JPS58188391A - Non-volatile memory circuit - Google Patents

Non-volatile memory circuit

Info

Publication number
JPS58188391A
JPS58188391A JP57069642A JP6964282A JPS58188391A JP S58188391 A JPS58188391 A JP S58188391A JP 57069642 A JP57069642 A JP 57069642A JP 6964282 A JP6964282 A JP 6964282A JP S58188391 A JPS58188391 A JP S58188391A
Authority
JP
Japan
Prior art keywords
memory
gate
voltage
terminal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57069642A
Other languages
Japanese (ja)
Inventor
Heihachiro Ebihara
平八郎 海老原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd, Citizen Watch Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP57069642A priority Critical patent/JPS58188391A/en
Priority to US06/475,424 priority patent/US4589097A/en
Priority to GB08307299A priority patent/GB2118797B/en
Publication of JPS58188391A publication Critical patent/JPS58188391A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • G11C16/16Circuits for erasing electrically, e.g. erase voltage switching circuits for erasing blocks, e.g. arrays, words, groups
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits

Abstract

PURPOSE:To prevent the change in the content of memory due to electrostatic noise and to attain high reliability, by integrating a voltage impressed to a write/erase external terminal and applying a gate of a memory. CONSTITUTION:In impressing +30V to a common terminal VM9, when a gate potential of a control FET13 is a low potential VSS +30V is impressed to a gate of a memory 12 and the memory 12 is the write state. In applying +30V to a terminal WM9, when the gate of the FET13 is a high potential Vdd, the FET13 is set on, and a voltage subtracting the voltage drop of a diode 14 from the VSS is impressed to the gate of the memory 12, and the content of memory is erase state. A resistor 11 and a capacitor 15 added to the gate of the memory 12 form an integration circuit to the impressed voltage to the terminal VM9, a voltage at a connecting point B at the gate of the memory 12 is a waveform as shown in a curve (b), the maximum value of the voltage at the point B is about 14V and the content of memory 12 is unchanged.

Description

【発明の詳細な説明】 本発明は不揮発性メモリ回路に関するもので有り、その
目的とする所は静電気等によるノイズの影響で、メモリ
内容が変化するのを防ぐ事に有る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nonvolatile memory circuit, and its purpose is to prevent memory contents from changing due to the influence of noise due to static electricity or the like.

以下図面に基すいて説明すると、第1図は不揮発性メモ
リ回路の一例を示す回路図であって、書込用外部端子W
1は抵抗体2を介して不揮発性メモリ4(以下、単にメ
モリと記載する)のゲートに接続されるとともに制御用
トランジスタ6のドレインに接続される。該制御用トラ
ンジスタ乙のソースは消去用外部端子E6に接続される
。前記メモリ4のノースは電源の高電位側Vddに接続
され、トレインは負荷抵抗5を介して電源の低電位側V
SSに接続されるとともにメモリ4のドレインと抵抗体
5との接続点が出力端OUTとなる。
The following explanation will be given based on the drawings. FIG. 1 is a circuit diagram showing an example of a nonvolatile memory circuit, and shows an external write terminal W.
1 is connected to the gate of a nonvolatile memory 4 (hereinafter simply referred to as memory) via a resistor 2, and is also connected to the drain of a control transistor 6. The source of the control transistor B is connected to the external erasing terminal E6. The north of the memory 4 is connected to the high potential side Vdd of the power supply, and the train is connected to the low potential side Vdd of the power supply via a load resistor 5.
SS and the connection point between the drain of the memory 4 and the resistor 5 becomes an output terminal OUT.

前記制御用トランジスタ3のゲートにはデータが供給さ
れる。この回路の動作は次の如くである。
Data is supplied to the gate of the control transistor 3. The operation of this circuit is as follows.

先ず消去用外部端子E6に負の高電圧(−30V )を
印加すると、前記制御用トランジスタ6は、ブタの内容
によらずオンとなる。
First, when a negative high voltage (-30V) is applied to the external erasing terminal E6, the control transistor 6 is turned on regardless of the contents of the switch.

