JPH0313353A - Impact dot head - Google Patents

Impact dot head

Info

Publication number
JPH0313353A
JPH0313353A JP15007589A JP15007589A JPH0313353A JP H0313353 A JPH0313353 A JP H0313353A JP 15007589 A JP15007589 A JP 15007589A JP 15007589 A JP15007589 A JP 15007589A JP H0313353 A JPH0313353 A JP H0313353A
Authority
JP
Japan
Prior art keywords
voltage
drive coil
time
current
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15007589A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yamamoto
和彦 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15007589A priority Critical patent/JPH0313353A/en
Publication of JPH0313353A publication Critical patent/JPH0313353A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dot-Matrix Printers And Others (AREA)

Abstract

PURPOSE:To print at a high speed in a stably printing quality and to reduce power supply energy by so altering printing time that the printing force of a printing wire becomes constant in response to a voltage value applied to a driving coil, and maintaining the sum of time for applying a voltage to the coil and time for supplying a current of the coil to a first flyback circuit constant irrespective of the voltage. CONSTITUTION:A current flowing to a driving coil 4 rises at a current I1 at time T1 in which the voltage of a power source 38 is applied to the coil 4, falls at a current I2 at time T2 in which a first flyback circuit is turned ON, and abruptly falls from the I2 when a current I3 flows to a second flyback circuit. Since the voltage E applied to the coil 4 is varied according to an irregularity in the component rating of the source 38, variation due to temperature and a decrease in an applying voltage due to an increase in capacity, only the time T1 is altered according to the voltage E to obtain a predetermined impact force, and (T1+T2) is maintained constantly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はインパクトプリンタのインパクトドツトヘッド
の通電条件に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to energization conditions for an impact dot head of an impact printer.

〔従来の技術〕[Conventional technology]

インパクトドツトヘッドは駆動コイルに通電し、励磁吸
引することにより印字ワイヤーを選択的に突出させ、印
字ワイヤーが印字媒体に衝突するときのインパクト力に
より印字を行なうもので、第9図にインパクトドツトヘ
ッドの模式図を示す。
The impact dot head selectively protrudes the printing wire by energizing the drive coil and attracting excitation, and prints using the impact force when the printing wire collides with the printing medium. Figure 9 shows the impact dot head. A schematic diagram is shown.

ドライバー回路100により駆動コイル101に通電さ
れると、コア102、ヨーク103、アマチュア104
に磁束が渣れ、アマチュア104がコア102に吸引さ
れ支点105を中心に回転し、アマチュア104先端に
当接している印字ワイヤ−106が突出して、インクリ
ボン108を介して印字媒体109に衝突しドツトを印
字する。印字ワイヤー108は印字後衝突時の反力と復
帰バネ107の復帰力で復帰し待機位置に戻る。
When the drive coil 101 is energized by the driver circuit 100, the core 102, yoke 103, and armature 104
The magnetic flux is mixed up, the armature 104 is attracted to the core 102 and rotates around the fulcrum 105, and the printing wire 106 that is in contact with the tip of the armature 104 protrudes and collides with the printing medium 109 via the ink ribbon 108. Print a dot. After printing, the printing wire 108 returns to the standby position by the reaction force at the time of collision and the return force of the return spring 107.

従来駆動コイル101の駆動方式は第10図の(a)に
示す電流波彫工となるような定電圧の駆動方式がとられ
ていた。第10図の(b)にこのような定電圧のドライ
バー回路100の一例を示す、印字指令により通電パル
ス110がHレベルになりトランジスタ111がONと
なり電源114から駆動コイル101に電圧Eが印加さ
れ駆動コイル101に電流工が流れる0通電時間Tw後
通電パルス110がLレベルになると、トランジスタ1
11が0FFL、このとき発生する逆起電力はツェナー
ダイオード112、トランジスタ113により吸収され
駆動コイル101を流れる電流工は急峻に立ち下がる。
Conventionally, the driving method of the drive coil 101 has been a constant voltage driving method such as the current wave carving shown in FIG. 10(a). FIG. 10(b) shows an example of such a constant voltage driver circuit 100. In response to a print command, the energizing pulse 110 becomes H level, the transistor 111 is turned on, and the voltage E is applied from the power supply 114 to the drive coil 101. When the energization pulse 110 becomes L level after 0 energization time Tw when current flows through the drive coil 101, the transistor 1
11 is 0FFL, the back electromotive force generated at this time is absorbed by the Zener diode 112 and the transistor 113, and the current flowing through the drive coil 101 falls sharply.

