 3 to be printed. . This is because the resonance frequency of the vibration system composed of the printing wire 3 and the printing spring 8 is

【式】で表わされ、往復部材 15、バネ16で構成される振動系の共振周波数
は、
The resonance frequency of the vibration system composed of the reciprocating member 15 and the spring 16 is expressed by [Formula].

【式】で表わされ、かつ印字 する印字ワイヤの本数n本とすれば、復帰用電磁
石14によつて駆動されるすべての振動系の共振
周波数は、
If it is expressed by [Formula] and the number of printing wires to be printed is n, then the resonant frequency of all the vibration systems driven by the return electromagnet 14 is:

【式】 で表わされ、前述の条件fi=fMからK/M=k/mを代 入し整理すると、 fT=fM=fi=fd が得られ、印字本数nにかかわらず振動系の共振
周波数fTは駆動周波数fdと一致する。従つて機械
仕事効率が著しく良好で復帰用電磁石14に消費
する電力は小さくて良い。さらに、復帰用電磁石
14の電気入力と往復部材15の変位との位相差
変動も小さくなり、印字動作の信頼性も向上す
る。 さらに、この効果は、復帰用電磁石14の入力
電流値もしくは入力電流の通電時間を駆動制御回
路28より本実施例と同様に印字ワイヤ3の個数
に応じて増減させることによつても得られる。 また、復帰用電磁石14を駆動する動作タイミ
ングに対し、選択動作を行なうための選択用コイ
ル12への通電タイミングを、復帰用電磁石14
の起振力と振幅の位相差を含む所定の時間だけ遅
延させることにより、印字ワイヤ3の選択動作の
信頼性を向上させることが出来る。 さらにモータ19によりキヤリツジ17を所定
の速度で駆動し、このとき位置検出装置22が発
するタイミング信号により復帰用電磁石14の動
作及び選択コイル12への通電を行なうので、キ
ヤリツジ17の定速性により印字ピツチのズレも
少なく印字品質の向上が図れる。この効果は、第
6図に示すように、所定の周期で連続的に基準パ
ルスを発する基準発振回路30を有し、この基準
パルスのタイミングにより復帰用電磁石14の動
作及び選択コイル12への通電を行ない、かつモ
ータ19は位置検出装置22により連続的に発す
るパルスと前記基準パルスとを同期させるための
モータ制御回路31によつて駆動することによつ
ても同様に得られる。 なお、本発明のライン式印字装置等、複数の印
字ハンマを高速かつ選択的に動作する印字装置に
ついても実施することが出来る。 以上本発明によれば、駆動制御回路を用いるこ
とによつて、駆動手段は復帰用電磁石動作時の印
字ワイヤ個数変化に伴なう負荷変動に対しても、
一定振幅で駆動され、その結果選択駆動手段によ
る選択動作の信頼性が向上されて印字品質も良好
になり、また印字ワイヤ個数に応じた制御がなさ
れることにより必要以上に大きなエネルギを消費
することもなく、低消費電力化、小型化が図れる
というすぐれた利点を有している。
[Formula] By substituting K/M=k/m from the above condition f i =f M and sorting it out, f T = f M = f i = f d is obtained, regardless of the number of prints n. The resonant frequency f T of the vibration system coincides with the driving frequency f d . Therefore, the mechanical work efficiency is extremely good, and the power consumed by the return electromagnet 14 can be small. Furthermore, fluctuations in the phase difference between the electrical input of the return electromagnet 14 and the displacement of the reciprocating member 15 are also reduced, and the reliability of the printing operation is also improved. Furthermore, this effect can also be obtained by increasing or decreasing the input current value or the input current energization time of the return electromagnet 14 by the drive control circuit 28 in accordance with the number of printing wires 3 as in the present embodiment. In addition, with respect to the operation timing for driving the return electromagnet 14, the timing for energizing the selection coil 12 for performing the selection operation is set by adjusting the timing for energizing the selection coil 12 for the return electromagnet 14.
