JPS58187515A - Water pump of internal-combustion engine - Google Patents
Water pump of internal-combustion engineInfo
- Publication number
- JPS58187515A JPS58187515A JP7103182A JP7103182A JPS58187515A JP S58187515 A JPS58187515 A JP S58187515A JP 7103182 A JP7103182 A JP 7103182A JP 7103182 A JP7103182 A JP 7103182A JP S58187515 A JPS58187515 A JP S58187515A
- Authority
- JP
- Japan
- Prior art keywords
- water pump
- engine
- electric motor
- pump
- pump shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P5/00—Pumping cooling-air or liquid coolants
- F01P5/10—Pumping liquid coolant; Arrangements of coolant pumps
- F01P5/12—Pump-driving arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P5/00—Pumping cooling-air or liquid coolants
- F01P5/10—Pumping liquid coolant; Arrangements of coolant pumps
- F01P5/12—Pump-driving arrangements
- F01P2005/125—Driving auxiliary pumps electrically
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、内燃機関のウォータポンプで、特にその駆
動装置の改良に関するものである、一般に、自動車用内
燃機関において、機関の冷却はそのほとんどがウォータ
ポンプにより強制循環される冷却液(以下、冷却水で代
表する8)t−利用した水冷形式を採用している。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water pump for an internal combustion engine, and in particular to improvements to its drive device.Generally, in internal combustion engines for automobiles, most of the cooling of the engine is forcedly circulated by the water pump. The system employs a water cooling system that utilizes a cooling liquid (hereinafter referred to as cooling water).
そして、上記ウォータポンプは、そのポンプ軸に固設さ
れたウォータポンプデーりと機関のクランクプーリとの
間に掛は回わされるベルトにより、機関の回転に直接連
動して回転駆動されるようになっていた、
つまり、機関の運転状態にかかわらず、機関が回転され
ると即ウォータポンプも駆動されるのである8
そのため、ウォータポンプを駆動してまで機関の冷却を
行なう必要のない機関始動時や低温時にあってはウォー
タポンプの駆動動力が機関の損失動力となり、また寒冷
時には逆に機関の暖機時間が長くなることから、燃料消
費率を悪f、ヒさせる重要な一因となっていた。The water pump is driven to rotate in direct conjunction with the rotation of the engine by a belt that is passed between the water pump date fixed to the pump shaft and the crank pulley of the engine. In other words, regardless of the operating state of the engine, the water pump is activated as soon as the engine is started.8 Therefore, when starting the engine, there is no need to drive the water pump to cool the engine. At low temperatures, the driving power of the water pump becomes power loss for the engine, and at cold temperatures it takes longer to warm up the engine, which is an important factor in reducing fuel consumption. was.
そこで、この発明は、同じように機関に連動して駆動さ
れるカークーラ用コンプレッサに用いられている電磁ク
ラッチ(この電磁クラッチに関しては特開昭55−63
013号などがある)などの補機用継手手段に着目して
、ウォータポンプを上記継手手段を介して電動モータと
ベルトプーリとで選択的に駆動できるように構成するこ
とにより、上記問題点を解決することを目的とする。Therefore, this invention was developed based on an electromagnetic clutch used in a car cooler compressor that is similarly driven in conjunction with an engine (this electromagnetic clutch was disclosed in Japanese Patent Laid-Open No. 55-63).
The above problem can be solved by focusing on a joint means for auxiliary equipment such as No. 013) and configuring the water pump so that it can be selectively driven by an electric motor and a belt pulley via the joint means. The purpose is to solve the problem.
そのために、この発明では具体的には、ウォータポンプ
のポンプ−■上に、電動モータによりポンプ軸を回転駆
動する第1の駆動手段と、ベルトグーlにより機関に連
動してポンプ111を回転駆動する第2の駆動手段と、
これらの両手段を選択的にポンプ軸に連結する釧妊十手
段とを設ける一方、この継手手段及び電動モータを機関
の運転状j!%に旧して作動側f・・Jする:、jj御
手喰を少けるように構成される。To this end, the present invention specifically includes a first driving means for rotationally driving the pump shaft by an electric motor on the water pump pump 1, and a first driving means for rotationally driving the pump shaft by an electric motor, and a belt drive unit for rotationally driving the pump 111 in conjunction with the engine. a second driving means;
A connecting means for selectively connecting both of these means to the pump shaft is provided, and the coupling means and the electric motor are connected to each other according to the operating condition of the engine. % on the operating side f...J:, jj It is configured to reduce the amount of work required.