この理由は、該データのレベルはVddかVLSであっ
て、前記負の高電圧(−30V)に比して十分に高い事
による。従って前記メモリ4のゲートには負の高電圧(
又はこれより低電位子゛□ VSSO値を引いた電圧)が印加される。前記メモリ4
はゲートに負の高い電圧(およそ−26V以F)が印加
された時、メモリ4の内容が消去される。この消去作業
の終了後は前記消去用外部端(−E 6は外部で低電位
側VSSに接続される。
The reason for this is that the level of the data is Vdd or VLS, which is sufficiently higher than the negative high voltage (-30V). Therefore, the gate of the memory 4 has a negative high voltage (
Or a voltage lower than this (voltage obtained by subtracting the VSSO value) is applied. The memory 4
When a high negative voltage (approximately -26 V or more) is applied to the gate, the contents of the memory 4 are erased. After the erase operation is completed, the erase external terminal (-E6) is externally connected to the low potential side VSS.

次に書込用外部端子W1に正の高電圧(+3゜■)を印
加する。この時前記制御用トランジスタ乙のゲートに印
加されるデ=りの内容がVSsしベルであれば、該制御
用トランジスタ6&末オフ状態であるため、前記メモリ
4のゲートに(ま前言己抵抗体2を弁して正の高電圧が
印加される。前言己メモリ4はゲートに正の高い電圧(
−4−26V以−ト)が印加された時、内容が書込状態
となる。又、内訂記書込用外部端子W1に正の高電圧力
を印加された時、前記制御用トランジスタ6のゲートに
日J加されているデータのレベルが高電位Vddで有っ
た場合には、該制御用トランジスタ6はオンとなるため
、前記メモリ4のゲートにはVssレベルの電圧が印加
されるため、該メモリ4の内容&ま消去状態を維持する
。書込作業終了後は前記誉込用夕を部端子W HV d
 dレベルに外部にて結線を行う。
Next, a positive high voltage (+3°■) is applied to the external write terminal W1. At this time, if the content of the voltage applied to the gate of the control transistor B is VSs, then the control transistor B is in an OFF state, so that the gate of the memory 4 is applied to the gate of the memory 4. A high positive voltage is applied to the gate of the memory 4.
-4-26V or higher) is applied, the contents enter the write state. Further, when a positive high voltage is applied to the internal correction writing external terminal W1, if the level of data applied to the gate of the control transistor 6 is at the high potential Vdd. Since the control transistor 6 is turned on, a voltage at the Vss level is applied to the gate of the memory 4, so that the contents of the memory 4 are maintained in the erased state. After the writing process is completed, connect the terminal W HV d
Connect to level d externally.

−ト記メモリ回路の通常の使用状況は次の如くである。- The normal usage situation of the memory circuit mentioned above is as follows.

即ちメモリ回路の読出し時以外は前記制御用トランジス
タ乙のゲートはVSSレベルとなる様に構成して置く。
That is, the gate of the control transistor B is configured to be at the VSS level except when reading the memory circuit.

すると該制御用トラン・ジスタロはオフ状態であって、
前記メモリ4のゲートには前記抵抗体2を介してVdd
レベルの電圧力1印加されている。この状暢は前記メモ
リ4の内容カ一時j11」とともに変化する劣化現象を
少なくする事が出宋る。次に前記メモリ4の読出し時に
は前記制御用トランジスタ乙のゲート電位を高電位Vd
dにする。この時は該制御用トランジスタ3はオンとな
り、前記メモリ4のゲートにはVssレベルの電圧が印
加される。この時前記メモリ4が消去状態に有ると、該
メモリ4はオフ状態で有るため、メモリ出力端OUTの
電位はVssレベルとなり、又、前記メモリ4が書込状
態にあると該メモリ4はオン状態で有るため、前記メモ
リ出力端OU TKはVddレベルの電圧が現れる。
Then, the control trans distal is in the off state,
The gate of the memory 4 is connected to Vdd through the resistor 2.
A voltage force of level 1 is applied. This condition can reduce the phenomenon of deterioration that changes with the content of the memory 4 over time. Next, when reading the memory 4, the gate potential of the control transistor B is set to a high potential Vd.
Make it d. At this time, the control transistor 3 is turned on, and a voltage at the Vss level is applied to the gate of the memory 4. At this time, if the memory 4 is in the erase state, the memory 4 is in the off state, so the potential of the memory output terminal OUT becomes the Vss level, and if the memory 4 is in the write state, the memory 4 is in the on state. Therefore, a voltage at the Vdd level appears at the memory output terminal OUTK.

1−記の構成に於ては消去、書込作業終了時に前記消去
用外部端子E6、及び書込用外部端子W1を外部にて電
源線に接続する必要が有り、作業工程が腹雑となるばか
りでな(、時計等の超小型電子装置に於ては外部結線の
ためのスペースが必要となるため小型化を阻害する。
In the configuration described in 1-, it is necessary to connect the external erasing terminal E6 and the external writing terminal W1 to a power supply line at the end of erasing and writing operations, which makes the work process complicated. Not only that, but microelectronic devices such as watches require space for external wiring, which impedes miniaturization.

