JPS58213442A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPS58213442A
JPS58213442A JP57095915A JP9591582A JPS58213442A JP S58213442 A JPS58213442 A JP S58213442A JP 57095915 A JP57095915 A JP 57095915A JP 9591582 A JP9591582 A JP 9591582A JP S58213442 A JPS58213442 A JP S58213442A
Authority
JP
Japan
Prior art keywords
diffusion layer
substrate
layer region
contact hole
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57095915A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57095915A priority Critical patent/JPS58213442A/en
Publication of JPS58213442A publication Critical patent/JPS58213442A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology

Abstract

PURPOSE:To prevent a short circuit of metallic wiring and a semiconductor substrate by activating an impurity through beam irradiation without heating the whole semiconductor substrate and shallowly forming source-drain diffusion layer regions. CONSTITUTION:A P-well 2 is formed to the N type silicon substrate 1, and an oxide film 3 is formed. A thin gate oxide film 4 is formed through thermal oxidation, and the source-drain diffusion layer regions 9, 10 of the P type impurity are formed. The diffusion layer regions 7, 8 by the N type impurity are formed, the whole surface on the substrate 1 is coated with an oxide film 11, and contact holes 12, 13 are bored to sections required. The P type impurity is implanted to the surface of the substrate 1 through the contact hole 12 on the diffusion layers 9, 10. The N type impurity 17 is implanted similary to the surface of the P well 2 in the substrate 1 through the contact hole 13. Beams are irradiated in order to activate the impurities 19, 20. The diffusion layers are formed to the contact holes on the substrate 1, and a short circuit of the metallic wiring and the substrate is prevented.

Description

【発明の詳細な説明】 本発明は高密度高性能な半導体集積回路装置の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a high-density, high-performance semiconductor integrated circuit device.

一般に半導体集積回路装置においては、半導体基板(通
常はシリコン)内の拡散層領域と電極ないし配線との電
気的接触をとるtめに、前記半導体基板上に形成された
絶縁膜の一部に=ンタクト孔全開孔する。
Generally, in a semiconductor integrated circuit device, in order to make electrical contact between a diffusion layer region in a semiconductor substrate (usually silicon) and an electrode or wiring, a part of an insulating film formed on the semiconductor substrate is used. Fully open the contact hole.

最近の半導体集積回路装置においてはその集積度を向上
させるために拡散層領域内に開孔されるコンタクト孔端
から前記拡散層領域端までの距離はできるだけ小さく設
計される。このため拡散層領域内に開孔されるべきコン
タクト孔が製造上のばらつきに工9前記拡散層領域から
はみ出して開孔され後の工程で形成される金属配線が前
記拡散層領域外の前記半導体基板と接触して短絡不良と
なることがある。従来この不良を除去する次めに。
In recent semiconductor integrated circuit devices, in order to improve the degree of integration, the distance from the end of a contact hole formed in a diffusion layer region to the end of the diffusion layer region is designed to be as small as possible. For this reason, contact holes to be opened in the diffusion layer region may be opened protruding from the diffusion layer region due to manufacturing variations. Contact with the board may result in a short circuit. Conventionally, this defect is removed next.

前記拡散層領域からはみ出して開孔された前記コンタク
ト孔?通して、前記拡散層領域と同一導電型の不純物全
前記半導体基板表面にイオン注入し。
The contact hole opened protruding from the diffusion layer region? ion implantation of impurities of the same conductivity type as the diffusion layer region into the entire surface of the semiconductor substrate.

イオン注入された不純物を高温の熱処理により。Ion-implanted impurities are subjected to high-temperature heat treatment.

前記半導体基板全体を加熱処理することによV。V by heating the entire semiconductor substrate.

前記半導体基板内で活性化し、新しく前記拡、t!!L
Ii!領域と同一導電型の拡散層が形成され、前記拡散
層領域からはみ出して開孔され定前記コンタクト孔を通
して前記金属配線が前記拡散層領域外の前記半導体基板
と接触するのを防いできた。
Activated within the semiconductor substrate and newly expanded, t! ! L
Ii! A diffusion layer of the same conductivity type as the diffusion layer region is formed to prevent the metal wiring from coming into contact with the semiconductor substrate outside the diffusion layer region through the contact hole, which is opened protruding from the diffusion layer region.

