JPH042772B2 - - Google Patents

Info

Publication number
JPH042772B2
JPH042772B2 JP12902782A JP12902782A JPH042772B2 JP H042772 B2 JPH042772 B2 JP H042772B2 JP 12902782 A JP12902782 A JP 12902782A JP 12902782 A JP12902782 A JP 12902782A JP H042772 B2 JPH042772 B2 JP H042772B2
Authority
JP
Japan
Prior art keywords
temperature
fan
pump
cylinder
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12902782A
Other languages
Japanese (ja)
Other versions
JPS5920521A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12902782A priority Critical patent/JPS5920521A/en
Publication of JPS5920521A publication Critical patent/JPS5920521A/en
Publication of JPH042772B2 publication Critical patent/JPH042772B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/08Controlling of coolant flow the coolant being cooling-air by cutting in or out of pumps
    • F01P7/081Controlling of coolant flow the coolant being cooling-air by cutting in or out of pumps using clutches, e.g. electro-magnetic or induction clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/162Controlling of coolant flow the coolant being liquid by thermostatic control by cutting in and out of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/31Cylinder temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/33Cylinder head temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は水冷式内燃機関の冷却系制御装置に係
り、特に水冷ジヤケツトの冷却水及びシリンダの
温度を検知することにより、急速な温度変化にも
対応して冷却系を作動し得るようにした水冷式内
燃機関の冷却系制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cooling system control device for a water-cooled internal combustion engine, and in particular detects the temperature of the cooling water of a water-cooled jacket and the cylinder, thereby preventing rapid temperature changes. The present invention relates to a cooling system control device for a water-cooled internal combustion engine that can operate a cooling system accordingly.

〔発明の技術的背景及びその問題点〕[Technical background of the invention and its problems]

一般に水冷式内燃機関にあつては、冷却水の温
度が低いときに冷却フアンを駆動させるとエンジ
ンの始動が困難になる。これを解消するためにエ
ンジンの冷却系を制御することが行なわれてお
り、冷却フアンに流体クラツチを設け冷却水の温
度が高くなると共に冷却フアンを駆動させる装置
が使われている。しかしながらこの装置では、サ
ーモスタツトは冷却水の温度を直接検知するよう
にはなつておらず、ラジエータの近傍に設けられ
た間接検知方式となつている。このためサーモス
タツトは、先ず燃焼が高負荷になるとシリンダ壁
の温度が上昇し、次いで冷却水温度が上がり、こ
れにもとづいてラジエータが加熱され、この加熱
されたラジエータを通過して空気が加熱され、最
後にその加熱空気がサーモスタツトを加熱すると
いう非常に複雑な系路を経た後に作動されてい
る。従つて、サーモスタツトの作動温度を所定冷
却水温度よりも可成り低く設定しなければ応答遅
れを解消することができず、仮に解消したとして
も間接検知である以上は確実な制御は望み得ず、
更にはエンジンの急速な温度変化に対応すること
ができないので、エンジンが焼損するという不具
合が発生する。
Generally, in a water-cooled internal combustion engine, if the cooling fan is driven when the temperature of the cooling water is low, it becomes difficult to start the engine. In order to solve this problem, the cooling system of the engine is controlled, and a device is used in which a fluid clutch is installed in the cooling fan and the cooling fan is driven as the temperature of the cooling water increases. However, in this device, the thermostat is not designed to directly detect the temperature of the cooling water, but instead uses an indirect detection method installed near the radiator. For this reason, a thermostat works by controlling the temperature of the cylinder wall when the combustion load becomes high, and then the temperature of the cooling water, which heats the radiator and heats the air that passes through the heated radiator. Finally, the heated air goes through a very complicated system that heats the thermostat before it is activated. Therefore, the response delay cannot be resolved unless the operating temperature of the thermostat is set considerably lower than the specified cooling water temperature, and even if it were resolved, reliable control cannot be expected since indirect detection is used. ,
Furthermore, since the engine cannot cope with rapid temperature changes, the engine may burn out.

また、冷却フアンと循環ポンプとは共にエンジ
ン馬力の一部を利用して駆動されているが、この
駆動は、従来、個別的にではなく冷却フアンが動
くとともにポンプも作動するという一体制御であ
つた。このため、上述した温度の間接検知による
不正確さに加えて、両者が同時に作動することに
よつて過冷却領域が生じていた。この領域では無
用な冷却が行なわれるためにエンジン馬力の一部
が無駄に消費され、馬力の有効利用が計れていな
かつた。
Additionally, both the cooling fan and the circulation pump are driven using part of the engine horsepower, but in the past, this drive was not done individually, but rather as an integral control system in which the pump operated when the cooling fan moved. Ta. Therefore, in addition to the above-mentioned inaccuracy due to indirect temperature detection, the simultaneous operation of both of them causes an overcooling region. In this region, a portion of the engine horsepower was wasted due to unnecessary cooling, and the horsepower could not be used effectively.