そこで第2図の回路図に示す如く、書込用外部端子W1
及び消去用外部端子E6をそれぞれ集積回路内部で抵抗
体7.8を用いて電源に接続する方法が考えらねる。し
かるにこの方法によると次の様な欠点が生ずる。即ち消
去、書込作業終了後に前記消去用外部端子E6又は書込
用外部端子W1に静電気あるいは誘導による電気的雑音
が印加される場合が有る。この誘導雑音は一般に発生源
インピーダンスが高いため、前記抵抗体7及び8を十分
小さくして置けば影響がなくなるが、静電気雑音の方は
問題が残る。
Therefore, as shown in the circuit diagram of Fig. 2, external write terminal W1
There is no way to think of a way to connect the erase external terminal E6 to the power supply using a resistor 7.8 inside the integrated circuit. However, this method has the following drawbacks. That is, after the erasing and writing operations are completed, electrical noise due to static electricity or induction may be applied to the erasing external terminal E6 or the writing external terminal W1. Since this induced noise generally has a high source impedance, if the resistors 7 and 8 are made sufficiently small, the influence will be eliminated, but the problem of static electricity noise remains.

通常集積回路を扱う場合考慮される静電気は主に人体に
よるものであって、その大きさは200■)Fの容址な
160Vに充電したモデルすなわち第3図(a)に示す
回路図によって表わされる。
The static electricity that is normally considered when dealing with integrated circuits is mainly caused by the human body, and its magnitude is represented by a model charged to 160 V with a capacity of 200 F, ie, the circuit diagram shown in Figure 3 (a). It will be done.

このモデルを使って第2図のメモリ回路構成について考
察すると、第3図(a)の回路図に示す如くスイッチS
を投入した時、前記書込用外部端子W1又は消去用外部
端子E6には、第3図(b)に示す如き電圧が現れる。
When considering the memory circuit configuration shown in Figure 2 using this model, the switch S is shown in the circuit diagram of Figure 3 (a).
When the voltage is turned on, a voltage as shown in FIG. 3(b) appears at the write external terminal W1 or the erase external terminal E6.

時定数は第3図(a)のI(とCとで決まるが、最大電
圧は160Vがそのまま現れるため、これによって前記
メモリ4の内容が変化する可能性が有る。
The time constant is determined by I( and C in FIG. 3(a)), but since the maximum voltage appears as is, 160V, there is a possibility that the contents of the memory 4 will change due to this.

本発明は上記の問題点を解決した不揮発性メモリ回路を
提供するものであって、第4図に本発明の実施例である
メモリ回路の回路図を示す。第4図に於ては、書込用外
部端子及び消去用外部端子の両機能は共通端子VM9に
よって行なわれるよう構成されており、該共通端子V、
9は抵抗体10によって高電位側Vddに接地されると
ともに抵抗体11を介してメモリ12のゲートに接続さ
才]る。該メモリ12のゲートは更に制御用トランジス
タ16のドレインに接続され、該制御用トランジスタ1
60ソースはダイオード14を介して低電位側Vssに
接続される。前記メモリ12のゲートは容1Hco15
により高電位側Vddに接地される。
The present invention provides a nonvolatile memory circuit that solves the above problems, and FIG. 4 shows a circuit diagram of a memory circuit that is an embodiment of the present invention. In FIG. 4, the functions of both the writing external terminal and the erasing external terminal are performed by a common terminal VM9, and the common terminal V,
9 is grounded to the high potential side Vdd by a resistor 10 and connected to the gate of the memory 12 via a resistor 11. The gate of the memory 12 is further connected to the drain of the control transistor 16, and the control transistor 1
The 60 source is connected to the low potential side Vss via the diode 14. The gate of the memory 12 is 1Hco15
is grounded to the high potential side Vdd.

