JPS5818785B2 - Seizouhouhou - Google Patents

Seizouhouhou

Info

Publication number
JPS5818785B2
JPS5818785B2 JP48114199A JP11419973A JPS5818785B2 JP S5818785 B2 JPS5818785 B2 JP S5818785B2 JP 48114199 A JP48114199 A JP 48114199A JP 11419973 A JP11419973 A JP 11419973A JP S5818785 B2 JPS5818785 B2 JP S5818785B2
Authority
JP
Japan
Prior art keywords
insulating film
region
implanted
semiconductor substrate
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48114199A
Other languages
Japanese (ja)
Other versions
JPS5065179A (en
Inventor
鴨志田元孝
中村邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP48114199A priority Critical patent/JPS5818785B2/en
Publication of JPS5065179A publication Critical patent/JPS5065179A/ja
Publication of JPS5818785B2 publication Critical patent/JPS5818785B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は絶縁ゲート型電界効果トランジスタ、中でもト
ランジスタ相互間の漏洩電流の少ない集積回路の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an insulated gate field effect transistor, particularly an integrated circuit with low leakage current between transistors.

金属(M)、絶縁膜(I)、半導体(S)によって構成
されるMIS型半導体装置に於ては、活性素子間領域即
ちトランジスタとトランジスタの間の領域に於て配線金
属、絶縁膜、及び半導体基板によって寄生のMIS構造
が形成され、配線金属に電圧を加えると半導体基板表面
が反対導電型となり、漏洩電流が流れて素子が正常な動
作をしないことが多かった。
In a MIS type semiconductor device composed of metal (M), insulating film (I), and semiconductor (S), wiring metal, insulating film, and A parasitic MIS structure is formed by the semiconductor substrate, and when a voltage is applied to the wiring metal, the surface of the semiconductor substrate becomes of the opposite conductivity type, leakage current flows, and the device often does not operate normally.

このため通常はあらかじめ、半導体基板の活性素子間の
領域に基板と同じ導電型の不純物を拡散法によって導入
しておき、これにより、活性素子間の領域の閾値電圧を
高め、漏洩電流を阻止している。
For this reason, impurities of the same conductivity type as the substrate are usually introduced in advance into the regions between the active elements of the semiconductor substrate by a diffusion method, thereby increasing the threshold voltage of the regions between the active elements and preventing leakage current. ing.

例えばpチャンネルMO8型集積回路に於ては、ソース
、ドレインの拡散形成工程の前に活性素子間の領域にあ
らかじめ例えばアンチモンを拡散しておく方法がとられ
ている。
For example, in a p-channel MO8 type integrated circuit, a method is used in which antimony, for example, is diffused in advance into regions between active elements before the step of forming source and drain diffusions.

しかし、アンチモンの濃度を高くするとソース及びドレ
イン接合の耐圧が下るのでアンチモンの濃度には低濃度
領域で濃度を制御する必要があるという制限があった。
However, if the concentration of antimony is increased, the withstand voltage of the source and drain junctions decreases, so there is a restriction on the concentration of antimony that it is necessary to control the concentration in a low concentration region.

然し乍ら拡散法では、不純物は一度、固溶度限界まで入
ってしまうので低濃度の拡散を精密に行うことは極めて
難しく、バラツキも太きいため、これがこの種のトラン
ジスタの製造上歩留り低下の大きな要因となっている。
However, in the diffusion method, once impurities enter the solid solubility limit, it is extremely difficult to perform low concentration diffusion precisely, and there is wide variation, which is a major factor in reducing the yield in manufacturing this type of transistor. It becomes.

更に、この方法では、酸化工程、写真蝕刻工程、拡散工
程が必要なため、工程が繁雑となり、この点も歩留り低
下の大きな要因にもなっている。
Furthermore, this method requires an oxidation step, a photoetching step, and a diffusion step, making the process complicated, which is also a major factor in reducing the yield.

本発明の目的は精度が良く、工数の少ない漏洩電流阻止
領域形成技術を提供し、よって歩留りを飛躍的に向上さ
せようとするものである。
An object of the present invention is to provide a technique for forming a leakage current blocking region with high accuracy and a small number of man-hours, thereby dramatically improving the yield.