〔発明の目的〕[Purpose of the invention]

本発明はかかる事情に鑑みてなされたものであ
り、シリンダ及び水冷水の温度を直接検知するこ
とにより、エンジンの急速な温度変化にも追随し
て作動しピストンの焼付等の不具合を解消するこ
とができるとともに、ポンプとフアンとを個別的
に制御して所定時におけるポンプ及びフアンの要
する駆動馬力を減少し出力増を計ることができる
水冷式内燃機関の冷却装置を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and by directly detecting the temperature of the cylinder and water cooling water, it operates to follow rapid temperature changes in the engine and eliminates problems such as piston seizure. It is an object of the present invention to provide a cooling device for a water-cooled internal combustion engine, which can control the pump and fan individually to reduce the drive horsepower required by the pump and fan at a given time and increase the output. .

〔発明の構成〕[Structure of the invention]

本発明はかかる目的を構成するために次のよう
に構成されている。冷却水とシリンダの温度が必
ずしも一致せず、また冷却水の温度が低ければエ
ンジン始動時又は低負荷時或いは低速回転時に更
にフアンを駆動することはエンジンのかかりを悪
くしたり出力低下をもたらすので、これらを防止
するためにシリンダ及び冷却水の双方の温度を別
個に検知するとともに、これらの検知出力でフア
ン及びポンプ駆動を個別的に制御している。この
制御を行なうために内燃機関を水冷するための水
冷ジヤケツト中及び内燃機関を構成するシリンダ
壁に正特性サーミスタ等よりなる温度センサをそ
れぞれ埋め込み、冷却水温度とシリンダ温度との
2つのパラメータを制御因子としている。一方、
この2つのパラメータを入力としこれと比較すべ
き4つの温度を予め設定した制御回路を設けてあ
る。この4つの設定温度には1つのパラメータに
対し各々低温と高温とに分けて設定し、パラメー
タ入力がその低温設定置以下のときにポンプが
OFF、以上のときONとなり、また高温設定値以
下でフアンがOFF、以上のときONとなる役割を
もたせてある。そして、シリンダ又は冷却水の温
度のうちいずれか1つでもこれらに対応して設定
された各低温設定値よりも低い温度を示す場合に
はポンプ作動を停止させ、逆にシリンダ及び冷却
水の温度が共に各低温設定値を越えている場合に
のみポンプ作動を行なうように上記制御回路を構
成し、これを上記2つの温度センサの出力側に接
続してある。また、この制御回路には更にシリン
ダ又は冷却水の温度のうちいずれか1つでもこれ
らに対応して設定された各高温設定値よりも低い
温度を示す場合にはフアンの回転を停止させ、逆
にシリンダ及び冷却水の温度の双方が共に各高温
設定値を越えている場合にのみフアンを回転させ
るような機能を付与し、もつてエンジンの冷却系
を制御するように構成したものである。
The present invention is configured as follows in order to achieve such an object. The temperature of the cooling water and the cylinder do not necessarily match, and if the temperature of the cooling water is low, driving the fan further when starting the engine, at low load, or at low speed may make the engine run harder or cause a reduction in output. In order to prevent this, the temperatures of both the cylinder and the cooling water are detected separately, and the fan and pump drives are individually controlled using the detected outputs. In order to perform this control, temperature sensors such as positive characteristic thermistors are embedded in the water cooling jacket for water cooling the internal combustion engine and in the cylinder walls that make up the internal combustion engine, and two parameters, the cooling water temperature and the cylinder temperature, are controlled. It is considered a factor. on the other hand,
A control circuit is provided in which these two parameters are input and four temperatures to be compared with are set in advance. These four set temperatures are set separately for one parameter as low temperature and high temperature, and when the parameter input is below the low temperature setting, the pump is activated.
It has the role of turning off the fan when it is OFF and turning ON when it is above the high temperature set value, and turning the fan OFF when it is below the high temperature set value and ON when it is above it. If any one of the cylinder or cooling water temperatures shows a temperature lower than each low temperature setting value set correspondingly, the pump operation is stopped; The control circuit is configured to operate the pump only when both exceed the respective low temperature set values, and is connected to the output sides of the two temperature sensors. In addition, this control circuit also stops the rotation of the fan if any one of the cylinder or cooling water temperatures is lower than the corresponding high temperature setting value, and reverses the rotation of the fan. The engine is equipped with a function that rotates the fan only when both the cylinder and cooling water temperatures exceed respective high temperature set values, thereby controlling the engine cooling system.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明に係る冷却系制御装置の好適一実
施例を添付図面に従つて説明する。