以下、この発明の一界厖例をし1面に基づいて説明する
。Hereinafter, an example of this invention will be explained based on one page.
第1図及び第2図(A)、同において、符号lがシリン
ダブロックであり、このシリンダブロックlの前壁部に
ウォータポンプ2が装着される。符号3がそのポンプハ
ウジングで、4がこのポンプハウジング3に回転自由に
軸支されたポンプ軸である、
このポンプlllI4の外部突出端部の端面には嵌合デ
ス穴4Aが形成され、この嵌合♂ス穴4 AKmlの駆
動手段としてめ電動モータ5の1川転軸6が軸受7全介
して回転自由に嵌合支持される。In FIGS. 1 and 2(A), reference numeral 1 indicates a cylinder block, and a water pump 2 is mounted on the front wall of the cylinder block 1. In FIG. Reference numeral 3 designates the pump housing, and 4 designates a pump shaft rotatably supported by the pump housing 3. A fitting hole 4A is formed in the end surface of the externally protruding end of the pump IllI4, into which the fitting hole 4A is formed. The mating hole 4 As a drive means for the AKml, a single rotation shaft 6 of an electric motor 5 is fitted and supported through a bearing 7 so as to be freely rotatable.
一方、ポンプ軸4の外部突出端部の外周には、第2の駆
動手段としてのベルトプーリ8が軸受9を介して同じく
回転自由に嵌合支持される。勿論、このベルトプーリ8
には図示しないクランクプーリからの回転力を伝達する
Vベルトが掛は回わされる。On the other hand, a belt pulley 8 serving as a second driving means is fitted and supported via a bearing 9 on the outer periphery of the externally protruding end of the pump shaft 4 so as to be freely rotatable. Of course, this belt pulley 8
A V-belt that transmits rotational force from a crank pulley (not shown) is wound around the belt.
上記ポンゾ軸4七には更に、上述した第1及び第2の駆
動手段5.8を選択的にポンプ軸4に連′結する(つま
り、一体回転させる)継手手段としての電磁クラッチ1
0が設けられる。The Ponzo shaft 47 is further provided with an electromagnetic clutch 1 as a coupling means for selectively connecting the first and second drive means 5.8 to the pump shaft 4 (that is, causing them to rotate integrally).
0 is set.
この電磁クラッチ10は、電動モータ5の回転軸6に固
設されたロータ11とベルトプーリ8との間に位置して
ポンプ軸4の外周に固設さtた保持板12と、こD保持
板12の両側に板バネ13を介してポンプ軸4に対して
同心的に取り付けられたリング状の一対のアーマチュア
14A、14Bと、このアーマチュア14A、14Bと
は上記ロータ1’l及びベルトプーリ8を挾んで対応す
るようにして、ポンプハウジング3及び電動モータ5の
側壁部に各々の軸部4.6に対して同心的に配設された
リング状の第1及び第2の電磁石15A。This electromagnetic clutch 10 includes a retaining plate 12, which is located between a rotor 11 fixedly attached to a rotating shaft 6 of an electric motor 5 and a belt pulley 8, and is fixedly attached to the outer periphery of a pump shaft 4. A pair of ring-shaped armatures 14A, 14B are attached concentrically to the pump shaft 4 via leaf springs 13 on both sides of the plate 12, and these armatures 14A, 14B are connected to the rotor 1'l and the belt pulley 8. Ring-shaped first and second electromagnets 15A are arranged on the side walls of the pump housing 3 and the electric motor 5 concentrically with respect to the respective shaft portions 4.6 so as to sandwich and correspond to each other.
15Bとから構成される。15B.