By delaying by a predetermined time including the phase difference between the excitation force and the amplitude, the reliability of the selection operation of the printing wire 3 can be improved. Further, the motor 19 drives the carriage 17 at a predetermined speed, and at this time, the timing signal issued by the position detection device 22 operates the return electromagnet 14 and energizes the selection coil 12, so the constant speed of the carriage 17 allows printing. There is less pitch deviation and printing quality can be improved. This effect, as shown in FIG. 6, has a reference oscillation circuit 30 that continuously emits a reference pulse at a predetermined period, and the timing of this reference pulse causes the return electromagnet 14 to operate and the selection coil 12 to be energized. The same result can also be obtained by driving the motor 19 by a motor control circuit 31 for synchronizing the pulses continuously emitted by the position detection device 22 and the reference pulse. Note that the present invention can also be applied to a printing device that selectively operates a plurality of printing hammers at high speed, such as a line-type printing device of the present invention. As described above, according to the present invention, by using the drive control circuit, the drive means can cope with load fluctuations caused by changes in the number of printing wires during operation of the return electromagnet.
It is driven with a constant amplitude, and as a result, the reliability of the selection operation by the selection drive means is improved, and the printing quality is also improved.Also, since the printing wire is controlled according to the number of printing wires, it does not consume more energy than necessary. It has the excellent advantages of low power consumption and miniaturization.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はワイヤードツト式印字装置の従来例を
示す印字ヘツド断面図、第2図および第3図は本
発明の一実施例の動作状態を示すワイヤードツト
式印字ヘツド部断面図、第4図は印字装置の外観
略図、第5図は印字装置のシステムブロツク図、
第6図は本発明の第2の実施例を示す印字装置の
システムブロツク図である。 3……印字ワイヤ、8……印字用バネ、9……
吸着用チツプ、10……マグネツト、12…選択
用コイル、13……ヨーク、14……復帰用電磁
石、15……往復部材、16……バネ、17……
キヤリツジ、19……モータ、22……位置検出
装置、25……駆動回路、26……選択駆動回
路、27……選択制御回路、28……駆動制御回
路、29…印字制御回路、30……基準発振回
路、31……モータ制御回路。
FIG. 1 is a sectional view of a printing head showing a conventional example of a wire dot printing device, FIGS. 2 and 3 are sectional views of a wire dot printing head showing an operating state of an embodiment of the present invention, and FIG. 5 is a schematic diagram of the appearance of the printing device, and FIG. 5 is a system block diagram of the printing device.
FIG. 6 is a system block diagram of a printing device showing a second embodiment of the present invention. 3... Printing wire, 8... Printing spring, 9...
Adsorption chip, 10...Magnet, 12...Selection coil, 13...Yoke, 14...Returning electromagnet, 15...Reciprocating member, 16...Spring, 17...
Carriage, 19...Motor, 22...Position detection device, 25...Drive circuit, 26...Selection drive circuit, 27...Selection control circuit, 28...Drive control circuit, 29...Print control circuit, 30... Reference oscillation circuit, 31...Motor control circuit.