A preferred embodiment of the cooling system control device according to the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の一実施例を示す冷却式内燃機
関の断面図である。図示する如く冷却水内燃機関
は内燃機関を水冷するための水冷ジヤケツト1
と、該ジヤケツト1の冷却水を放熱冷却させるた
めのラジエータ2と、上記水冷ジヤケツト1とラ
ジエータ2とに冷却水を循環させるためのポンプ
3と、そして上記ラジエータ2を空冷するためろ
フアン4とを備えている。上記内燃機関を構成す
るシリンダ5に臨む壁面6の一部にその壁面温度
を検出する例えば正特性サーミスタからなるシリ
ンダ温度センサS1が埋め込まれている。また、上
記水冷ジヤケツト1の一部に冷却水温度を検出す
るジヤケツト温度センサS2が装着されている。こ
のジヤケツト温度センサS2及びシリンダ温度セン
サS1の出力は共にバツテリ7を電源として作動す
る制御回路Cに接続されている。この制御回路C
は第2図に示す如く4個の比較回路8、2個の
AND回路9及び1個の制御電圧発生回路10と
から成つている。各比較回路8には所定温度に対
応する基準電圧が個別的に設定されている。比較
的低温に設定された第1の設定温度T1と比較的
高温に設定された第3の設定温度T3とをそれぞ
れ基準電圧とするT1比較回路8aとT3比較回路
8bとは入力を共通にして上記シリンダ温度セン
サS1の出力側に接続されている。また、同じく低
温に設定された第2の設定温度T2とこれよりも
高温に設定された第4の設定温度T4とをそれぞ
れ基準電圧とするT2比較回路8cとT4比較回路
8dとは入力を共通にしてジヤケツト温度センサ
S2の出力側に接続されている。各比較回路8は入
力信号が基準電圧よりも大きいとき“1”出力を
出すが、このうちのT1比較回路8a出力とT2
較回路8c出力は一方のAND回路9aに接続さ
れ、双方出力が共に“1”のときのみ制御電圧発
生回路10へ出力を送るようになつている。また
他のT3比較回路8b出力とT4比較回路8d出力
は他方のAND回路9bに接続され、同じく共に
出力が“1”のときにのみ制御電圧発生回路10
へ信号を入力するようになつている。制御電圧発
生回路10は一方のAND回路9a出力が“1”
のとき低電圧を発生し、他方のAND回路9b出
力が“1”のときには、高電圧を発生して、後述
する電磁石の電磁力を二段階に制御するようにな
つている。
FIG. 1 is a sectional view of a cooled internal combustion engine showing one embodiment of the present invention. As shown in the figure, the cooling water internal combustion engine has a water cooling jacket 1 for water cooling the internal combustion engine.
, a radiator 2 for radiating and cooling the cooling water of the jacket 1, a pump 3 for circulating the cooling water between the water cooling jacket 1 and the radiator 2, and a filter fan 4 for air cooling the radiator 2. It is equipped with A cylinder temperature sensor S1 made of, for example, a positive temperature coefficient thermistor is embedded in a part of the wall surface 6 facing the cylinder 5 constituting the internal combustion engine to detect the wall surface temperature. Further, a jacket temperature sensor S2 for detecting the cooling water temperature is attached to a part of the water cooling jacket 1. The outputs of the jacket temperature sensor S2 and the cylinder temperature sensor S1 are both connected to a control circuit C which operates using the battery 7 as a power source. This control circuit C
As shown in Fig. 2, there are four comparator circuits 8 and two
It consists of an AND circuit 9 and one control voltage generation circuit 10. A reference voltage corresponding to a predetermined temperature is individually set for each comparison circuit 8. The T1 comparison circuit 8a and the T3 comparison circuit 8b each have a first set temperature T1 set at a relatively low temperature and a third set temperature T3 set at a relatively high temperature as their reference voltages. are commonly connected to the output side of the cylinder temperature sensor S1 . Further, a T 2 comparison circuit 8c and a T 4 comparison circuit 8d each have a second set temperature T 2 which is also set at a low temperature and a fourth set temperature T 4 which is set at a higher temperature than this as their reference voltages. is a jacket temperature sensor with a common input.
Connected to the output side of S2 . Each comparator circuit 8 outputs "1" when the input signal is greater than the reference voltage, but among these, the T1 comparator circuit 8a output and the T2 comparator circuit 8c output are connected to one AND circuit 9a, and both output The output is sent to the control voltage generating circuit 10 only when both are "1". Further, the output of the other T 3 comparison circuit 8b and the output of the T 4 comparison circuit 8d are connected to the other AND circuit 9b, and similarly, only when both outputs are "1", the control voltage generation circuit 10
It is designed to input signals to. In the control voltage generation circuit 10, one AND circuit 9a output is “1”
When the output of the other AND circuit 9b is "1", a low voltage is generated, and when the output of the other AND circuit 9b is "1", a high voltage is generated, and the electromagnetic force of the electromagnet, which will be described later, is controlled in two stages.