従って、今第1の電磁石15Aがa市されると、ロータ
11.(予め、強磁性材料で形成されている)との間で
磁極が形成されるため、これに対応するアーマチュア1
4Aが磁化吸引されてロータ11に吸着される、これに
より、電動モータ5の回転軸6とポンプ軸4とが保持板
12を介して一体化され、ウォータポンプ2が電動モー
タ5により駆動可能となる。Therefore, if the first electromagnet 15A is now moved to a position, the rotor 11. (formed in advance from a ferromagnetic material), a magnetic pole is formed between the corresponding armature 1
4A is magnetized and attracted to the rotor 11. As a result, the rotating shaft 6 of the electric motor 5 and the pump shaft 4 are integrated via the holding plate 12, and the water pump 2 can be driven by the electric motor 5. Become.
一方、第2の電磁石15Bが通電されると、ベルトプー
リ8(予め、強磁性材料で形成されている)との間で磁
極が形成されるため、これに対応するアーマチュア14
Bが磁化吸引されてベルトプーリ8に吸着される。これ
により、・今厩はベルトプーリ8とポンプ軸4とが保持
板12を介して一体化され、ウォータボンデ2が機関に
連動して駆動されるのである8
このように構成された第1及び第2の駆動手段を機関運
転状態に応じて切換制御する制御手段としての制御回路
20が第3図のブロック図のように回路構成される。On the other hand, when the second electromagnet 15B is energized, a magnetic pole is formed between it and the belt pulley 8 (previously made of a ferromagnetic material), so the corresponding armature 14
B is magnetized and attracted to the belt pulley 8. As a result, the belt pulley 8 and pump shaft 4 are integrated via the holding plate 12, and the water bonder 2 is driven in conjunction with the engine. A control circuit 20 serving as a control means for switching and controlling the second drive means according to the engine operating state is configured as shown in the block diagram of FIG.
図中21は、機関冷却水温度を検出する水温センサで、
この水温センサ21の検出信号が制御回路20の二つの
比較器22.23に入力される、一方の比較器22は@
1の基準温度Tlと比較して水温Tが該1M If T
tを越えた時にハイレベルの信号を出力し7.他方の比
較器23は第2の基準温度T2と比較して水iTが核@
度TzTh越えた時にハイレベルの信号を出力する。21 in the figure is a water temperature sensor that detects the engine cooling water temperature.
The detection signal of this water temperature sensor 21 is input to two comparators 22 and 23 of the control circuit 20. One of the comparators 22 is @
If the water temperature T is 1M compared to the reference temperature Tl of 1
7. Output a high level signal when the time exceeds t. The other comparator 23 compares the water iT with the second reference temperature T2.
When the degree TzTh is exceeded, a high level signal is output.
同じく図中24は、機関回転速度を検出する回転センナ
で、この回転センサ24の検出信号が制御回路20の比
較器25に入力される。この比較器25は所定の基準回
転速fRmと比較して回転速度Reが該速度Rmを越え
た時にハイレベルの信号を出力する。Similarly, reference numeral 24 in the figure is a rotation sensor that detects the engine rotation speed, and a detection signal from this rotation sensor 24 is input to a comparator 25 of the control circuit 20. This comparator 25 compares the rotational speed Re with a predetermined reference rotational speed fRm and outputs a high level signal when the rotational speed Re exceeds the speed Rm.
上記比較器22.23及び25の各出力信号は論理演算
回路26に入力され、ここで演算処理された結果が第1
及び第2のスイッチ回路27 、28の作動信号となっ
て出力される。The respective output signals of the comparators 22, 23 and 25 are input to the logic operation circuit 26, and the result of the operation processing here is the first
and is output as an activation signal for the second switch circuits 27 and 28.
第1のスイッチ回路27は上述した電、動モータ5及び
第1の電磁石15Aの作動を制御し、また第2のスイッ
チ回路28は第2の電磁石15Bの作動全制御するよう
に回路接続される。The first switch circuit 27 is connected to control the operation of the electric motor 5 and the first electromagnet 15A, and the second switch circuit 28 is connected to control the operation of the second electromagnet 15B. .