本発明は例えば不純物導入法としてイオン注入法を用い
、基板と同じ電気伝導型のイオンをマスクを用いること
なく基板全面に適当な条件で注入し、活性素子間の領域
のみの閾値電圧を高めることによって漏洩電流阻止領域
を形成しようとするものである。
The present invention uses, for example, an ion implantation method as an impurity introduction method, and implants ions of the same electrical conductivity type as the substrate into the entire surface of the substrate under appropriate conditions without using a mask, thereby increasing the threshold voltage only in the region between active elements. This is intended to form a leakage current blocking region.

本発明はMIS型半導体表面の空間電荷層内に注入され
たイオンによるアクセプターまたはドナ−型不純物は閾
値電圧を変動させるという事実と、絶縁膜を通じてイオ
ンを注入した場合、注入イオンの半導体基板内に於ける
分布の深さは絶縁膜の厚さ及び注入イオンのエネルギー
を調節することによって制御できるという事と、更に、
空間電荷層より奥に注入された不純物は閾値電圧に何ら
影響を及ぼさないという発見と、低濃度で基板表面に浅
く注入された不純物は耐圧に何ら影響を及ぼさないとい
う発見とによってなされたものである。
The present invention is based on the fact that acceptor or donor type impurities caused by ions implanted into the space charge layer on the surface of a MIS type semiconductor fluctuate the threshold voltage, and when ions are implanted through an insulating film, The depth of the distribution can be controlled by adjusting the thickness of the insulating film and the energy of the implanted ions;
This was made based on the discovery that impurities implanted deeper than the space charge layer have no effect on the threshold voltage, and the discovery that impurities implanted shallowly into the substrate surface at low concentrations have no effect on withstand voltage. be.

この本発明製法により従来必要としていた漏洩電流阻止
領域形成のための写真蝕刻工程や不純物熱拡散工程が不
要となり、その結果写真蝕刻工程数の減少と、高温に半
導体をさらす工程の減少に伴って製品の歩留りが向上す
るという効果かもたらされる。
The manufacturing method of the present invention eliminates the need for the photo-etching process and impurity thermal diffusion process for forming leakage current blocking regions, which were conventionally required.As a result, the number of photo-etching processes and the process of exposing the semiconductor to high temperatures are reduced. This has the effect of improving product yield.

以下本発明の一実施例を図面を用いて詳細に説明する。An embodiment of the present invention will be described in detail below with reference to the drawings.

この例ではnチャンネルMO8型半導体装置を例示して
説明する。
In this example, an n-channel MO8 type semiconductor device will be explained.

第1図では既にp型半導体基板1にソース領域2とドレ
イン領域3とが拡散により形成され、又ゲート膜4の酸
化工程も終了した状態にあるトランジスタ素子の断面図
を示す。
FIG. 1 shows a cross-sectional view of a transistor element in which a source region 2 and a drain region 3 have already been formed in a p-type semiconductor substrate 1 by diffusion, and the oxidation process of a gate film 4 has also been completed.

そしてこの場合活性領域における絶縁膜4の厚さは活性
領域以外の領域における絶縁膜5の厚さより薄く形成す
るものである。
In this case, the thickness of the insulating film 4 in the active region is formed to be thinner than the thickness of the insulating film 5 in the region other than the active region.

因みに絶縁膜4の厚さは例えば約1000人、活性素子
間の絶縁膜5の厚さは例えば約1μに採られる。
Incidentally, the thickness of the insulating film 4 is, for example, approximately 1000, and the thickness of the insulating film 5 between the active elements is, for example, approximately 1 μm.

この様に活性な構成要素以外の領域上の絶縁膜5を構成
要素トランジスタの少なくともゲート領域の絶縁膜4よ
り厚くする工程を経た後基板1の全面にわたって基板と
同じ導電型の不純物例えばボロンイオン6を打込法によ
り注入する。
After going through the step of making the insulating film 5 on the regions other than the active constituent elements thicker than the insulating film 4 in at least the gate region of the constituent transistors, impurities of the same conductivity type as the substrate, such as boron ions 6, are applied over the entire surface of the substrate 1. Inject using the implantation method.

打込の条件は次の様に採る。The driving conditions are as follows.

t□Xp+xd >R>t□XF ”=−”°=
°(1)max p Rp 3△Rp>toXG+XdmaX・・・・・・
・・・・・・・・・(2)ここでRはボロンイオン6の
飛程(打込み深さ)、△R9は飛程の標準偏差、tox
cはゲート上の絶縁膜4の厚さ、tOXFは活性素子以
外の領域における絶縁膜5の厚さ、Xdmaxは半導体
基板表面から測った空間電荷層の伸びの最大値である。
t□Xp+xd >R>t□XF ”=-”°=
°(1) max p Rp 3△Rp>toXG+XdmaX・・・・・・
・・・・・・・・・(2) Here, R is the range (implantation depth) of boron ion 6, △R9 is the standard deviation of the range, tox
c is the thickness of the insulating film 4 on the gate, tOXF is the thickness of the insulating film 5 in a region other than the active element, and Xdmax is the maximum value of the extension of the space charge layer measured from the surface of the semiconductor substrate.