上記制御回路Cの出力は内燃機関の前面に設け
てあるポンプ3及びフアン4の伝達プーリー部に
装着した電磁クラツチ11に接続されている。こ
のクラツチ機構は第3図に詳細に示されている。
内燃機関の前面に、一端にポンプ3を構成する翼
車12が軸着され他端にフアン4を固着するアー
マチユア13を回転自在に装着したシヤフト14
が設けられ、このシヤフトも回転自在になつてい
る。該シヤフト14と同軸上にVベルト15を介
してクランクシヤフト16の回転が伝達されるロ
ータ17が配設されている。このロータ17には
制御回路Cの出力に接続された電磁コイル18が
装着され、ロータ17が1つの電磁石を構成して
いる。ロータ電磁石は上記アーマチユア13と並
列的にシヤフト14に一体固着され、バネ19a
を介して先端に接触子20aを設けた他のアーマ
チユア21とから第1の電磁クラツチ11aを形
成し、また同じくばね19bを介して先端に接触
子20bを設けた上記アーマチユア13とから第
2の電磁クラツチ11bを形成している。この第
2の電磁クラツチ11bのばね19bは、第1の
電磁クラツチ11aに使われているばね19aよ
りも電磁吸引力に抗する力を大きくしてある。し
かして、制御回路Cの出力がない場合にはポンプ
3及びフアン4は共に作動しないが、制御回路C
出力が低電圧出力になると第1の電磁クラツチ1
1aを作動せしめロータ17の回転シヤフト14
に伝達してポンプ3を駆動させる。また、高電圧
出力が出ると、電磁コイル18に流れる電流が増
大し電磁吸引力がばね19bの抗力よりも大きく
なるので、第2の電磁クラツチ11bが作動しロ
ータ17の回転をシヤフト14のみならず同時に
アーマチユア13にも伝達してフアン4を回転せ
しめることとなる。すなわち制御出力の大きさに
よつてポンプ3及びフアン4は一緒ではなく個別
的に制御されるようになつている。したがつて個
別的に制御できるものであれば電磁クラツチ以外
のクラツチ機構を用いることも勿論可能である。
The output of the control circuit C is connected to an electromagnetic clutch 11 mounted on a transmission pulley of a pump 3 and a fan 4 provided at the front of the internal combustion engine. This clutch mechanism is shown in detail in FIG.
A shaft 14 is rotatably mounted on the front surface of the internal combustion engine, and has an armature 13 rotatably attached to one end of which a blade wheel 12 constituting a pump 3 is attached, and a fan 4 fixed to the other end.
is provided, and this shaft is also rotatable. A rotor 17 is disposed coaxially with the shaft 14 to which rotation of the crankshaft 16 is transmitted via a V-belt 15. An electromagnetic coil 18 connected to the output of the control circuit C is attached to the rotor 17, and the rotor 17 constitutes one electromagnet. The rotor electromagnet is integrally fixed to the shaft 14 in parallel with the armature 13, and is supported by a spring 19a.
A first electromagnetic clutch 11a is formed from another armature 21 having a contact 20a at its tip via a spring 19b, and a second electromagnetic clutch 13 from the armature 13 having a contact 20b at its tip via a spring 19b. It forms an electromagnetic clutch 11b. The spring 19b of the second electromagnetic clutch 11b has a greater force against electromagnetic attraction than the spring 19a used in the first electromagnetic clutch 11a. Therefore, when there is no output from the control circuit C, both the pump 3 and the fan 4 do not operate, but the control circuit C
When the output becomes a low voltage output, the first electromagnetic clutch 1
1a to operate the rotating shaft 14 of the rotor 17.
and drives the pump 3. Furthermore, when a high voltage output is generated, the current flowing through the electromagnetic coil 18 increases and the electromagnetic attraction force becomes larger than the resistance force of the spring 19b, so the second electromagnetic clutch 11b operates and the rotation of the rotor 17 is controlled only by the shaft 14. At the same time, the power is transmitted to the armature 13 and the fan 4 is rotated. That is, depending on the magnitude of the control output, the pump 3 and fan 4 are controlled individually rather than together. Therefore, it is of course possible to use clutch mechanisms other than electromagnetic clutches as long as they can be individually controlled.