しかし、半導体集積回路挟置を構成するMO8型トラン
ジスタの高性能化の友めには、浅いソース・ドレイン拡
散を一領域を形成することが求められているのに対し、
従来の前記方法によれば、イオン注入後の高温の熱処理
に工9半導体基板全体が加熱されるためにMOS席)ラ
ンジスタのソース・ドレイン拡散層領域が再拡散され、
浅いソースドレイン拡散!ii1に実現するのが困難で
あ−)几。
However, in order to improve the performance of MO8 type transistors that constitute sandwiched semiconductor integrated circuits, it is required to form a shallow source/drain diffusion region.
According to the conventional method, the entire semiconductor substrate is heated during the high-temperature heat treatment after ion implantation, so that the source/drain diffusion layer regions of the MOS transistor are re-diffused.
Shallow source drain diffusion! It is difficult to realize this in ii1).

ト<rc、pチャンネル・MO8型トランジスタ装置の
ソース・ドレイン拡散層領域音形成している。
rc, the source/drain diffusion layer region of a p-channel MO8 type transistor device is formed.

P型不純物としてよく用いられるポロン原子は。The poron atom is often used as a P-type impurity.

拡散係数がN型不純物のヒ素原子などに比べていちじる
しく大きいため、わずかの熱処理でも深く拡散してしま
うため、浅い拡散層?実現できず。
Because the diffusion coefficient is significantly larger than that of arsenic atoms, which are N-type impurities, even a slight heat treatment causes deep diffusion, resulting in a shallow diffusion layer. I couldn't make it happen.

高性能PチャンネルMO8)ランジスタを実現すること
ができなかった。
It was not possible to realize a high-performance P-channel MO8) transistor.

本発明の目的は、従来法でのこの様な欠点?解消し高密
度な半導体集積回路装置において高性能なMOS)ラン
ジスタ?実現し、さらに高性能な半導体集積回路挟置を
実現することである。
The purpose of the present invention is to overcome these drawbacks of conventional methods. A high-performance MOS) transistor in high-density semiconductor integrated circuit devices? The goal is to achieve even higher performance semiconductor integrated circuit interleaving.

本発明は、半卦体集積回路装置の製造方法において、−
導電賊半導体基板の一主表面中に、前記半導体基板と反
対導電をの第1の拡散層領域?形成する工程と、前記第
1の拡散層領域上に絶縁膜?形成する工程と、前記絶縁
膜にコンタクト孔奮開孔する工程と、前記コンタクト孔
?通して前記第1の拡散層領域と同一導電型の不純物?
前記半導体基板の表面にイオン注入する工程と、前記イ
オン注入された前記不純物會、従来の高温の熱処理にか
わり、基板全体を加熱することなしに光照射により活性
化し、前記第1の拡散層領域と同−記コンタクト孔で、
前記第1の拡散層領域および第2の拡散層領域と接触し
、かつ前記絶縁膜上にのびて被着した金属配線@を形成
する工程とを含む事?特徴とする。
The present invention provides a method for manufacturing a semicircular integrated circuit device, comprising:
A first diffusion layer region having conductivity opposite to that of the semiconductor substrate in one main surface of the conductive semiconductor substrate? A step of forming an insulating film on the first diffusion layer region? a step of forming a contact hole in the insulating film; and a step of forming a contact hole in the insulating film. Do the impurities have the same conductivity type as the first diffusion layer region?
The step of implanting ions into the surface of the semiconductor substrate, and the implanted impurity group, are activated by light irradiation without heating the entire substrate, instead of the conventional high temperature heat treatment, and the first diffusion layer region is activated by light irradiation without heating the entire substrate. With the same contact hole,
A step of forming a metal wiring @ in contact with the first diffusion layer region and the second diffusion layer region and extending and depositing on the insulating film? Features.

本発明による半導体集積回路装置では、半導体基板全体
?加熱することなしに、コンタクト孔の拡散r@層領域
対するマスクの目合せずれによる金属配線と半導体基板
との短絡による不良?防ぐことが可能となるため1MO
8型トランジスタのソース・ドレイン拡散層深さケ浅く
することができがつ、高性能のMOS)ランジスタの作
製が可能となり、高密度、高性能な半導体集積回路裟置
?提供できるものである。
In the semiconductor integrated circuit device according to the present invention, the entire semiconductor substrate? Can a defect be caused by a short circuit between the metal wiring and the semiconductor substrate due to misalignment of the mask with respect to the diffusion r@ layer region of the contact hole without heating? 1 MO because it becomes possible to prevent
It has become possible to fabricate high-performance MOS (MOS) transistors in which the depth of the source and drain diffusion layers of type 8 transistors can be made shallow, thereby creating a high-density, high-performance semiconductor integrated circuit device. This is something that can be provided.