例えば先に述べた例の如く、絶縁膜4と5の膜厚が10
00λと1μで、アクセプタ濃度が10”’cIrL”
の基板を用いたとすると、約600kevのボロンイオ
ン6を10” 〜1012crn’注入すればよい。
For example, as in the example mentioned above, the thickness of the insulating films 4 and 5 is 10
00λ and 1μ, the acceptor concentration is 10"'cIrL"
If a substrate of 10" to 1012 crn' is used, approximately 600 keV of boron ions 6 may be implanted.

これはイオンが打込まれる基板の不純物濃度と、打込ま
れるイオン及び基板上に被着された絶縁膜の厚さが決ま
れば注入されたイオン分布を表わす表(米国にて発表さ
れている)によって打込エネルギが求められる。
This is a table (published in the United States) that shows the implanted ion distribution once the impurity concentration of the substrate into which the ions are implanted, the implanted ions, and the thickness of the insulating film deposited on the substrate are determined. The driving energy is determined by:

又逆に打込エネルギが決定されていれば所望の深さ位置
に注入イオンの分布中心を得たい場合の絶縁膜の厚さが
求められる。
Conversely, if the implantation energy has been determined, the thickness of the insulating film can be determined to obtain the distribution center of the implanted ions at a desired depth.

注入されたイオンはガウス分布即ち成る規定位置を最高
濃度点としこの位置を中心に濃度が漸次減少する如き分
布特性をすることから、第1式及び第2式の条件でイオ
ンを注入すれば活性素子間領域では注入イオン層7の濃
度が基板1の不純物濃度と一致する位置は空間電荷層内
に位置し、活性領域内の特にゲートの下のチャンネル領
域では空間電荷層より下側に注入イオン層7′が形成さ
れる。
The implanted ions have a Gaussian distribution, that is, a distribution characteristic in which the maximum concentration is at a specified position and the concentration gradually decreases around this position. Therefore, if ions are implanted under the conditions of the first and second equations, they will become active. In the inter-element region, the position where the concentration of the implanted ion layer 7 matches the impurity concentration of the substrate 1 is located within the space charge layer, and in the active region, especially in the channel region under the gate, the implanted ions are placed below the space charge layer. Layer 7' is formed.

この場合ソース及びドレイン領域2,3の内部にも注入
イオン層Tが形成されるが、注入量が少ないのでソース
及びドレイン領域に形成された注入層Tはソース及びド
レイン領域の電気伝導型を反転させる迄には至らずトラ
ンジスタの特性に何等の影響も与えない。
In this case, an implanted ion layer T is also formed inside the source and drain regions 2 and 3, but since the amount of implantation is small, the implanted layer T formed in the source and drain regions reverses the electrical conductivity type of the source and drain regions. It does not go so far as to cause any damage, and does not have any effect on the characteristics of the transistor.

次にイオン注入後注入イオンが拡散しない程度の温度例
えば約900℃で約30分間例えば窒素ガス中で熱処理
を施こし、注入したイオンを活性化する。
Next, after the ion implantation, heat treatment is performed in, for example, nitrogen gas at a temperature such as about 900° C. for about 30 minutes at a temperature such that the implanted ions do not diffuse, thereby activating the implanted ions.

即ち注入した侭の状態にある原子は半導体分子と融合さ
れて居もないためアクセプタとして働けない状態にある
That is, the atoms in the injected state are not fused with semiconductor molecules, and therefore cannot function as acceptors.

これを熱処理によって融合をはカミり注入イオンをアク
セプタとして活性化するものである。
This is heat-treated to cause fusion and activate the implanted ions as acceptors.

活性素子間領域ではアクセプタは閾値電圧を高め漏洩電
流阻止領域を形成する。
In the region between active devices, the acceptor increases the threshold voltage and forms a leakage current blocking region.

またゲートの下のチャンネル領域では注入層Tは空間電
荷層の下側に位置するため、トランジスタ素子のゲート
閾値電圧には何等影響を及ぼさない。
Furthermore, in the channel region under the gate, the injection layer T is located under the space charge layer, so it does not have any effect on the gate threshold voltage of the transistor element.