一方、上記N+*理演算演算回路においては、上述した
比較器22の出力は−1のANL)回路29に入力され
、このAND回路29の出力がOR回路3(1−介して
第1のスイッチ回路27に入力される。On the other hand, in the above N++ logical operation circuit, the output of the comparator 22 described above is input to the -1 ANL) circuit 29, and the output of this AND circuit 29 is input to the OR circuit 3 (via 1-) of the first switch. It is input to the circuit 27.
また比較器23の出力は、上記第10)AI’JI)回
路29にNOT回路31全介して入力されると共に、第
2及び第3のANI)回路32.33にも入力される、
上記第2のAND回路32には更に比較器25の出力が
入力され、このAND回路32の出力が第2のスイッチ
回路28に入力されると共にNOT回路34を介して上
記第3りAND回路33に入力される。The output of the comparator 23 is input to the tenth) AI'JI) circuit 29 through the NOT circuit 31, and is also input to the second and third ANI) circuits 32 and 33. The output of the comparator 25 is further input to the second AND circuit 32, and the output of this AND circuit 32 is input to the second switch circuit 28, and is also input to the third AND circuit 33 via the NOT circuit 34. be done.
そして、この第3のAND回路33の出力が上述したO
R回路30に入力される。Then, the output of this third AND circuit 33 is the above-mentioned O
It is input to the R circuit 30.
従って、上記第1のAND回路29は水@Tが第1の基
準温度T1に越えて比較器22からの出力信号はあるが
、第2の基準温度T2以下で比較器23からの出力信号
がない時にのみハイレベルの信号を出し、第2のAND
回路32は水温Tが第2の基準温度Tzt−越えて比較
器23からの出力信号があり、更に回転速度Reが基準
速度Rm1に越えて比較器25からの出力信号がある時
にのみハイレベルの信号を出す。更に、第3のAND回
路33は水@Tが第2の基準温!fTz’に越えて比較
器23からの出力信号はあるが、上述したように回転速
度Reが基準速lfam以下で第2のAND回路32に
出力信号がない時にのみハイレベルの信号を出すのであ
る。Therefore, the first AND circuit 29 has an output signal from the comparator 22 when the water @T exceeds the first reference temperature T1, but an output signal from the comparator 23 when the water @T exceeds the second reference temperature T2. It outputs a high level signal only when there is no
The circuit 32 goes high only when the water temperature T exceeds the second reference temperature Tzt- and there is an output signal from the comparator 23, and furthermore, when the rotational speed Re exceeds the reference speed Rm1 and there is an output signal from the comparator 25. give a signal. Furthermore, the third AND circuit 33 has water @T as the second reference temperature! Although there is an output signal from the comparator 23 exceeding fTz', as mentioned above, a high level signal is output only when the rotational speed Re is below the reference speed lfam and there is no output signal to the second AND circuit 32. .
また、OR回路30は上述した第1のAND回路29か
らの出力信号がある時かまたは第3のAND回路33か
らの出力信号がある時にハイレベルの信号を出すのであ
る。Further, the OR circuit 30 outputs a high level signal when there is an output signal from the first AND circuit 29 or when there is an output signal from the third AND circuit 33.
次に、このように構成された本実施例の作用を第4図及
び第5図を参照して祝明する。Next, the operation of this embodiment configured as described above will be explained with reference to FIGS. 4 and 5.
冷却水温度Tが横開始動時及び低温時等において比較器
22の第1の基準温度Tl工す低い時は、比較器22及
び23は出力信号を出さないため、機関回転速度kLe
がどのような状態であっても第1及ヒ第2のスイッチ回
路27.28からは作動信号が出力されない。When the cooling water temperature T is low, such as when the first reference temperature Tl of the comparator 22 is low, such as during side start operation or low temperature, the comparators 22 and 23 do not output signals, so the engine rotation speed kLe
No matter what state the switch circuits 27 and 28 are in, no activation signal is output from the first and second switch circuits 27 and 28.