通電時間Twは一定のインパクト力を得るように駆動コ
イルへの印加電圧の変動に応じて低電圧時にはTwが長
く、?に電圧時にはTwが短くなるようにTwを変えな
ければならない。
The energization time Tw varies depending on the fluctuation of the voltage applied to the drive coil in order to obtain a constant impact force.Tw is longer when the voltage is low. Tw must be changed so that Tw becomes shorter when the voltage increases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、低電圧時に通電時間Twが長くなると残
留磁束により印字ワイヤー106の復帰が遅くなるとい
う問題があった。
However, there is a problem in that when the current application time Tw becomes long at low voltage, the return of the printing wire 106 is delayed due to residual magnetic flux.

第11図に示すように、Twが長くなると印字ワイヤー
106が印字媒体109に(1突したときにもコア10
2、アマチュア104間に磁束Φが残っており、吸引が
持続するため印字ワイヤー106の復帰が遅くなり、次
の通電が始まるまで′に印字ワイヤー106が復帰せず
、応答不良が発生し印字の高速化ができなかった。
As shown in FIG. 11, when Tw becomes longer, the printing wire 106 hits the printing medium 109 (even when the core 106 hits the printing medium 109).
2. Since the magnetic flux Φ remains between the armatures 104 and the attraction continues, the return of the print wire 106 is delayed, and the print wire 106 does not return until the next energization starts, resulting in poor response and printing failure. I couldn't speed it up.

また、Twを短くすると大きな磁束が短時間に入るため
渦電流損の発生が大きくなり、電源供給エネルギーを大
にする必要があり、電源の大容量化によるコストアップ
、及び、インパクトドツトヘッドの発熱の増大による印
字時間III限等の大きな欠点があった。
In addition, if Tw is shortened, a large magnetic flux enters for a short period of time, which increases the occurrence of eddy current loss, which requires a large amount of power supply energy, which increases the cost due to the large capacity of the power supply, and generates heat in the impact dot head. There were major drawbacks such as the printing time being limited to III due to the increase in .

本発明はかかる問題点に鑑みてなされたもので、その目
的とするところは、常に安定した印字品質で高速印字が
可能であり、且つ、電源供給エネルギーの少ないインパ
クトドツトヘッドを得ることにある。
The present invention has been made in view of these problems, and its purpose is to provide an impact dot head that is capable of high-speed printing with consistently stable print quality and that requires less power supply energy.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のインパクトドツトヘッドは、励磁吸引すること
により印字ワイヤーを突出させプラテン上に支持された
印字媒体に印字を行なう駆動コイルを有し、該駆動コイ
ルのフライバック発生時に前記駆動コイルに瀉れる電流
切り替え用の第1のフライバック回路と第2のフライバ
ック回路を備え、前記駆動コイルへの電圧の印加がOF
Fするとともに前記駆動コイルを流れる電流は第1のフ
ライバック回路を流れ、第1のフライバック回路から第
2のフライバック回路へ前記駆動コイルを流れる電流が
切り替えられるインパクトドツトヘッドにおいて、nf
fff動駆動コイル圧を印加している時間をT1、第1
のフライバック回路に前記駆動コイルの電流が流れてい
る時間をT2とすると、前記駆動コイルに印加される電
圧値に応じて前記印字ワイヤーの印字力が一定となるよ
うにT1が所定の値をとるとともに、T1+T2が電圧
によらず一定であることを特徴とする。
The impact dot head of the present invention has a drive coil that projects a printing wire by excitation and attraction and prints on a print medium supported on a platen, and when flyback of the drive coil occurs, the drive coil A first flyback circuit and a second flyback circuit are provided for current switching, and the application of voltage to the drive coil is OF.
In an impact dot head in which the current flowing through the drive coil flows through a first flyback circuit as nf increases, and the current flowing through the drive coil is switched from the first flyback circuit to the second flyback circuit.
fff The time during which the dynamic drive coil pressure is applied is T1, the first
Let T2 be the time during which the current of the drive coil is flowing through the flyback circuit, T1 is set to a predetermined value so that the printing force of the printing wire is constant according to the voltage value applied to the drive coil. It is characterized in that T1+T2 is constant regardless of the voltage.