以上の構成よりなる本制御装置の作用について
述べる。今、エンジンが冷えた状態からエンジン
回転数又は負荷が徐々に大きくなつてシリンダ5
壁温が上昇する場合を考える。なお、温度が下降
する場合に逆になる。この場合に本制御装置は次
のような三つの態様でポンプ3及びフアン4を制
御駆動することとなる。これを第4図を中心にし
て説明する。
The operation of the present control device having the above configuration will be described. Now, since the engine is cold, the engine speed or load is gradually increasing and the cylinder 5
Consider the case where the wall temperature increases. Note that the opposite is true when the temperature decreases. In this case, the present control device controls and drives the pump 3 and fan 4 in the following three ways. This will be explained with reference to FIG.

最初に、シリンダ温度センサS1により検知され
るシリンダの壁面6温度T3が第1の設定温度T1
以下で、且つジヤケツト温度センサS2により検知
される冷却水の温度TWが第2の設定温度T2以下
であるとき、又はTSがT1以上であつてもTWがT2
以下のとき若しくはTWがT2以上であつてもTS
T1以下という第4図中のハツチングを施してい
ない領域Z1にあるときは、フアン4は勿論のこと
ポンプ3も作動されない。かかる条件下では、
T3,T4比較回路8b,8d出力は共に“0”の
ままであるからフアン作動信号を出力する他方の
AND回路9bの出力は“0”であり、またT1
T2比較回路8a,8c出力のいずれか一方が必
ず“0”であつて、共に“1”になることはない
のでポンプ作動信号を出力する一方のAND回路
9a出力も“0”となる。このため制御電圧発生
回路10は全く作動せず、制御回路C出力が
“0”となつて電磁コイル18に電流が流れない
からである。従つて、エンジン馬力はポンプ3や
フアン4駆動のためにその一部が費やされること
がなく、しかも冷却水は滞留状態を維持し循環さ
れることも、ラジエータ2で冷却されることもな
いので、エンジン駆動が有効に行なわれ得る。
First, the cylinder wall surface 6 temperature T3 detected by the cylinder temperature sensor S1 is the first set temperature T1.
and below, and when the cooling water temperature T W detected by the jacket temperature sensor S 2 is lower than the second set temperature T 2 or even if T S is higher than T 1 , T W is T 2
In the following cases or even if T W is T 2 or more, T S is
When it is in the unhatched region Z1 in FIG . 4, which is less than T1, not only the fan 4 but also the pump 3 are not operated. Under such conditions,
Since the outputs of T 3 and T 4 comparison circuits 8b and 8d both remain "0", the other output which outputs the fan operation signal
The output of the AND circuit 9b is “0”, and T 1 ,
Since one of the outputs of the T 2 comparison circuits 8a and 8c is always "0" and never both becomes "1", the output of the AND circuit 9a, which outputs the pump operation signal, also becomes "0". Therefore, the control voltage generating circuit 10 does not operate at all, the output of the control circuit C becomes "0", and no current flows through the electromagnetic coil 18. Therefore, part of the engine horsepower is not wasted to drive the pump 3 or fan 4, and the cooling water remains in a stagnant state and is not circulated or cooled by the radiator 2. , engine driving can be performed effectively.

