JPS5818602B2 - Corrosion wear detection method - Google Patents

Corrosion wear detection method

Info

Publication number
JPS5818602B2
JPS5818602B2 JP50133724A JP13372475A JPS5818602B2 JP S5818602 B2 JPS5818602 B2 JP S5818602B2 JP 50133724 A JP50133724 A JP 50133724A JP 13372475 A JP13372475 A JP 13372475A JP S5818602 B2 JPS5818602 B2 JP S5818602B2
Authority
JP
Japan
Prior art keywords
tube
corrosion
longitudinal direction
wear
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50133724A
Other languages
Japanese (ja)
Other versions
JPS5257880A (en
Inventor
岡村興義
岡本薫
木下勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Oil Co Ltd
Original Assignee
Koa Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Oil Co Ltd filed Critical Koa Oil Co Ltd
Priority to JP50133724A priority Critical patent/JPS5818602B2/en
Publication of JPS5257880A publication Critical patent/JPS5257880A/en
Publication of JPS5818602B2 publication Critical patent/JPS5818602B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

【発明の詳細な説明】 この発明は腐食損耗度検出方法に係り、特にボイラ、熱
交換器用管その他の中空管の内壁の腐食損耗部の位置、
腐食損耗の度合等を検出するに最適な検出方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting the degree of corrosion and wear, and particularly to a method for detecting the degree of corrosion and wear, particularly the location of the corrosion and wear on the inner wall of a boiler, a heat exchanger tube, and other hollow tubes.
This invention relates to an optimal detection method for detecting the degree of corrosion and wear and tear.

石油精製その他の化学工業等にあっては多数の管を有す
る熱交換器が多用されており、これらの管は腐食性雰囲
気にあるものが多く、定期的に開放検査の実施を行なう
ことによりその安全性、寿命等を確認する必要がある。
Heat exchangers with many tubes are often used in oil refining and other chemical industries, and many of these tubes are in a corrosive atmosphere. It is necessary to check safety, lifespan, etc.

かかる管の検出方式として、従来、非破壊的なもの吉し
てはオーステナイト系ステンレス鋼管、黄銅管等に多用
されているいわゆる渦流探傷方式がある。
Conventionally, as a detection method for such a pipe, there is a so-called eddy current flaw detection method, which is a non-destructive method and is often used for austenitic stainless steel pipes, brass pipes, etc.

この方式は励磁コイルと検出コイルとを用い、検出コイ
ルからのパルス信号に基づいて管の探傷を行なうもので
あるが、腐食損耗部の探さに出力パルスが対応せず検出
精度にも限界がある。
This method uses an excitation coil and a detection coil to detect pipe flaws based on pulse signals from the detection coil, but the output pulses do not correspond to the detection of corroded parts and there is a limit to detection accuracy. .

また、管材は非磁性体でなければならず、したがって、
鋼管等の磁性体に対しては磁気飽和束を要す等の欠点が
ある。
Also, the tubing must be non-magnetic and therefore
For magnetic materials such as steel pipes, there are drawbacks such as the need for magnetic saturation flux.

さらに、放射線照射による管壁肉厚測定方式もあるが、
測定が一方向に限定されること、管が束状に重積されて
いる場合には測定が不能であること等の欠点がある。
Furthermore, there is a method of measuring tube wall thickness using radiation irradiation.
There are disadvantages such as the measurement being limited to one direction and the measurement being impossible when the tubes are piled up in a bundle.

また、最近ではファイバースコープ法による内面観察も
用いられるようになったが、非能率的であり損耗部を見
落し易い等の欠点がある。
In addition, recently, inner surface observation using a fiberscope method has been used, but it has drawbacks such as being inefficient and easily overlooking worn parts.

このような点に鑑み、より確実な検出手段さして熱交換
器等多数の管を有するものにあっては代表的な管を取り
外し、破壊検査を行なうことにより他の管の腐食損耗の
状況を推測しているのが現状である。
In view of this, a more reliable means of detection is to remove a representative tube from a heat exchanger or other equipment that has a large number of tubes, and perform a destructive inspection to estimate the state of corrosion and wear and tear on other tubes. This is the current situation.

しかしながら1.O)かる抜取検査はあくまで推測によ
る測定であり、非能率且つ不経済である。
However, 1. O) Such sampling inspections are only measurements based on estimates, and are inefficient and uneconomical.