〔実施例〕〔Example〕

以下に本発明の実施例を図面に基づいて説明する。第1
図は本発明の1実施例を示すインバクトド、ットヘッド
の断面図、第2図はドライバー回路30の回路図、第3
図の(a)は電流波彫工と通電パルス、 (b)は駆動
コイルへの印加電圧Eに対する通電時間T1と(T1+
T2)を示す図であり、第4図の(a)は低電圧時、 
(b)は高電圧時の電流工、磁束Φ、印字ワイヤー挙動
を示す図である。
Embodiments of the present invention will be described below based on the drawings. 1st
The figure is a sectional view of an infected head showing one embodiment of the present invention, Figure 2 is a circuit diagram of a driver circuit 30, and Figure 3 is a circuit diagram of a driver circuit 30.
(a) of the figure shows the current wave engraving and the energization pulse, and (b) shows the energization time T1 and (T1+) for the applied voltage E to the drive coil.
FIG. 4A is a diagram showing T2), and (a) of FIG.
(b) is a diagram showing current flow, magnetic flux Φ, and printing wire behavior at high voltage.

第1図に基づきインパクトドツトヘッドの構成と動作に
ついて説明する。複数のワイヤーガイド1により保持さ
れている印字ワイヤー2を固着したアマチュア6は、支
点軸3に回転可能に保持されている。支点軸3は耐摩耗
性のよい金属スペーサー19を挟んでヨークA13とホ
ルダー11に挟持され、ヨークB14により位置決めさ
れている。
The structure and operation of the impact dot head will be explained based on FIG. An armature 6 to which a printing wire 2 held by a plurality of wire guides 1 is fixed is rotatably held on a fulcrum shaft 3. The fulcrum shaft 3 is held between a yoke A13 and a holder 11 with a metal spacer 19 having good wear resistance in between, and is positioned by a yoke B14.

ヨークA13はフレーム12に当接しており、コア5と
フレーム12は一体品となっている。コア5にコイルボ
ビン17に巻装された駆動コイル4が挿入され、基板1
5に半田付けされ、フレキシブルプリント基板16を通
じドライバー回路30につながっている。アマチュア6
は待機時には復帰バネ10に押圧され、ホルダー11に
支持されたダンパー18により位置決めされている。
The yoke A13 is in contact with the frame 12, and the core 5 and the frame 12 are integrated. A driving coil 4 wound around a coil bobbin 17 is inserted into the core 5, and the substrate 1
5 and is connected to a driver circuit 30 through a flexible printed circuit board 16. amateur 6
is pressed by a return spring 10 during standby and is positioned by a damper 18 supported by a holder 11.

ドライバー回路30により駆動コイル4に通電されると
コア5、フレーム12、ヨークA13、ヨークB14、
アマチュア6を閉ループとする磁束が発生し、アマチュ
ア6がコア5に吸引され、印字ワイヤー2が突出しイン
クリボン7を介しプラテン8に支持された印字媒体9に
衝突し印字を行なう。
When the drive coil 4 is energized by the driver circuit 30, the core 5, frame 12, yoke A13, yoke B14,
A magnetic flux with the armature 6 in a closed loop is generated, the armature 6 is attracted to the core 5, and the printing wire 2 protrudes and collides with the printing medium 9 supported by the platen 8 via the ink ribbon 7 to perform printing.

第2図に基づきドライバー回路30の動作と通電方法に
ついて説明する。
The operation and energization method of the driver circuit 30 will be explained based on FIG. 2.