次に、シリンダ温度TSが第1の設定温度T1
上で且つ冷却水温度TWが第2の設定温度T2以上
を示すハツチングを施した領域Z2に入ると、ポン
プ3のみが作動状態となりこのポンプ3により循
環する冷却水で内燃機関を冷却することとなる。
T1比較回路8a及びT2比較回路8cの出力が共
に“1”となり制御回路Cから低電圧出力を発生
し第1の電磁クラツチ11aをONせしめるから
である。TSが第3の設定温度T3以上となつても
TWが第4の設定温度以下であれば、また逆にTW
がT4以上であつてもTSがT3以下であれば、フア
ン作動信号を出す他方のAND回路9b出力は
“1”とはならないので、フア4は停止したまま
となる。従つて、この段階での内燃機関の温度上
昇は、ポンプ3作動による冷却水の循環のみによ
つて抑制でき、フアン駆動馬力4〜5PS分を節約
し僅かにポンプ駆動馬力2〜3PSを要するだけで
済ますことができる。
Next, when the cylinder temperature T S enters a hatched area Z 2 indicating that the cylinder temperature T S is higher than the first set temperature T 1 and the cooling water temperature T W is higher than the second set temperature T 2 , only the pump 3 is activated. In this state, the internal combustion engine is cooled by the cooling water circulated by the pump 3.
This is because the outputs of the T 1 comparison circuit 8a and the T 2 comparison circuit 8c both become "1", and a low voltage output is generated from the control circuit C, turning on the first electromagnetic clutch 11a. Even if T S is higher than the third set temperature T 3
If T W is equal to or lower than the fourth set temperature, T W
Even if T S is greater than or equal to T 4 , if T S is less than or equal to T 3 , the output of the other AND circuit 9b, which outputs the fan activation signal, will not become "1" and the fan 4 will remain stopped. Therefore, the temperature rise of the internal combustion engine at this stage can be suppressed only by circulating the cooling water by operating the pump 3, saving 4 to 5 PS of fan drive horsepower and only requiring 2 to 3 PS of pump drive horsepower. You can get away with it.

第3の状態は、シリンダ温度TSがT3以上で且
つ冷却水温度TWがT4以上のクロスハツチングで
示した領域にあるときであり、このときポンプ3
の作動に加えて、更にフアン4も回転することと
なる。T3及びT4比較回路8b,8d出力が共に
“1”となり制御回路C出力から高電圧が出力さ
れて、第2の電磁クラツチ11bもONするから
である。したがつて、加熱した冷却水はラジエー
タ2においてフアン4により冷却され有効に内燃
機関を冷却することが可能となる。また、冷却水
及びシリンダ壁面6の温度を直接検知してこの検
知出力でポンプ3、フアン4を制御しているので
応答性が速く、特にシリンダ温度TS及び冷却水
温度TWが高温のT3及びT4に達しても直ちにフア
ン4が作動するのでエンジンの焼損を回避するこ
とができる。
The third state is when the cylinder temperature T S is at least T 3 and the cooling water temperature T W is at least T 4 in the region shown by cross hatching.
In addition to the operation of the fan 4, the fan 4 also rotates. This is because the outputs of the T 3 and T 4 comparison circuits 8b and 8d both become "1", a high voltage is output from the control circuit C output, and the second electromagnetic clutch 11b is also turned on. Therefore, the heated cooling water is cooled by the fan 4 in the radiator 2, making it possible to effectively cool the internal combustion engine. In addition, since the temperature of the cooling water and the cylinder wall surface 6 is directly detected and the pump 3 and fan 4 are controlled by this detection output, the response is fast, especially when the cylinder temperature T S and the cooling water temperature T W are high. 3 and T4 , the fan 4 is activated immediately, thereby avoiding engine burnout.

比較回路8の各設定温度Tは便宜上単一の値で
説明したが、単一値ではその温度の近傍で比較回
路8出力が不安定となり電磁クラツチ11が
ON,OFFを繰り返し雑音や耐久性の点で問題が
出る。そこで、第5図に示す如く実際にはON温
度、OFF温度というように微差を設けた二値設
定が望ましい。すなわち、各設定温度Tは高い方
のON温度と低い方のOFF温度からなり、検出温
度がON温度を越えたとき比較回路8がON領域
となり、下降してOFF温度よりも下がつたとき、
はじめてOFF領域となるようにする。
For convenience, each set temperature T of the comparator circuit 8 has been explained using a single value, but if the temperature is a single value, the output of the comparator circuit 8 will become unstable near that temperature, and the electromagnetic clutch 11 will become unstable.
Problems arise in terms of noise and durability when turning ON and OFF repeatedly. Therefore, as shown in FIG. 5, it is actually desirable to set two values with slight differences such as ON temperature and OFF temperature. That is, each set temperature T consists of a higher ON temperature and a lower OFF temperature, and when the detected temperature exceeds the ON temperature, the comparator circuit 8 enters the ON region, and when it falls below the OFF temperature,
Make it the OFF area for the first time.