これに↓す、電動モータ5、第1の電磁石15A及び第
2の電磁石15B&’;Jともに作動せず、ベルトゾー
リ8のみが空転してウォータポンプ2は作動しない、
この結果、ウォータポンプ2を駆動してまでも機関の冷
却を行なう必要のない当該運転時において、機関のポン
プ駆動に要する動力損失がなくなり、燃費が一段と向上
される。As a result, the electric motor 5, the first electromagnet 15A, and the second electromagnet 15B&';J do not operate, only the belt belt 8 idles, and the water pump 2 does not operate.As a result, the water pump 2 is driven. During this operation, when there is no need to cool the engine, there is no power loss required to drive the engine pump, and fuel efficiency is further improved.
そして、暖機運転時等において冷却水温度Tが比較器2
2の第1の基準温度l111と比較器23の第2の基準
編度T2との中間の@度になった時、つまりTl(T≦
T2の時は、比較器22が出力信号全出す一方、比較器
23は出力信号を出さないため、前述したように第1の
AND回路29を介して機関回転速度Reに関係なく第
1のスイッチ回路27のみが作動信号を出力する。Then, during warm-up operation, etc., the cooling water temperature T changes to the comparator 2.
When the temperature reaches an intermediate point between the first reference temperature l111 of No. 2 and the second reference knitting T2 of the comparator 23, that is, Tl(T≦
At T2, the comparator 22 outputs the full output signal, while the comparator 23 does not output any output signal. Therefore, as described above, the first switch is output via the first AND circuit 29 regardless of the engine speed Re. Only circuit 27 outputs an activation signal.
これにより、今度は電動モータ5及び第1の電磁石15
Aが作動され、これKよって前述したように電動モータ
5の回転軸6と?ンプ軸4とが保持板12全介して一体
化されるため、ウォータポンプ2は電動モータ5により
一定速度で駆動される(第5図参照)・
この結果、当該運転時には機関のポンプ駆動に要する動
力損失が軽減されると共に機関の過冷却が避けられるの
で、燃費が向上されると共に暖機時間が短縮されるー
更に1冷却水温度Tが上昇し比較器23の第2の基準温
度T2を越えた場合(即ち、T+< Tm< Tの場合
)に、回転速度Reが比較器25の基準速度Kmより小
さい時には、比較器23が出力信号を出す一方比較器2
5は出力信号を出さないた゛め、^11述したように第
3のAND回路33を介して第1のスこれに19、上述
したTs<T≦T2の時と同様に、ウォータポンプ2は
電動モータ5により記動される、
この結果、機関の高温時に機関の低速回転のときは、予
めそれよりも回転速度が早く設定されている電動モータ
5でウォータポンプ2會駆動することになるので、冷却
効率を高めて機関のオーバヒート全防止できる、
一方、上述した場合に回転速度Reも比較器24の基準
速IfRm′に越えた時には、比較器23 、25がと
もに出力信号を出すため、前述したように第2のAND
回路32を介して今度は第2のスイッチ回路28のみが
作動信号を出力する。As a result, the electric motor 5 and the first electromagnet 15
A is actuated, and this causes the rotating shaft 6 of the electric motor 5 to rotate as described above. Since the water pump shaft 4 is integrated with the pump shaft 4 through the entire holding plate 12, the water pump 2 is driven at a constant speed by the electric motor 5 (see Fig. 5). Since power loss is reduced and overcooling of the engine is avoided, fuel efficiency is improved and warm-up time is shortened - the cooling water temperature T rises further and exceeds the second reference temperature T2 of the comparator 23. (that is, when T+<Tm<T), when the rotational speed Re is smaller than the reference speed Km of the comparator 25, the comparator 23 outputs an output signal, while the comparator 2
Since 5 does not output an output signal, the water pump 2 is connected to the first switch via the third AND circuit 33 as described above. As a result, when the engine is at a high temperature and the engine is rotating at a low speed, two water pumps are driven by the electric motor 5 whose rotational speed is set earlier than that. It is possible to improve the cooling efficiency and completely prevent the engine from overheating. On the other hand, in the case described above, when the rotational speed Re also exceeds the reference speed IfRm' of the comparator 24, both the comparators 23 and 25 output an output signal. the second AND
Via the circuit 32, only the second switch circuit 28 now outputs an activation signal.