それぞれの印字ワイヤーに対応して駆動コイルがついて
いるが、ここでは一つの駆動コイル4について説明する
0通電パルスA39と通電パルスB40が同時にHレベ
ルになるとトランジスタ32とトランジスタ33がON
となり、電fi38の電圧が駆動コイルに印加され、駆
動コイル4に電流工1が流れる1時間T l f&に3
f!1電パルスA39がLレベルとなるとトランジスタ
32がOFFとなり、駆動コイル4、トランジスタ33
、ダイオード34を回る第1のフライバック回路に電W
1 I2が流れる0時間T2後に通電パルスB40がL
レベルとなり、!・ランジスタ33がOFFとなり、駆
動コイル4、ダイオード35、ツェナーダイオード37
、トランジスタ36、電源38、ダイオード34を回る
第2のフライバック回路に電源が渣れる。このとき駆動
コイル4を潰れる電流は第3図の(a)のようになり、
駆動コイル4に電源38の電圧が印加されている時間T
1に電流工1は立ち上がり、第1のフライバック回路が
ONしている時間T2の間は電流工2が立ち下がり、第
2のフライバック回路を電流I3が流れるときは工2よ
り急峻に立ち下がる。
A drive coil is attached corresponding to each printing wire, but here we will explain one drive coil 4. When the 0 energization pulse A39 and the energization pulse B40 become H level at the same time, the transistors 32 and 33 are turned on.
Therefore, the voltage of the electric fi 38 is applied to the drive coil, and the electric current 1 flows to the drive coil 4 for 1 hour T l f & 3
f! When the 1-electric pulse A39 becomes L level, the transistor 32 is turned off, and the drive coil 4 and the transistor 33 are turned off.
, a power W is applied to the first flyback circuit around the diode 34.
1 After 0 time T2 when I2 flows, energization pulse B40 becomes L
Become a level! - The transistor 33 turns off, and the drive coil 4, diode 35, and Zener diode 37
, a transistor 36, a power supply 38, and a diode 34, and a second flyback circuit is supplied with power. At this time, the current that crushes the drive coil 4 is as shown in Fig. 3 (a),
Time T during which the voltage of the power supply 38 is applied to the drive coil 4
1, the current generator 1 rises, and the current generator 2 falls during the time T2 when the first flyback circuit is ON, and when the current I3 flows through the second flyback circuit, it rises more steeply than the current generator 2. Go down.

駆動コイル4に印加される電圧Eは電源38の部品定格
のバラツキ、温度による変動、及び、容量のオーバーに
よる印加電圧低下等により変動するため、一定のインパ
クト力をf野るために、第3図の(b)に示すように印
加電圧Eにより通電時間T1のみを変えており、T1+
72は一定となっている。
Since the voltage E applied to the drive coil 4 fluctuates due to variations in component ratings of the power source 38, fluctuations due to temperature, and a drop in the applied voltage due to overcapacity, in order to maintain a constant impact force, the third As shown in (b) of the figure, only the energization time T1 is changed depending on the applied voltage E, and T1+
72 is constant.

このように電圧によらずT1+T2を一定とする事によ
り第4図に示すように印加電圧Eが低電圧時、及び高電
圧時にも印字ワイヤー2の衝突時の残留磁束は小さく、
印字ワイヤー2の復帰時間は短く、印字速度の高速化を
可能にしている。また、電源38に無負荷の電流工2を
有効に使えるため電源供給エネルギーを少なくできる。
By keeping T1+T2 constant regardless of the voltage as shown in FIG. 4, the residual magnetic flux at the time of collision of the printing wire 2 is small even when the applied voltage E is low or high.
The return time of the printing wire 2 is short, making it possible to increase the printing speed. Further, since the electric current generator 2 with no load can be effectively used as the power source 38, the power supply energy can be reduced.

尚、通電パルス幅TI、T1+T2は温度変化、構成回
路部品の定格のバラツキにより変動することは言うまで
もなく、また、T1の印加電圧Eに対する設定値は階段
状に変化しても本発明の主旨からはずれることはなく同
様の効果があることは言うまでもない。
It goes without saying that the energization pulse width TI, T1+T2 will vary due to temperature changes and variations in the ratings of the component circuit parts, and even if the set value for the applied voltage E of T1 changes stepwise, this will not be considered as the gist of the present invention. Needless to say, it does not come off and has the same effect.