以下実施例にし友がい詳しく説明する。本実施しリでは
、N型シリコン基板?用いた相補1M08半導体装置の
列について説明する。第1図に示されるようにN型シリ
コン基板1内に、従来方法によl’M拡散層領域(以下
Pウヱル2とす、りl−形成し、さらに第2図に示され
るようへ従来より知られている方法により厚いフィール
ド酸化膜3紮形成する。シリコン基板1表面奮熱酸化す
ることにより薄いゲート酸化膜4形成後、ゲートポリシ
リ成長工程、ゲートボリシリホトエッチング工程L P
型不純物によるソース・ドレイン拡散層領域9.1(l
ボロン原子のイオン注入にエリ形成し、またN型不純物
によるソース・ドレイン拡散[A域7,8tヒ素原子の
イオン注入じより形成したのち、前記シリコン基板1上
全面にCVD法(化学的気相成長法)により、酸化膜1
1を板上に開孔されたコンタクト孔13のみをホトレジ
スト14でおおい、P散拡散層9.10上に開孔された
コンタクト孔12倉通してコンタクト孔12で露出して
いるPi拡散#9.10.および、コンタクト孔12の
マスクの目合せずれによって露出したシリコン基板1の
表面にP型の不純物1例えばボロン原子IFIイオン注
入した後イオン注入のマスクに使用したホトレジスト1
4を除去する。同様に第5図に示すようにP散拡散層9
,10上に開孔されたコンタクト孔12のみをホトレジ
スト16でおおい、N型拡散層7.8上に開孔されたコ
ンタクト孔Bi通してコンタクト孔13で露出している
N型拡散117 、8およびコンタクト孔13のマスク
の目合せずれによって露出しtシリコン基板1内のPウ
ェル2の表面にN型の不純物、例えばリン原子17をイ
オン注入した後、イオン注入のマスクに使用したホトレ
ジスト16を除去する。注入された不純物19 、20
t−活性化スルために光照射、レリえばArパルスレー
サー18?コンタクト孔のみ、あるいはウェハー全面に
ゎ几9照射することにより、第6図に示されるように、
露光したシリコン基板部のみが加熱iれ不純物が活性化
される。このとき、基板全体の温度上昇はわずかである
ために、トランジスタ部分のソースドレイン拡散層が再
拡散することなく、トランジスタ特性に変化音あたえる
ことけない。Arレーザー光のかわりに、Xe 7ラツ
シユランプを用いても同様に有効であり、特に大量処理
には適している。活性化し次拡散Fi21,22にょク
コンタクト孔が拡散層領域19.20上をはずしていて
もシリコン基板1上のコンタクト孔のあいたところに新
しく拡散層が形成され金属配線がシリコン基板と短絡し
て不良となること金防ぐ。次に第7図に示すように金属
配線としてアルミ膜?蒸着により形成しホトエツチング
技術により必要なアルミ配線21とし、相補型MO8半
導体装置が完成する。
This will be explained in detail using examples below. In this implementation, N-type silicon substrate? The array of complementary 1M08 semiconductor devices used will be explained. As shown in FIG. 1, a l'M diffusion layer region (hereinafter referred to as P well 2) is formed in an N-type silicon substrate 1 by a conventional method, and then as shown in FIG. A thick field oxide film 3 is formed by a well-known method. After forming a thin gate oxide film 4 by vigorously oxidizing the surface of the silicon substrate 1, a gate polysilicon growth process and a gate polysilicon photoetching process are performed.
Source/drain diffusion layer region 9.1 (l
After forming an edge by ion implantation of boron atoms and source/drain diffusion using N-type impurities [formed by ion implantation of 7 and 8 t arsenic atoms in the A region, the entire surface of the silicon substrate 1 is coated by CVD (chemical vapor phase). (growth method), the oxide film 1
Only the contact hole 13 opened on the plate #1 is covered with a photoresist 14, and the Pi diffusion #9 exposed in the contact hole 12 is passed through the contact hole 12 opened on the P diffusion layer 9.10. .10. After implanting P-type impurity 1, for example, IFI ions of boron atoms into the surface of the silicon substrate 1 exposed due to misalignment of the mask of the contact hole 12, a photoresist 1 used as a mask for ion implantation is applied.
Remove 4. Similarly, as shown in FIG.
, 10 are covered with a photoresist 16, and the N-type diffusion layers 7.8 exposed in the contact holes 13 pass through the contact holes Bi formed on the N-type diffusion layers 7.8. After ion-implanting N-type impurities, for example, phosphorus atoms 17, into the surface of the P-well 2 in the silicon substrate 1 exposed due to misalignment of the mask for the contact hole 13, the photoresist 16 used as a mask for ion implantation is removed. Remove. Injected impurities 19, 20
Light irradiation for T-activation, Ar pulse racer 18? By irradiating only the contact holes or the entire surface of the wafer, as shown in Figure 6,
Only the exposed silicon substrate portion is heated and the impurities are activated. At this time, since the temperature rise of the entire substrate is slight, the source/drain diffusion layer in the transistor portion does not re-diffuse, and the transistor characteristics do not change. It is equally effective to use a Xe 7 lash lamp instead of the Ar laser beam, and is particularly suitable for mass processing. Even if the contact hole is not above the diffusion layer region 19, 20 after activation of the diffusion Fi 21, 22, a new diffusion layer is formed in the area where the contact hole was formed on the silicon substrate 1, and the metal wiring is short-circuited with the silicon substrate. Prevent money from becoming defective. Next, as shown in Figure 7, is the aluminum film used as the metal wiring? Necessary aluminum wiring 21 is formed by vapor deposition and photoetching, and a complementary MO8 semiconductor device is completed.