第6図は、シリンダ温度、冷却水温度の上限、
下限の限界温度から第1ないし第4の設定温度
T1〜T4を決定し、これらの値から得られるポン
プ3及びフアン4の作動範囲をエンジン回転数と
負荷との関係でとらえたものである。これより、
車輛の一般に使われる部分負荷、低速回転時には
ポンプ3、フアン4共駆動が部分的でよいことが
わかる。より詳しくは既述したようにフアン駆動
馬力4〜5PS、ポンプ駆動馬力2〜3PSが、特に
低負荷高速回転時に不用となり、更に低温急加速
時の出力増が期待できる他、部分負荷時の燃費向
上2〜3%が得られる。
Figure 6 shows the cylinder temperature, the upper limit of the cooling water temperature,
1st to 4th set temperature from the lower limit temperature
T 1 to T 4 are determined, and the operating range of the pump 3 and fan 4 obtained from these values is determined in terms of the relationship between the engine speed and the load. Than this,
It can be seen that the pump 3 and fan 4 may be driven only partially during partial loads and low speed rotations that are generally used in vehicles. In more detail, as mentioned above, the fan drive horsepower 4 to 5 PS and the pump drive horsepower 2 to 3 PS are unnecessary, especially at low load high speed rotation, and furthermore, it is expected that the output will increase during low temperature sudden acceleration, and the fuel consumption at partial load will be reduced. An improvement of 2-3% is obtained.

〔発明の効果〕〔Effect of the invention〕

以上、要するに本発明によれば次のような優れ
た効果を発揮する。
In summary, the present invention exhibits the following excellent effects.

(1) ジヤケツト温度センサのみならずシリンダ温
度センサを設けたことにより、特にシリンダ壁
面の急速な温度に対応して冷却系を作動出来る
ためピストン焼付等の不具合を解消することが
できる。
(1) By providing not only a jacket temperature sensor but also a cylinder temperature sensor, the cooling system can be activated in response to rapid temperature changes, especially on the cylinder wall surface, thereby eliminating problems such as piston seizure.

(2) 冷却水温度及びシリンダ温度の2つの温度パ
ラメータによりポンプ及びフアンを個別的に制
御することにより、エンジンの冷却系は理想的
に冷却作動し、ポンプ及びフアン駆動に必要な
馬力を有効に利用することができる。特に低負
荷高速回転時にポンプ及びフアン馬力が不用と
なり、また低温急加速時の出力増が期待できる
ばかりでなく部分負荷時の燃費向上を計ること
ができる。
(2) By individually controlling the pump and fan using the two temperature parameters of cooling water temperature and cylinder temperature, the engine cooling system operates ideally and effectively utilizes the horsepower required to drive the pump and fan. can be used. In particular, the pump and fan horsepower are not required during low-load, high-speed rotation, and not only is it possible to expect an increase in output during low-temperature rapid acceleration, but it is also possible to improve fuel efficiency during partial load.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る冷却系制御装置の好適一
実施例を適用した水冷式内燃機関の要部断面図、
第2図は第1図における制御回路を説明したブロ
ツク図、第3図は第1図におけるポンプ及びフア
ンのクラツチ機構の詳細を示す拡大図、第4図は
検出温度に基づいて制御されるポンプ及びフアン
の作動領域を示す説明図、第5図は設定温度にヒ
ステリシスを設けた場合の制御系の作動状態を示
す図、第6図はポンプ、フアンの不用域をエンジ
ン回転数と負荷との関係で把握した図である。 尚、図中1は水冷ジヤケツト、2はラジエー
タ、3はポンプ、4はフアン、5はシリンダ、S1
はシリンダ温度センサ、S2はジヤケツト温度セン
サ、Cは制御回路、T1は第1の設定温度、T2
第2の設定温度、T3は第3の設定温度、T4は第
4の設定温度、TSはシリンダ温度、TWは冷却水
温度である。
FIG. 1 is a sectional view of a main part of a water-cooled internal combustion engine to which a preferred embodiment of the cooling system control device according to the present invention is applied;
Fig. 2 is a block diagram explaining the control circuit in Fig. 1, Fig. 3 is an enlarged view showing details of the pump and fan clutch mechanism in Fig. 1, and Fig. 4 is a pump controlled based on detected temperature. Fig. 5 is a diagram showing the operating state of the control system when hysteresis is provided for the set temperature. Fig. 6 is an explanatory diagram showing the operating range of the pump and fan, and Fig. 6 is an explanatory diagram showing the operating range of the pump and fan. This is a diagram that is understood in terms of relationships. In the figure, 1 is a water cooling jacket, 2 is a radiator, 3 is a pump, 4 is a fan, 5 is a cylinder, S 1
is the cylinder temperature sensor, S2 is the jacket temperature sensor, C is the control circuit, T1 is the first set temperature, T2 is the second set temperature, T3 is the third set temperature, and T4 is the fourth set temperature. The set temperature, T S is the cylinder temperature, and T W is the cooling water temperature.