通電時間T1はT 1 =−RCX In (1−に/
E)とすると一定のインパクト力を得るのに適する設定
となる。ここでRC,には定数、Eは駆動コイルに印加
される電圧である1通電時間T1の単位を(μS)、印
加電圧Eの単位を(V)とするとKの値かに=3〜30
、さらにはに=3〜15、さらにはに=8〜12とし、
RC=200〜800、さらには400〜600とする
と印加電圧Eの値によらず一定のインパクト力を得るの
に適したT1のカーブを得ることができる。
The energization time T1 is T 1 =-RCX In (1-/
E) is a setting suitable for obtaining a certain impact force. Here, RC is a constant, and E is the voltage applied to the drive coil.If the unit of one energization time T1 is (μS) and the unit of applied voltage E is (V), then the value of K is 3 to 30.
, furthermore, ni = 3 to 15, and further ni = 8 to 12,
When RC=200 to 800, or even 400 to 600, a T1 curve suitable for obtaining a constant impact force regardless of the value of the applied voltage E can be obtained.

また、T2が長いほど電流工2を有効に使える為、電源
供給エネルギーが小さくてすむが、高速化の実現にはT
2が長くなると残留磁束が増え、応答不良が発生しやす
くなるためT2をむやみに大きくとることはできず、T
I/(T1+T2)=0.5〜0.9に設定すると電源
供給エネルギーが小で応答不良の発生がない、また、印
加電圧Eの変動を考慮すると電圧Eの変動の中心値にお
いてTI/(T1+T2)=0.6〜0.8となるよう
にすれば印加電圧Eによらず電源供給エネルギーを小と
することができる。さらに、 (TI十T2)を駆動周
期の0.25〜0.5、さらには0.25〜0.4にす
るのが好ましい。
In addition, the longer T2 is, the more effectively the electrician 2 can be used, and the smaller the power supply energy is required, but the longer T2
If T2 becomes longer, the residual magnetic flux will increase and poor response will more likely occur. Therefore, T2 cannot be made unnecessarily large;
When setting I/(T1+T2)=0.5 to 0.9, the power supply energy is small and no response failure occurs.Also, considering the fluctuations in the applied voltage E, at the center value of the fluctuations in the voltage E, TI/( By setting T1+T2)=0.6 to 0.8, the power supply energy can be reduced regardless of the applied voltage E. Furthermore, it is preferable to set (TI + T2) to 0.25 to 0.5 of the drive period, and more preferably 0.25 to 0.4.

本実施例では印字ワイヤー駆動周期が617(μS)で
3枚紙のコピーrIF力が可能なインパクト力に設定し
てあり、印加電圧Eは35(V)±5(V)(7)範囲
で変動り、RC=500.に=10としてTI(μ5)
−−500x In (1−10/E)、印加電圧の変
動の中心値35V時にT1=168μsのためTl/(
TI+T2)=0.7となるように71+T2=240
 (μS)に設定している。この設定により、高速化を
可能とするとともに従来の駆動方式に比べ、30%の入
力エネルギーの低減を可能としている。また、耐久性も
向上している。
In this example, the printing wire drive cycle is set to 617 (μS), the impact force is set to enable copying rIF force for three sheets, and the applied voltage E is in the range of 35 (V) ± 5 (V) (7). Fluctuation, RC=500. TI(μ5) as =10
--500x In (1-10/E), Tl/(
71+T2=240 so that TI+T2)=0.7
(μS). This setting makes it possible to increase the speed and reduce input energy by 30% compared to conventional drive systems. Additionally, durability has also been improved.

尚、複数の印字ワイヤー駆動周期を有する場合は各印字
ワイヤー駆動周期に応じて前述の如くT1及びT1+T
2を設定するのがよく、特に、印字用紙の厚みの検出位
置、ヘッドとプラテン間の調整位置、またはキャリッジ
の位置等により印字用紙の枚数の多い側で印字速度を遅
くし、インパクト力を向上させる場合の設定に適する。
In addition, if there are multiple printing wire drive periods, T1 and T1+T are determined according to each printing wire drive period as described above.
It is best to set 2. Especially, depending on the detection position of the printing paper thickness, the adjustment position between the head and the platen, or the position of the carriage, the printing speed is slowed down on the side where there are many sheets of printing paper, and the impact force is improved. Suitable for settings when

本実施例においては駆動コイル4の印加電圧検出により
、TIとT2を調整しているが、電源電圧でも代用でき
る。
In this embodiment, TI and T2 are adjusted by detecting the voltage applied to the drive coil 4, but the power supply voltage can also be used instead.