これにエリ、電動モータ5及び第】の電磁石15Aに代
って第2の電磁石15Bが作動され、これによってMi
+述した工うにベルトプーリ8とポンプ軸4とが保持板
12を介して一体化されるため、ウォータボンf2は機
関に連動して駆動される。In response to this, the second electromagnet 15B is operated in place of the electric motor 5 and the second electromagnet 15A.
+ Since the belt pulley 8 and the pump shaft 4 are integrated via the holding plate 12, the water pump f2 is driven in conjunction with the engine.
この結果、機関の高温及び高速回転時には従来例と同様
にポンプ速度を機関の回転速度に比例して上昇させられ
(第5図参照)、機関のオー・々ヒート全効果的に防止
できる。As a result, when the engine is at a high temperature and rotates at high speed, the pump speed can be increased in proportion to the engine rotational speed (see FIG. 5), as in the conventional example, and overheating of the engine can be completely prevented.
このようにして、ウォータポンプ2は機関の冷却水温度
及び回転速度に応じて効果的に駆動制御される、
以上説明17たようにこの発明によれば、ウォータポン
プ全継手手段を介して電動モータとペルドブ〜りとで選
択的に駆動できるようにしたので、ウォータポンプ全機
関の運転状態に応じて効果的に駆動制御でき、機関の燃
費及び冷却性が一段と同上されるという効果が得られる
。In this way, the water pump 2 is effectively controlled in accordance with the cooling water temperature and rotational speed of the engine.As explained above, according to the present invention, the electric motor is Since it is possible to selectively drive the water pump in accordance with the operating condition of the entire engine, the fuel efficiency and cooling performance of the engine can be further improved.
第1図はこの発明の実施例の要部断面図、第2図(8)
、同はそのA−A及びB−B@断面図、第3図は同じく
その制御回路のブロック図、[iI4図は同じくその作
動部の制御モーPi示す表図、第5図は同じくその駆動
装置の作動)4タ一ン図である、4・・・ボンデ軸、5
・・・電動モータ、8・・・ベルトノ−リ、10・・電
磁クラッチ、2o・・・制御回路、21・・・水温セン
サ、24・・・101転センサ、2・・・ウォータポン
プ。
特許出願人 日産自動車株式会社Figure 1 is a sectional view of the main part of an embodiment of this invention, Figure 2 (8)
, Figure 3 is a block diagram of its control circuit, Figure 4 is a table showing the control mode Pi of its operating section, and Figure 5 is its driving diagram. (Operation of the device) 4-pin diagram, 4...Bonde shaft, 5
. . . Electric motor, 8. Belt glue, 10. Electromagnetic clutch, 2o. Control circuit, 21. Water temperature sensor, 24. 101 rotation sensor, 2. Water pump. Patent applicant Nissan Motor Co., Ltd.