1−記実施例の通常の消去、書込作業は次の如くである
。先ず前記共通端子V、9に一30Vを印加する。この
時前記ダイオード14の働きにより、前記メモリ12の
ゲートには一30Vが印加されるため、該メモリ12の
内容は消去される。次に前記共通端子vw9に+30V
を印加する。この時、前記制御用トランジスタ13のゲ
ート電位が低電位Vssであれば、該制御用トランジス
タ16はオフであるため、前記メモリ12のゲートには
−+−30Vが印加され、該メモリ12は書込状態とな
る。又、前記共通端子V、9に+30Vを印加した時に
Ail記制御用トランジスタ16のゲート電位が市電位
Vddであると該制御用トランジスタ16はオフとなり
、前記メモリ12のゲートには低電位Vssより前記ダ
イオード14に於ける電圧降下分を引いただけの電圧し
か印加されず、従ってメモリ内容は消去状態のままとな
る。
The normal erasing and writing operations in the embodiment 1-1 are as follows. First, -30V is applied to the common terminals V and 9. At this time, due to the action of the diode 14, -30V is applied to the gate of the memory 12, so that the contents of the memory 12 are erased. Next, apply +30V to the common terminal vw9.
Apply. At this time, if the gate potential of the control transistor 13 is a low potential Vss, the control transistor 16 is off, so -+-30V is applied to the gate of the memory 12, and the memory 12 is written. It becomes a crowded state. Further, when +30V is applied to the common terminals V and 9, if the gate potential of the control transistor 16 is at the voltage potential Vdd, the control transistor 16 is turned off, and the gate of the memory 12 is supplied with a voltage lower than the low potential Vss. Only a voltage equal to the voltage drop across the diode 14 is applied, so the memory contents remain erased.

上記構成のメモリ回路に於て、前記した靜を雑音のモデ
ルを使った等価回路を考えて見ると第5図(、)の回路
図の如くとなる。雑音モデルの容曖を01 とし、前記
抵抗体10の値をR1とすると、R1はC1を放電する
ための放電回路となり接続点Aに於ける電圧は第5図(
b)の曲線(a)に示す如<C+XR+の時定数で減衰
する。
In the memory circuit having the above configuration, if we consider an equivalent circuit using the noise model described above, it will be as shown in the circuit diagram of FIG. 5(,). If the ambiguity of the noise model is 01 and the value of the resistor 10 is R1, R1 becomes a discharge circuit for discharging C1, and the voltage at the connection point A is as shown in Fig. 5 (
As shown in curve (a) of b), it decays with a time constant of <C+XR+.

一方、前記抵抗体11の値をROとし、前記メモリ12
のゲー トに付加した容重15の値をC0とすると、(
(0とCOは前記外部端子VM9に印加された電圧を積
分する積分回路を形成し、該積分回路の出力端における
電圧、すなわち前記メモリ12のゲートにおける接続点
Bの電圧は第5図(b)の曲線(b)に示す如き波形と
なる。ここでR,xC,よりもf(o x Coの方が
大きくなる様に値を設定して置くと、前記接続点Bの電
圧は充分に小さくする事が出来る。−例として、”+=
200PF、R,=10にΩ、Co=2PF’、too
=4 KOとすると、C+に160Vを充電してスイッ
チSを投入すると、前記点Bに現れる電圧の最大値はお
よそ14Vであって、メモリ12の内容を変化させる事
はない。
On the other hand, if the value of the resistor 11 is RO, the memory 12
If the value of volumetric weight 15 added to the gate of is C0, then (
(0 and CO form an integrating circuit that integrates the voltage applied to the external terminal VM9, and the voltage at the output terminal of the integrating circuit, that is, the voltage at the connection point B at the gate of the memory 12 is as shown in FIG. ) will have a waveform as shown in curve (b).Here, if the value is set so that f(o x Co is larger than R, xC, the voltage at the connection point B will be sufficient) It can be made smaller.-For example, "+=
200PF, R, = 10Ω, Co = 2PF', too
=4 KO, when C+ is charged with 160V and switch S is turned on, the maximum value of the voltage appearing at the point B is approximately 14V, and the contents of the memory 12 are not changed.