イオン注入後ソース及びドレイン領域2及び3に対応す
る位置の絶縁層に孔明を行ない第2図に示す如くソース
及びドレイン電極8,9を取付、又ゲート絶縁膜4の上
にゲート電極10を形成し完成品を得る。
After ion implantation, holes are made in the insulating layer at positions corresponding to the source and drain regions 2 and 3, and source and drain electrodes 8 and 9 are attached as shown in FIG. 2, and a gate electrode 10 is formed on the gate insulating film 4. and get the finished product.

以上説明した如(本発明によれば漏洩電流阻止領域7の
形成のためにマスクを使用しなくて済むから工程を簡素
化できる。
As described above (according to the present invention, it is not necessary to use a mask to form the leakage current blocking region 7, so that the process can be simplified.

然も絶縁膜5及び4の厚みと、注入イオンのエネルギを
適当に調節することによって活性素子間領域の閾値電圧
だけを高める事ができ、その閾値電圧は注入イオン量を
変化させることによって容易に制御でき、工数の削減と
大巾な歩留り向上が期待できる。
However, by appropriately adjusting the thickness of the insulating films 5 and 4 and the energy of the implanted ions, it is possible to increase only the threshold voltage of the region between the active elements, and the threshold voltage can be easily increased by changing the amount of implanted ions. can be controlled, and can be expected to reduce man-hours and greatly improve yield.

更に活性素子間領域では注入イオン濃度は1011〜1
012cIIL−2程度の低濃度であり、且つ基板表面
内の浅(・注入であるため、ソース、ドレイン接合の耐
圧はイオン注入によって影響を受けることなく、耐圧低
下による歩留りの低下を避けることができる。
Furthermore, in the region between active elements, the implanted ion concentration is 1011 to 1
Since the concentration is as low as 012cIIL-2 and the implantation is shallow within the substrate surface, the withstand voltage of the source and drain junctions is not affected by the ion implantation, and it is possible to avoid a decrease in yield due to a decrease in the withstand voltage. .

又注入後の熱処理は1000℃以下の低温で良いため、
高温熱処理による欠陥の発生が避けられる利点がある。
In addition, heat treatment after injection can be performed at a low temperature of 1000°C or less, so
This has the advantage of avoiding defects caused by high-temperature heat treatment.

更に又イオン注入の特徴を生かし、低濃度領域で不純物
濃度が制御できるので、一度固溶度限界まで入らざるを
得ない熱拡散法による不純物制御より不純物濃度の制御
が容易である。
Furthermore, since the impurity concentration can be controlled in a low concentration region by taking advantage of the characteristics of ion implantation, it is easier to control the impurity concentration than with the thermal diffusion method, which requires entering the solid solubility limit once.

尚必要ならばトランジスタの活性領域の空乏層内に例え
ばボロン又はリン等のイオンを注入しゲートの閾値電圧
を制御する工程を加えてもよい。
If necessary, a step may be added to control the threshold voltage of the gate by implanting ions such as boron or phosphorus into the depletion layer of the active region of the transistor.

この時はゲートの下にイオン注入層が2層存在すること
になる。
At this time, two ion-implanted layers exist under the gate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明製法を説明するために示したnチャンネ
ル・MO8型半導体装置の断面図、第2図は本発明製法
によって完成した半導体装置の構造を示す断面図である
。 1:半導体基板、2:ソース領域、3ニドレイン領域、
4:ゲート領域の絶縁膜、5:活性領域以外の領域の絶
縁膜、6:注入イオンビーム、7゜7′:注入イオン層
FIG. 1 is a cross-sectional view of an n-channel MO8 type semiconductor device shown for explaining the manufacturing method of the present invention, and FIG. 2 is a cross-sectional view showing the structure of the semiconductor device completed by the manufacturing method of the present invention. 1: Semiconductor substrate, 2: Source region, 3 Nidrain region,
4: Insulating film in gate region, 5: Insulating film in areas other than active region, 6: Implanted ion beam, 7°7': Implanted ion layer

Claims (1)