Claims (1)
動する第1の駆動手段と、ベルトプーリにより機関に連
動してポンプ軸を回転駆動する第2の駆動手段と、これ
らの両手段を選択的にポンプ軸に連結する継手手段とを
設ける一方、この継手手段及び電動モータを機関の運転
状態に応じて作動制御する制御手段を設けたことを特徴
とする内燃機関のウォータポンプ。 2、 上記継手手段は、ポンプ軸側に固設された一対の
アーマチュアと、このアーマチュアヲ挾ムようにしてポ
ンプ軸に回転自由に支持されたベルトプーリ及び電動モ
ータのロータ部の各々の外側に位置して対設された第1
及び第2の電磁石とからなる簀磁クラッチである特許請
求の範囲第1項記載の内燃機関のウォータポンプ。 3、 上記制御手段は、機関の冷却水温度及び回転速度
を検出するセンサからの信号を入力し、冷却水温度が第
1の基準温度以下の時は回転速度に関係なくウォータポ
ンプの作動全停止させ、上記温度が第1の基準温度を越
えて第2の基準温度以下の時は回転速度に関係なく電動
モータによりウォータポンプを作動させ、更に上記温度
が第2の基準温度を越えても回転速度が基準速度以下の
時は電動モータによりウォータポンプ會作勧させる一方
、逆に回転速度も基準温度以下えた時はベルトプーリに
エリウォータポンプを作動させるような信号全上記継手
手段及び盲動モータに出力する制御回路である特許請求
の範囲第1項または第2項のいずれか一つに記載の内燃
機関のウォータポンプ。[Claims] 1. A first drive means for rotationally driving the pump shaft by an electric motor, and a second drive means for rotationally driving the pump shaft in conjunction with the engine by a belt pulley, on the shaft. and a joint means for selectively connecting both of these means to the pump shaft, and a control means for controlling the operation of the joint means and the electric motor according to the operating state of the engine. Engine water pump. 2. The coupling means includes a pair of armatures fixed to the pump shaft side, a belt pulley rotatably supported by the pump shaft with the armatures sandwiched between them, and a rotor portion of the electric motor. The first
2. The water pump for an internal combustion engine according to claim 1, which is a magnetic clutch comprising a first electromagnet and a second electromagnet. 3. The control means inputs a signal from a sensor that detects the engine cooling water temperature and rotation speed, and when the cooling water temperature is below the first reference temperature, the water pump is completely stopped regardless of the rotation speed. When the temperature exceeds the first reference temperature and is below the second reference temperature, the electric motor operates the water pump regardless of the rotation speed, and even if the temperature exceeds the second reference temperature, the water pump continues to operate. When the speed is below the reference speed, the electric motor is used to operate the water pump, while when the rotational speed is below the reference temperature, a signal is sent to the belt pulley to operate the water pump. A water pump for an internal combustion engine according to claim 1 or 2, which is a control circuit that outputs an output.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7103182A JPS58187515A (en) | 1982-04-27 | 1982-04-27 | Water pump of internal-combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7103182A JPS58187515A (en) | 1982-04-27 | 1982-04-27 | Water pump of internal-combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58187515A true JPS58187515A (en) | 1983-11-01 |
Family
ID=13448745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7103182A Pending JPS58187515A (en) | 1982-04-27 | 1982-04-27 | Water pump of internal-combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58187515A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60206964A (en) * | 1984-03-30 | 1985-10-18 | Aisin Seiki Co Ltd | Sterling engine |
JPS63162922U (en) * | 1987-04-15 | 1988-10-25 | ||
US4996952A (en) * | 1989-09-15 | 1991-03-05 | Hall Jerry W | Automotive coolant pumping system |
US5076216A (en) * | 1990-09-19 | 1991-12-31 | Ro Sung W | Coolant pump with clutch |
JP2011518283A (en) * | 2008-04-17 | 2011-06-23 | ボーグワーナー・インコーポレーテッド | Coolant pump |
CN102562255A (en) * | 2012-01-16 | 2012-07-11 | 宁波市鄞州德来特技术有限公司 | Engine and cooling system thereof |
FR2971296A1 (en) * | 2011-02-08 | 2012-08-10 | Peugeot Citroen Automobiles Sa | Water pump system for circulating coolant in cooling circuit to cool internal combustion engine of hybrid motor vehicle, has disengaging unit allowing drive unit to reach relay during stop phases of heat engine of vehicle |
WO2012142065A2 (en) * | 2011-04-13 | 2012-10-18 | Borgwarner Inc. | Control systems for friction clutch assemblies |