一方、超音波肉厚法、深さゲージによる直接測定等の方
法もあるが、非能率的であり高精度の測定はできないと
いう欠点がある。
On the other hand, there are methods such as ultrasonic wall thickness method and direct measurement using a depth gauge, but these methods have the disadvantage that they are inefficient and cannot provide highly accurate measurements.

よって、この発明の目的は上述の如き欠点のない腐食損
耗度検出方法を提供することにある。
Therefore, an object of the present invention is to provide a method for detecting the degree of corrosion and wear that does not have the above-mentioned drawbacks.

以下にこの発明を説明する。This invention will be explained below.

この発明では第1図A、Bに示す如く対向せる導体円板
1,2を被測定対象の管3の長手方向に対して直角に且
つ管内壁に円周面が近接するよう配設し、導体円板1,
2の間隔dを一定に保持しなから管3内を長手方向に移
動させる。
In this invention, as shown in FIGS. 1A and 1B, opposing conductor disks 1 and 2 are disposed at right angles to the longitudinal direction of the tube 3 to be measured, and their circumferential surfaces are close to the inner wall of the tube. conductor disk 1,
2 while keeping the distance d constant while moving the tube 3 in the longitudinal direction.

たとえば図示の山位置から(損位置の如く管内を移動さ
せる。
For example, the pipe is moved from the mountain position shown in the figure (like the loss position).

ここにおいて、導体円板1,2のそれぞれの面積をA1
導体円板1,2の間の誘電率をεとすれば、導体円板1
,2の間に形成される静電容量Cはとなる。
Here, the area of each of the conductor disks 1 and 2 is A1
If the dielectric constant between the conductor disks 1 and 2 is ε, then the conductor disk 1
, 2 is the electrostatic capacitance C formed between.

しかして、導体円板1,2に異符号電荷を帯電させた場
合、両日板間に生ずる電気力線は全て直線さはならず、
円板周縁部においては弧状曲線を描く。
Therefore, when the conductive disks 1 and 2 are charged with charges of opposite signs, the lines of electric force generated between the two disks are not all straight lines,
An arcuate curve is drawn at the peripheral edge of the disc.

したがって、図示の山位置の如き無傷位置と、(損の如
き腐食損耗部4が存在する位置とでは管の内径が異なる
こ吉により誘電率εが異なるこ々になる。
Therefore, the dielectric constant ε differs between an intact position such as the illustrated peak position and a position where a corroded wear portion 4 exists, due to the difference in the inner diameter of the pipe.

すなわち、山位置における誘電率をε1とするば(nJ
位置における誘電率はs2(\ε1)であり、■位置に
おける導体円板1,2の間に形成される静電容量C1は と表わされ、(II)位置における静電容量C2はさ表
わされる。
That is, if the permittivity at the peak position is ε1, then (nJ
The dielectric constant at the position is s2 (\ε1), the capacitance C1 formed between the conductor disks 1 and 2 at the position (II) is expressed as, and the capacitance C2 at the position (II) is expressed as It will be done.

この場合、管壁の腐食損耗の程度によってその時の誘電
率が定まる。
In this case, the dielectric constant at that time is determined by the degree of corrosion damage on the tube wall.

かくして、導体円板1,2の間隔dを一定に保持しなが
ら管内を長手方向に移動させた場合、もし管壁に腐食損
耗部が存在すればこれら導体間に生ずる静電容量が変化
するので、これによって管内の腐食損耗度の位置、腐食
損耗の度合等を検出することができる。
Thus, when the conductor disks 1 and 2 are moved in the longitudinal direction within the tube while keeping the distance d constant, if there is a corroded part on the tube wall, the capacitance generated between these conductors will change. With this, it is possible to detect the position of corrosion damage in the pipe, the degree of corrosion damage, etc.

上述のような検出原理に従い、実際の検出に当っては第
2図及び第3図に示す如く、合成樹脂等の絶縁体や保護
用の超硬合金等から成る円筒部材10上に対向せる1対
の導体片i i 、 12を巻回して1個の検出用コン
デンサCxを形成する。
In accordance with the above-mentioned detection principle, in actual detection, as shown in FIGS. A pair of conductor pieces i i and 12 are wound to form one detection capacitor Cx.