また、本発明のドライバー回路は本実施例に限定されず
、同様の電源波形を有するドライバー回路においても同
様の効果を有することは言うまでもない、第5図、第6
図、第7図、第81!lに本発明の実現が可能な別のド
ライバー回路の例を示す。
Further, it goes without saying that the driver circuit of the present invention is not limited to this embodiment, and that driver circuits having similar power supply waveforms also have similar effects.
Figure, Figure 7, Figure 81! 1 shows an example of another driver circuit in which the present invention can be implemented.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、駆動コイルに印加さ
れる電圧によりT1のみを変え、T1+T2を一定とす
ることで、電圧によらず印字ワイヤー衝突時のコア、ア
マチュア間の残留磁束は小さく、よって、印字ワイヤー
の復帰時間も短くなり、高速印字が可能となる。
As described above, according to the present invention, only T1 is changed depending on the voltage applied to the drive coil, and T1 + T2 is kept constant, so that the residual magnetic flux between the core and armature at the time of printing wire collision is small regardless of the voltage. Therefore, the return time of the printing wire is shortened, and high-speed printing becomes possible.

また、電源の負荷とならないYJlのフライバック回路
を湾れる電源も印字ワイヤーの駆動に使えるため、少な
い電源供給エネルギーで必要な印字力を得ることが可能
となる。
Furthermore, since the power that can be used to drive the printing wire can also be used to drive the printing wire, the power that can be used to run the flyback circuit of YJI, which does not impose a load on the power supply, makes it possible to obtain the necessary printing power with less power supply energy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すインパクトヘッドの断
面図、第2図は本発明の一実施例を示すドライバー回路
図、第3図(a)は本発明の一実施例の電流波形と通電
パルスを示す図、第3図(b)はT1及びT1+T2の
設定を示す図、第4図(a)は低電圧時の電?Q?a形
、磁束、印字ワイヤー挙動を示す図、第4図(b)は高
電圧時の電流波形、磁束、印字ワイヤー挙動を示す図、
第5図、第6図、第7図、第8図の(a)(b)は本発
明を実現する別のドライバー回路の例を示す図。 第9図は従来のインパクトドツトヘッドの模式図。 第10図(a)は従来の電流波形、−第10図(b)は
ドライバー回路図、第11図は従来の通電条件における
低電圧時の電源、磁束、印字ワイヤー挙動を示す図。 2・・・印字ワイヤー 4・・・駆動コイル 5川コア 7・・・インクリボン 8・・・プラテン 30・・・ドライバー回路 32.33.36・・・トランジスタ 34.35・・・ダイオード 37・・・ツェナーダイオード 38・・・電源 39・・・通電パルスA 40・・・通電パルスB 以  上
Fig. 1 is a sectional view of an impact head showing an embodiment of the present invention, Fig. 2 is a driver circuit diagram showing an embodiment of the invention, and Fig. 3(a) is a current waveform of an embodiment of the invention. FIG. 3(b) is a diagram showing the setting of T1 and T1+T2, and FIG. 4(a) is a diagram showing the current pulse at low voltage. Q? Figure 4(b) is a diagram showing the current waveform, magnetic flux, and printing wire behavior at high voltage.
(a) and (b) of FIG. 5, FIG. 6, FIG. 7, and FIG. 8 are diagrams showing examples of other driver circuits for realizing the present invention. Figure 9 is a schematic diagram of a conventional impact dot head. FIG. 10(a) is a conventional current waveform, FIG. 10(b) is a driver circuit diagram, and FIG. 11 is a diagram showing power supply, magnetic flux, and print wire behavior at low voltage under conventional energizing conditions. 2... Printing wire 4... Drive coil 5 River core 7... Ink ribbon 8... Platen 30... Driver circuit 32.33.36... Transistor 34.35... Diode 37. ... Zener diode 38... Power supply 39... Energizing pulse A 40... Energizing pulse B That's all