【特許請求の範囲】[Claims] 1 複数の活性領域上に第1の絶縁膜を有し、該活性領
域間の領域上には該第1の絶縁膜より膜厚の厚い第2の
絶縁膜を有する半導体基板を用意する工程と、該第1お
よび第2の絶縁膜上より該半導体基板と同じ導電型の不
純物イオンをイオン注入する工程と、該イオン注入され
た半導体基板を熱処理する工程とを有し、該イオン注入
されたイオンによる不純物層が該第2の絶縁膜下には半
導体基板表面に位置し、該第1の絶縁膜下では半導体基
板表面の空間電荷層より深い個所に位置するようにする
ことを特徴とする集積回路装置の製造方法。
1. preparing a semiconductor substrate having a first insulating film on a plurality of active regions and a second insulating film thicker than the first insulating film on a region between the active regions; , a step of ion-implanting impurity ions of the same conductivity type as the semiconductor substrate onto the first and second insulating films, and a step of heat-treating the ion-implanted semiconductor substrate, An impurity layer made of ions is located under the second insulating film on the surface of the semiconductor substrate, and under the first insulating film is located at a location deeper than the space charge layer on the surface of the semiconductor substrate. A method of manufacturing an integrated circuit device.
JP48114199A 1973-10-09 1973-10-09 Seizouhouhou Expired JPS5818785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP48114199A JPS5818785B2 (en) 1973-10-09 1973-10-09 Seizouhouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48114199A JPS5818785B2 (en) 1973-10-09 1973-10-09 Seizouhouhou

Publications (2)

Publication Number Publication Date
JPS5065179A JPS5065179A (en) 1975-06-02
JPS5818785B2 true JPS5818785B2 (en) 1983-04-14

Family

ID=14631672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48114199A Expired JPS5818785B2 (en) 1973-10-09 1973-10-09 Seizouhouhou

Country Status (1)

Country Link
JP (1) JPS5818785B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334510B2 (en) * 1982-06-16 1988-07-11 Kyodo Printing Co Ltd
JPS63128093U (en) * 1987-02-13 1988-08-22
JPH0228072Y2 (en) * 1983-12-20 1990-07-27

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362986A (en) * 1976-11-18 1978-06-05 Toshiba Corp Semiconductor device
JPS5384571A (en) * 1976-12-29 1978-07-26 Fujitsu Ltd Insulating gate type field effect transistor and its manufacture
JPS56155572A (en) * 1980-04-30 1981-12-01 Sanyo Electric Co Ltd Insulated gate field effect type semiconductor device
JPS62271450A (en) * 1987-04-24 1987-11-25 Hitachi Ltd Manufacture of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969094A (en) * 1972-11-08 1974-07-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969094A (en) * 1972-11-08 1974-07-04

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334510B2 (en) * 1982-06-16 1988-07-11 Kyodo Printing Co Ltd
JPH0228072Y2 (en) * 1983-12-20 1990-07-27
JPS63128093U (en) * 1987-02-13 1988-08-22

Also Published As

Publication number Publication date
JPS5065179A (en) 1975-06-02

Similar Documents

Publication Publication Date Title
US3653978A (en) Method of making semiconductor devices
US6274439B1 (en) Process for fabricating semiconductor device with field effect transistor changeable in threshold voltage with hydrogen ion after formation of wirings
JPH11102919A (en) Manufacture of dmos transistor
JPH08213479A (en) Manufacture of mis transistor and semiconductor device
JPS5818785B2 (en) Seizouhouhou
US3946419A (en) Field effect transistor structure for minimizing parasitic inversion and process for fabricating
JPH10214970A (en) Semiconductor device and its manufacture
JP2766492B2 (en) Method for manufacturing integrated capacitors in MOS technology
JP2000216108A (en) Manufacture of semiconductor device
JPH0456456B2 (en)
JPH02240930A (en) Semiconductor device and manufacture thereof
JPS62265765A (en) Semiconductor device and manufacture thereof
JP3253712B2 (en) Method for manufacturing semiconductor device
JPS58213442A (en) Manufacture of semiconductor integrated circuit device
JPH05315617A (en) Manufacture of insulated type field effect transistor
JPH01220438A (en) Manufacture of semiconductor device
JP2545904B2 (en) Semiconductor device
KR100468695B1 (en) Method for fabricting high performance MOS transistor having channel doping profile to improve short channel effect
JPH0258273A (en) Insulated gate field effect transistor and its manufacture
JPS5931225B2 (en) Method of manufacturing integrated circuit device
JPH03231456A (en) Manufacture of semiconductor device
JP2990806B2 (en) Method for manufacturing semiconductor device
JPS6010780A (en) Manufacture of semiconductor device
JPS6072228A (en) Method for inpurity doping into semiconductor substrate
JPS5837697B2 (en) MIS