WO2013154848A1 (en) * | 2012-04-10 | 2013-10-17 | Borgwarner Inc. | Control methods and systems for dual mode cooling pump |
JP2014013010A (en) * | 2012-07-04 | 2014-01-23 | Hino Motors Ltd | Water pump |
US8651070B2 (en) * | 2012-07-09 | 2014-02-18 | Behr America, Inc. | Method and apparatus to control coolant flow through an engine, especially for a motor vehicle |
GB2559047A (en) * | 2016-12-22 | 2018-07-25 | Concentric Birmingham Ltd | Auxiliary drive system for a pump |
-
1982
- 1982-04-27 JP JP7103182A patent/JPS58187515A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60206964A (en) * | 1984-03-30 | 1985-10-18 | Aisin Seiki Co Ltd | Sterling engine |
JPS63162922U (en) * | 1987-04-15 | 1988-10-25 | ||
US4996952A (en) * | 1989-09-15 | 1991-03-05 | Hall Jerry W | Automotive coolant pumping system |
US5076216A (en) * | 1990-09-19 | 1991-12-31 | Ro Sung W | Coolant pump with clutch |
JP2011518283A (en) * | 2008-04-17 | 2011-06-23 | ボーグワーナー・インコーポレーテッド | Coolant pump |
FR2971296A1 (en) * | 2011-02-08 | 2012-08-10 | Peugeot Citroen Automobiles Sa | Water pump system for circulating coolant in cooling circuit to cool internal combustion engine of hybrid motor vehicle, has disengaging unit allowing drive unit to reach relay during stop phases of heat engine of vehicle |
WO2012142065A3 (en) * | 2011-04-13 | 2013-03-14 | Borgwarner Inc. | Control systems for friction clutch assemblies |
WO2012142065A2 (en) * | 2011-04-13 | 2012-10-18 | Borgwarner Inc. | Control systems for friction clutch assemblies |
US9523393B2 (en) | 2011-04-13 | 2016-12-20 | Borgwarner Inc. | Multi-mode cooling pump |
CN102562255A (en) * | 2012-01-16 | 2012-07-11 | 宁波市鄞州德来特技术有限公司 | Engine and cooling system thereof |
WO2013154848A1 (en) * | 2012-04-10 | 2013-10-17 | Borgwarner Inc. | Control methods and systems for dual mode cooling pump |
CN103649486A (en) * | 2012-04-10 | 2014-03-19 | 博格华纳公司 | Control methods and systems for dual mode cooling pump |
JP2014013010A (en) * | 2012-07-04 | 2014-01-23 | Hino Motors Ltd | Water pump |
US8651070B2 (en) * | 2012-07-09 | 2014-02-18 | Behr America, Inc. | Method and apparatus to control coolant flow through an engine, especially for a motor vehicle |
GB2559047A (en) * | 2016-12-22 | 2018-07-25 | Concentric Birmingham Ltd | Auxiliary drive system for a pump |
GB2559047B (en) * | 2016-12-22 | 2021-10-20 | Concentric Birmingham Ltd | Auxiliary drive system for a pump |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9850909B2 (en) | Hybrid fan drive with electric motor | |
JPS58187515A (en) | Water pump of internal-combustion engine | |
EP1362726B1 (en) | Air conditioner for use in vehicles | |
JP2009503364A (en) | Coolant pump for internal combustion engine | |
US6644933B2 (en) | Water pump with electronically controlled viscous coupling drive | |
JPH0444084B2 (en) | ||
US20060272917A1 (en) | Magnetorheological fan coupling | |
JP4062485B2 (en) | Magnet type fan clutch device | |
JP2000289446A (en) | Magnet type fan clutch/heater device | |
EP0921284A2 (en) | Improvements relating to the liquid cooled I.C. engines | |
KR980700917A (en) | A heating system for a vehicle | |
JP2000274455A (en) | Method for controlling electromagnetic clutch | |
JP2002254936A (en) | Cooling system for vehicle | |
JPH042772B2 (en) | ||
JPS60119318A (en) | Cooling device for engine | |
JP3690109B2 (en) | Auxiliary drive device for vehicle | |
JPH10100648A (en) | Heating device for vehicle | |
KR101745012B1 (en) | Electric water pump, cooling water circulation system for vehicle, and method for controlling thereof | |
JP4457485B2 (en) | Three-position engine starter | |
KR950005729Y1 (en) | Cooling water circulation control system of motor car | |
JPH0447179B2 (en) | ||
JP2002213495A (en) | Motive power transmission device | |
JPS6146179Y2 (en) | ||
KR100245873B1 (en) | Apparatus for controlling operation of cooling fan | |
JPS61225562A (en) | Gas engine driving type heat pump device |