以上よりあきらかなように1本発明による半導体集積回
路装置はコンタクト孔の拡散層領域に対するマスクの目
合せずれによる金属配線と半導体基板との短絡による不
良を防ぐことを実現し、かつトランジスタのリース・ド
レイン拡散層深さ金浅くすることができるためMO8型
トランジスタのゲート中を小さくできかつ、トランジス
タ能力?向上することができ、高密度、高性能な半導体
集積回路装置を実現するものである。
As is clear from the above, the semiconductor integrated circuit device according to the present invention can prevent defects caused by short circuits between the metal wiring and the semiconductor substrate due to misalignment of the mask with respect to the diffusion layer region of the contact hole, and can also prevent transistor leases and Since the depth of the drain diffusion layer can be made shallower, the inside of the gate of the MO8 type transistor can be made smaller, and the transistor performance can be improved. The present invention is intended to realize a high-density, high-performance semiconductor integrated circuit device.

なお1本発明は上記集施列に限られるものではなく、そ
の趣旨を逸脱しない範囲で種々変形実施し得るものであ
る。
Note that the present invention is not limited to the above-mentioned assembly and arrangement, but can be implemented in various modifications without departing from the spirit thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜梢7図は本発明による半導体集積回路装置の一
実施例としての相補型MO8半導体の製造過程の断面図
である。 l・・・・・・Nu半導体基板、2・・・・・・Pウェ
ル拡散層領域、3・・・・・・フィールド酸化膜、4・
・・・・・ゲート酸化膜、5.6・・・・・・ゲートポ
リシリコン、7,8・・・・・・N型ソース・ドレイン
拡散層領域、9.10・・・・・・P型ノース・ドレイ
ン拡散層領域、11・・用層間酸化膜、12・・・・・
・PM拡散層上コンタクト孔、13・・・・・・Nll
拡散層上コンタクト孔、14.16・・・・・・ホトレ
ジスト、15・・・・・・ボロン原子のイオン注入。 17・・・・・・リン原子のイオン注入、18・・・・
・・Arレーザー光、19・・・・・・イオン注入され
tリン原子。 20・・・・・・イオン注入されたボロン原子、21・
旧・・19のリン原子がArレーザーによ!7活性化さ
れN型の拡散層となったもの、22・・・・・・2oの
ボロン原子がArレーザーにより活性化されPをの拡散
層となったもの、22・・・・・・アルミの配線である
。 代理人 弁理士  内 原   晋α齢1す1目 串ZI21′ 茅づン
1 to 7 are cross-sectional views showing the manufacturing process of a complementary MO8 semiconductor as an embodiment of the semiconductor integrated circuit device according to the present invention. 1... Nu semiconductor substrate, 2... P well diffusion layer region, 3... field oxide film, 4...
...Gate oxide film, 5.6...Gate polysilicon, 7,8...N-type source/drain diffusion layer region, 9.10...P Type north/drain diffusion layer region, 11... interlayer oxide film, 12...
・Contact hole on PM diffusion layer, 13...Nll
Contact hole on diffusion layer, 14.16...Photoresist, 15...Ion implantation of boron atoms. 17... Phosphorus atom ion implantation, 18...
...Ar laser light, 19...Ion-implanted phosphorus atoms. 20...Ion-implanted boron atoms, 21.
Old...19 phosphorus atoms are fired by Ar laser! 7 Activated to become an N-type diffusion layer, 22... 2o boron atoms activated by Ar laser to become a P diffusion layer, 22... Aluminum This is the wiring. Agent Patent Attorney Susumu Uchihara α-Ring 1 S 1 Kushi ZI 21' Kayazun