Claims (1)

【特許請求の範囲】[Claims] 1 シリンダ及び水冷ジヤケツトに温度センサを
それぞれ設け、これら各センサの出力部に、シリ
ンダ温度が第1設定温度以上で冷却水温度が第2
設定温度以上のときに冷却水ポンプを作動し、シ
リンダ温度が第1設定温度より高い第3設定温度
以上で冷却水温度が第2設定温度より高い第4設
定温度以上のときにラジエータフアンを駆動する
制御回路を接続したことを特徴とする水冷式内燃
機関の冷却系制御装置。
1 Temperature sensors are provided on the cylinder and the water cooling jacket, respectively, and when the cylinder temperature is equal to or higher than the first set temperature and the cooling water temperature is equal to or higher than the second set temperature.
The cooling water pump is operated when the temperature is higher than the set temperature, and the radiator fan is activated when the cylinder temperature is higher than the third set temperature, which is higher than the first set temperature, and the cooling water temperature is higher than the fourth set temperature, which is higher than the second set temperature. 1. A cooling system control device for a water-cooled internal combustion engine, characterized in that a control circuit for controlling the water-cooled internal combustion engine is connected thereto.
JP12902782A 1982-07-26 1982-07-26 Cooling system controller for water-cooled internal combustion engine Granted JPS5920521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12902782A JPS5920521A (en) 1982-07-26 1982-07-26 Cooling system controller for water-cooled internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12902782A JPS5920521A (en) 1982-07-26 1982-07-26 Cooling system controller for water-cooled internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5920521A JPS5920521A (en) 1984-02-02
JPH042772B2 true JPH042772B2 (en) 1992-01-20

Family

ID=14999319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12902782A Granted JPS5920521A (en) 1982-07-26 1982-07-26 Cooling system controller for water-cooled internal combustion engine

Country Status (1)

Country Link
JP (1) JPS5920521A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2570439B1 (en) * 1984-09-20 1989-03-31 Semt METHOD AND DEVICE FOR REGULATING THE TEMPERATURE OF THE INTERNAL SURFACE OF THE CYLINDER LINERS OF AN INTERNAL COMBUSTION ENGINE
JPS61175220A (en) * 1985-01-31 1986-08-06 Mitsubishi Heavy Ind Ltd Temperature control device for cylinder liner
JP2623603B2 (en) * 1987-10-16 1997-06-25 いすゞ自動車株式会社 Insulated engine cooling system
JPH0296424U (en) * 1989-01-18 1990-08-01
JP2683955B2 (en) * 1990-11-20 1997-12-03 株式会社クボタ Engine exhaust heat recovery device
JP2561218B2 (en) * 1993-10-21 1996-12-04 本田技研工業株式会社 Vehicle engine cooling system
CN102226423A (en) * 2011-04-26 2011-10-26 浙江吉利汽车研究院有限公司 Novel engine cooling system
JP6002347B1 (en) * 2016-05-17 2016-10-05 善隆 中山 Vehicle engine control device

Also Published As

Publication number Publication date
JPS5920521A (en) 1984-02-02

Similar Documents

Publication Publication Date Title
US4423705A (en) Cooling system for liquid-cooled internal combustion engines
EP1308609B1 (en) Method of engine cooling
US7128690B2 (en) Method for controlling magnet type fan clutch
CN107013305B (en) Control method and control device for water pump
US6644933B2 (en) Water pump with electronically controlled viscous coupling drive
EP0894954A1 (en) Cooling system for a motor-vehicle engine
JPH0658145A (en) Method and device for driving fluid pressure air blower
US6481390B1 (en) Water pump with electronically controlled viscous coupling drive
US20040103862A1 (en) Engine temperature control apparatus and method
JPH042772B2 (en)
JPH11350956A (en) Cooling system of vehicle
JP2006161806A (en) Cooling device for liquid cooling type internal combustion engine
US10012227B2 (en) Fluid supply device
JPH10252464A (en) Power device cooler of hybrid electric vehicle
JP3838528B2 (en) Cooling control device and cooling control method for internal combustion engine
JPS60119318A (en) Cooling device for engine
JPS5874824A (en) Cooling device of engine
JPS61265320A (en) Engine cooling device for vehicle
JP2002054440A (en) Cooling control device of internal combustion engine
JPS6337248B2 (en)
KR19990003799A (en) Coolant pump control unit for automotive engines
JP2004285830A (en) Engine cooling device
KR20040052422A (en) Method and apparatus for warning trouble of fan clutch
KR100245873B1 (en) Apparatus for controlling operation of cooling fan
KR19990003200U (en) Automotive Engine Cooling System