Claims (1)

【特許請求の範囲】 1 印字位置と復帰位置とを往復可能で、印字位
置において衝撃力により印字を行なう複数の印字
部材と、前記印字部材を、往復駆動するために所
定の周期で連続的に動作する駆動手段と、前記複
数の印字部材が復帰位置にあるとき、印字信号に
応じて印字すべきでない前記印字部材のみを保持
し前記駆動手段による駆動力を前記印字部材に伝
達しない選択駆動手段と、前記選択駆動手段によ
り選択的に印字位置方向に駆動させられた前記印
字部材を、印字位置から復帰位置へ略一定距離を
復帰動作させるために、該動作印字部材の数に応
じて前記駆動手段の動力を増減する駆動制御手段
を具備することを特徴とする印字装置。 2 駆動手段に電気−機械変換器を用い、駆動制
御手段は、選択駆動手段により選択的に動作した
印字部材の数に応じて前記電気−機械変換器の入
力電気エネルギを増減することを特徴とする特許
請求の範囲第1項記載の印字装置。 3 駆動手段は、通電時一方向に駆動する電磁石
と非通電時に反対方向に復帰するバネとから成る
振動手段で構成され、駆動制御手段は、選択駆動
手段により選択的に動作した印字部材の数に応じ
て前記電磁石の通電時間を増減することを特徴と
する特許請求の範囲第1項または第2項記載の印
字装置。
[Scope of Claims] 1. A plurality of printing members that can reciprocate between a printing position and a return position and print by impact force at the printing position, and a plurality of printing members that are continuously driven at a predetermined period to drive the printing members back and forth. a driving means that operates; and a selection driving means that holds only the printing members that should not be printed in response to a printing signal when the plurality of printing members are in the return position, and does not transmit the driving force of the driving means to the printing members. and, in order to return the printing members that have been selectively driven in the printing position direction by the selection driving means a substantially constant distance from the printing position to the return position, the driving is performed according to the number of the moving printing members. A printing device characterized by comprising a drive control means for increasing or decreasing the power of the means. 2. An electro-mechanical converter is used as the drive means, and the drive control means increases or decreases the input electric energy of the electro-mechanical converter according to the number of printing members selectively operated by the selective drive means. A printing device according to claim 1. 3. The driving means is composed of a vibration means consisting of an electromagnet that drives in one direction when energized and a spring that returns in the opposite direction when not energized, and the drive control means controls the number of printing members selectively operated by the selective driving means. 3. The printing device according to claim 1, wherein the energization time of the electromagnet is increased or decreased depending on the time.
JP12082781A 1981-07-30 1981-08-01 Printer Granted JPS5822191A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP12082781A JPS5822191A (en) 1981-08-01 1981-08-01 Printer
DE19823228546 DE3228546A1 (en) 1981-07-30 1982-07-30 PRINT WORK
US06/403,878 US4472072A (en) 1981-07-30 1982-07-30 Printing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12082781A JPS5822191A (en) 1981-08-01 1981-08-01 Printer

Publications (2)

Publication Number Publication Date
JPS5822191A JPS5822191A (en) 1983-02-09
JPH0333510B2 true JPH0333510B2 (en) 1991-05-17

Family

ID=14795940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12082781A Granted JPS5822191A (en) 1981-07-30 1981-08-01 Printer

Country Status (1)

Country Link
JP (1) JPS5822191A (en)

Also Published As

Publication number Publication date
JPS5822191A (en) 1983-02-09

Similar Documents

Publication Publication Date Title
EP0124382B1 (en) Print hammer assembly for an impact printer
US4539905A (en) Dot matrix line printer and print element driver assembly therefor
JPH0340714B2 (en)
US4472072A (en) Printing apparatus
JPH0333510B2 (en)
JPH0356187B2 (en)
EP0365267A2 (en) A printing head for an impact dot printer
JPH0520990B2 (en)
JPS5822192A (en) Printer
JPH0128705B2 (en)
JPH0211338A (en) Wire dot printer
JPH0467957A (en) Impact dot print head for printer
JPH0133340Y2 (en)
JP3084338B2 (en) Print head print control method
WO1982003123A1 (en) Dot matrix printer
JPH05318779A (en) Printing head
JPS59115874A (en) Apparatus for driving hammer of printer
JPH0647727Y2 (en) Dot printer print head actuator
JP2539666Y2 (en) Control structure of dot print head
JPH0655515B2 (en) Shuttle type line printer
JPH04247964A (en) Wire dot printing head
JPS6387252A (en) Dot printer
JPH02141258A (en) Method of driving wire dot printing head
JPH10119323A (en) Wire dot print head and manufacture thereof
JPH06115115A (en) Printer