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板の一主表面に、flrJ記半導体基
板と反対導電型の第1の拡散層−領域を形成する工程と
、前記第1の拡散層領域上に絶縁膜を形成する工程と、
前記絶縁膜にコンタクト孔?開孔する工程と、前記コン
タクト孔を通して前記第1の拡散層領域と同一導電型の
不純物を前記半導体基板の表面にイオン注入する工程と
、イオン注入された前記不純物を光照射により活性化し
、前記第1の拡散層領域と同一導電型の第2の拡散層領
域?形成する工程と、前記コンタクト孔を介して前記第
1の拡散1mm領域域よび第2の拡散層領域と接触しか
つ前記絶縁膜上にのびて被着した金属配線層を形成する
工程とを含む事?特徴とする半導体集積回路装置の製造
方法。
a step of forming a first diffusion layer region of a conductivity type opposite to that of the flrJ semiconductor substrate on one main surface of a semiconductor substrate of one conductivity type; and a step of forming an insulating film on the first diffusion layer region;
Is there a contact hole in the insulating film? forming a hole; ion-implanting an impurity having the same conductivity type as the first diffusion layer region into the surface of the semiconductor substrate through the contact hole; activating the ion-implanted impurity by light irradiation; A second diffusion layer region of the same conductivity type as the first diffusion layer region? and forming a metal wiring layer in contact with the first 1 mm diffusion region and the second diffusion layer region through the contact hole and extending over and depositing on the insulating film. case? A method for manufacturing a semiconductor integrated circuit device characterized by:
JP57095915A 1982-06-04 1982-06-04 Manufacture of semiconductor integrated circuit device Pending JPS58213442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57095915A JPS58213442A (en) 1982-06-04 1982-06-04 Manufacture of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57095915A JPS58213442A (en) 1982-06-04 1982-06-04 Manufacture of semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS58213442A true JPS58213442A (en) 1983-12-12

Family

ID=14150571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57095915A Pending JPS58213442A (en) 1982-06-04 1982-06-04 Manufacture of semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS58213442A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181147A (en) * 1985-02-06 1986-08-13 Nec Corp Manufacture of semiconductor device
JPS61219165A (en) * 1985-03-25 1986-09-29 Nec Corp Manufacture of complementary semiconductor integrated circuit device
JPS62104159A (en) * 1985-10-31 1987-05-14 Matsushita Electronics Corp Manufacture of complementary type mos semiconductor device
KR100427719B1 (en) * 2002-07-15 2004-04-28 주식회사 하이닉스반도체 Method of Forming Bit-Line of Semiconductor Device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181147A (en) * 1985-02-06 1986-08-13 Nec Corp Manufacture of semiconductor device
JPS61219165A (en) * 1985-03-25 1986-09-29 Nec Corp Manufacture of complementary semiconductor integrated circuit device
JPS62104159A (en) * 1985-10-31 1987-05-14 Matsushita Electronics Corp Manufacture of complementary type mos semiconductor device
KR100427719B1 (en) * 2002-07-15 2004-04-28 주식회사 하이닉스반도체 Method of Forming Bit-Line of Semiconductor Device

Similar Documents

Publication Publication Date Title
US5024965A (en) Manufacturing high speed low leakage radiation hardened CMOS/SOI devices
JPH0576190B2 (en)
JPS5842276A (en) Method of producing mos field effect transistor integrated circuit
KR100242732B1 (en) A method of manufacturing a semiconductor device
JPS58213442A (en) Manufacture of semiconductor integrated circuit device
US4564583A (en) Method for manufacturing a semiconductor device
JPH05865B2 (en)
JPS5818785B2 (en) Seizouhouhou
KR100253569B1 (en) Manufacture of semiconductor device
JPS6038864B2 (en) semiconductor equipment
JPH0115148B2 (en)
JPH0348664B2 (en)
JP4146374B2 (en) Manufacturing method of semiconductor device
JPS6281051A (en) Semiconductor device and manufacture thereof
JPS5928984B2 (en) Manufacturing method for semiconductor devices
JPH04363019A (en) Manufacture of semiconductor device
JPH0577288B2 (en)
JPS60219771A (en) Manufacture of mos type semiconductor device
JPS6152987B2 (en)
JPH11168145A (en) Manufacture of semiconductor device
JP2000195816A (en) Formation of triple well of semiconductor element
JPS6247122A (en) Manufacture of semiconductor device
JPS60116164A (en) Manufacture of semiconductor device
JPS6356958A (en) Mos field-effect transistor
JPS6327858B2 (en)