上記の如く本発明によれば静電雑音によるメモリ内容の
変化を妨ぐ事が出来、極めて信頼性の高い製品を供給す
る事になり、その効果は犬である。
As described above, according to the present invention, changes in memory contents due to electrostatic noise can be prevented, and an extremely reliable product can be provided, and its effects are outstanding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のメモリ回路を示す回路図、第2図は従来
の改良例を示す従来のメモリ回路の回路図、第3図(a
)及び第3図(b)は静電雑音発生源及び第2図の回路
構成要素の一部をモデル化して示す等価回路の回路図及
び波形図、第4図は本発明の実施例を示すメモリ回路の
回路図、第5図(a)及び第5図(b)は静電雑音発生
源及び第4図の回路構成要素の一部をモデル化して示す
等価回路の回路図及び波形図である。 9・・・共通外部端子VM(書込・消去用外部端子)、
10.11・抵抗体、 12・・・不揮発性メモリ、 15・・・容駿。 第1rjA     第2図 ■ ■ し− ヒ 第3図 (a)         (b) 第4図 第5図 (CI) (b)
Figure 1 is a circuit diagram showing a conventional memory circuit, Figure 2 is a circuit diagram of a conventional memory circuit showing an improved example of the conventional memory circuit, and Figure 3 (a
) and FIG. 3(b) are circuit diagrams and waveform diagrams of equivalent circuits that model an electrostatic noise source and some of the circuit components of FIG. 2, and FIG. 4 shows an embodiment of the present invention. The circuit diagrams of the memory circuit, FIGS. 5(a) and 5(b), are circuit diagrams and waveform diagrams of equivalent circuits that model the electrostatic noise generation source and some of the circuit components shown in FIG. be. 9... Common external terminal VM (external terminal for writing/erasing),
10.11.Resistor, 12..Nonvolatile memory, 15..Rongjun. 1rjA Figure 2 ■ ■ Shi-hi Figure 3 (a) (b) Figure 4 Figure 5 (CI) (b)

Claims (1)

【特許請求の範囲】[Claims] 書込・消去用外部端子に印加される電圧を積分する積分
回路を設け、該積分回路の出力端を不揮発性メモリのゲ
ートに接続した事を特徴とする不揮発性メモリ回路。
1. A nonvolatile memory circuit comprising: an integrating circuit that integrates a voltage applied to an external write/erase terminal; and an output terminal of the integrating circuit connected to a gate of a nonvolatile memory.
JP57069642A 1982-03-16 1982-04-27 Non-volatile memory circuit Pending JPS58188391A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57069642A JPS58188391A (en) 1982-04-27 1982-04-27 Non-volatile memory circuit
US06/475,424 US4589097A (en) 1982-03-16 1983-03-15 Non-volatile memory circuit having a common write and erase terminal
GB08307299A GB2118797B (en) 1982-03-16 1983-03-16 Non-volatile memory circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57069642A JPS58188391A (en) 1982-04-27 1982-04-27 Non-volatile memory circuit

Publications (1)

Publication Number Publication Date
JPS58188391A true JPS58188391A (en) 1983-11-02

Family

ID=13408709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57069642A Pending JPS58188391A (en) 1982-03-16 1982-04-27 Non-volatile memory circuit

Country Status (1)

Country Link
JP (1) JPS58188391A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251599A (en) * 1984-05-28 1985-12-12 Seiko Epson Corp Nonvolatile memory circuit
USRE34974E (en) * 1984-05-28 1995-06-20 Seiko Epson Corporation Non-volatile memory circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251599A (en) * 1984-05-28 1985-12-12 Seiko Epson Corp Nonvolatile memory circuit
USRE34974E (en) * 1984-05-28 1995-06-20 Seiko Epson Corporation Non-volatile memory circuit

Similar Documents

Publication Publication Date Title
TW472445B (en) Semiconductor integrated circuit
JPH0459720B2 (en)
JPS63244500A (en) Semiconductor nonvolatile storage device
JPS5972530A (en) High speed low power delay clock generator
JPS6044752B2 (en) dynamic memory
JPH0488518A (en) Semiconductor device
JPS63268196A (en) Semiconductor integrated circuit
JPS58188391A (en) Non-volatile memory circuit
JP3003628B2 (en) Ferroelectric memory and its writing method
US4589097A (en) Non-volatile memory circuit having a common write and erase terminal
US4584670A (en) Integrated dynamic write-read memory
JP4243027B2 (en) Improved wordline boost circuit
JP3379601B2 (en) Semiconductor integrated circuit device
JPH0252890B2 (en)
JPS5836435B2 (en) semiconductor memory circuit
JPS58161195A (en) Static type semiconductor storage device
JPH0328855B2 (en)
KR950000533B1 (en) Data output buffer
JP2822401B2 (en) Bus drive circuit
JPS58188390A (en) Memory circuit
JP3087289B2 (en) Semiconductor integrated circuit
JP2000132999A (en) Semiconductor integrated circuit
JPS6262497A (en) Writing device for eprom
JPS6177196A (en) Semiconductor memory integrated circuit
JPH06215562A (en) Semiconductor storage device