Claims (1)

【特許請求の範囲】[Claims] (1)励磁吸引することにより印字ワイヤーを突出させ
プラテン上に支持された印字媒体に印字を行なう駆動コ
イルを有し、該駆動コイルのフライバック発生時に前記
駆動コイルに流れる電流切り替え用の第1のフライバッ
ク回路と第2のフライバック回路を備え、前記駆動コイ
ルへの電圧の印加がOFFするとともに前記駆動コイル
を流れる電流は第1のフライバック回路を流れ、第1の
フライバック回路から第2のフライバック回路へ前記駆
動コイルを流れる電流が切り替えられるインパクトドッ
トヘッドにおいて、前記駆動コイルに電圧を印加してい
る時間をT1、第1のフライバック回路に前記駆動コイ
ルの電流が流れている時間をT2とすると、前記駆動コ
イルに印加される電圧値に応じて前記印字ワイヤーの印
字力が一定となるようにT1が所定の値をとるとともに
、T1+T2が電圧によらず一定であることを特徴とす
るインパクトドットヘッド。
(1) It has a drive coil that projects a printing wire by excitation and attraction to print on a print medium supported on a platen, and a first switch for switching the current flowing through the drive coil when flyback of the drive coil occurs. and a second flyback circuit, when the voltage application to the drive coil is turned off, the current flowing through the drive coil flows through the first flyback circuit, and the current flows from the first flyback circuit to the first flyback circuit. In the impact dot head in which the current flowing through the drive coil is switched to the second flyback circuit, the time during which voltage is applied to the drive coil is T1, and the current of the drive coil is flowing through the first flyback circuit. When time is T2, T1 takes a predetermined value so that the printing force of the printing wire is constant according to the voltage value applied to the drive coil, and T1+T2 is constant regardless of the voltage. Features an impact dot head.
JP15007589A 1989-06-13 1989-06-13 Impact dot head Pending JPH0313353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15007589A JPH0313353A (en) 1989-06-13 1989-06-13 Impact dot head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15007589A JPH0313353A (en) 1989-06-13 1989-06-13 Impact dot head

Publications (1)

Publication Number Publication Date
JPH0313353A true JPH0313353A (en) 1991-01-22

Family

ID=15488974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15007589A Pending JPH0313353A (en) 1989-06-13 1989-06-13 Impact dot head

Country Status (1)

Country Link
JP (1) JPH0313353A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116348A (en) * 1991-10-25 1993-05-14 Oki Electric Ind Co Ltd Drive device of wire dot head
JPH07299918A (en) * 1994-04-28 1995-11-14 Oki Electric Ind Co Ltd Driving control of printing head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116348A (en) * 1991-10-25 1993-05-14 Oki Electric Ind Co Ltd Drive device of wire dot head
JPH07299918A (en) * 1994-04-28 1995-11-14 Oki Electric Ind Co Ltd Driving control of printing head

Similar Documents

Publication Publication Date Title
EP0124382B1 (en) Print hammer assembly for an impact printer
JPH0313353A (en) Impact dot head
US3906854A (en) Print hammer control mechanism
JP3284471B2 (en) Wire impact printer
JPH0577457A (en) Impact printer
JPH022018A (en) Dot printer
US3834305A (en) Printer
JP3307559B2 (en) Driving method of wire impact type print head
US6835011B2 (en) Impact dot printing head control apparatus
USRE29745E (en) Printer
JP2746787B2 (en) Wire dot print head controller
JP3035878B2 (en) Wire dot print head
JPS6323160Y2 (en)
JPS6325949B2 (en)
JPH02137939A (en) Dot printing head driver
JPS6319156Y2 (en)
JPH1052926A (en) Maintenance method for wire dot printer head and device therefor
JPH0211338A (en) Wire dot printer
JPS6135976A (en) Printer
JPS58162351A (en) Spring charge type printing head
JPS5957404A (en) Magnet driving circuit
JPH01146757A (en) Printer
JPH01244869A (en) Wire dot impact printer
JPH05260790A (en) Motor drive circuit
JPH01299055A (en) Wire dot impact printer device