この検出用コンデンサCxに予め容量の定まった基準コ
ンデンサCs、基準インダクタンスコイルL1.L2を
直列に接続し、インピーダンスブリッジ回路13を形成
する。
This detection capacitor Cx includes a reference capacitor Cs with a predetermined capacity, a reference inductance coil L1. L2 are connected in series to form an impedance bridge circuit 13.

この場合、基準コンデンサC3、基準インダクタンスコ
イルL1及びL2は共に円筒部材10内に相互に干渉し
ないように配設し、例えばモールドを施して固定する。
In this case, the reference capacitor C3 and the reference inductance coils L1 and L2 are both disposed within the cylindrical member 10 so as not to interfere with each other, and are fixed, for example, by molding.

なお、かかるインピーダンスブリッジ回路はコンデンサ
のみあるいは抵抗によって形成しても良い。
Note that such an impedance bridge circuit may be formed using only a capacitor or a resistor.

しかして、円筒部材10の両端に、巻回さ机た導体片1
1.12の外径よりもやや大きく且つ測定対象管3の内
径よりもやや小さい径の側板14゜15を増付け、その
一方の側板からブリッジ回路13の1対端子に接続され
た励磁用リード線16及びブリッジ回路13の他の1対
端子に接続された出力用リード線1γを引出す。
Thus, the conductor pieces 1 are wound around both ends of the cylindrical member 10.
1. Additional side plates 14゜15 with a diameter slightly larger than the outer diameter of 12 and slightly smaller than the inner diameter of the tube 3 to be measured are added, and excitation leads connected from one side plate to a pair of terminals of the bridge circuit 13. The output lead wire 1γ connected to the wire 16 and the other pair of terminals of the bridge circuit 13 is drawn out.

かくして、腐食損耗を検出するための検出プローブ18
が構成される。
Thus, the detection probe 18 for detecting corrosion wear
is configured.

ここにおいて、励磁用リード線16には交流電源20を
接続すると共に、出力用リード線17には増幅器21を
介して電圧計22を接続する。
Here, an AC power source 20 is connected to the excitation lead wire 16, and a voltmeter 22 is connected to the output lead wire 17 via an amplifier 21.

このような接続状態で腐食損耗度を検出しようさする管
3内に検出プローブ18を挿入すると共に、等速移動さ
せる。
In this connected state, the detection probe 18 is inserted into the tube 3 whose degree of corrosion wear is to be detected, and is moved at a constant speed.

例えば、その一方のQ方向から圧縮空気を吹付ければ検
出プローブ18はR方向に移動するので、管3の全域に
わたって検出プローブ18を移動し得る。
For example, if compressed air is blown from one of the Q directions, the detection probe 18 will move in the R direction, so the detection probe 18 can be moved over the entire area of the tube 3.

このようにして検出プローブ18が管3内を移動すると
、管3に存在する腐食損耗の度合に対応して検出用コン
デンサCxの容量のみが変化するのでインビーダースブ
リッジ回路13の電気的バランスがくずれ、この電圧変
化が増幅器21で増幅されて電圧計22に表示される。
When the detection probe 18 moves within the tube 3 in this way, only the capacitance of the detection capacitor Cx changes in accordance with the degree of corrosion and wear existing in the tube 3, so the electrical balance of the invader bridge circuit 13 changes. This voltage change is amplified by an amplifier 21 and displayed on a voltmeter 22.

かくして、管3内の腐食損耗の状態を容易に検知するこ
とができる。
In this way, the state of corrosion and wear inside the pipe 3 can be easily detected.

ここにおいて、腐食損耗の検出前に交流電源20の周波
数等に対応して出力電圧が最小吉なるようにコンデンサ
Csの容量又はインダクタンスL、、L2を調整してお
く。
Here, before detecting corrosion and wear, the capacitance or inductance L, L2 of the capacitor Cs is adjusted in accordance with the frequency of the AC power supply 20, etc. so that the output voltage is at a minimum.

また、予め予備管に所定の凹凸を付すると共にこの管内
を検出プロブで走査し、第4図のような検量線を求めて
おけば、実際の検出時において確実な測定を行なうこと
ができる。
Moreover, if a predetermined unevenness is provided on the preliminary tube and the inside of the tube is scanned with a detection probe to obtain a calibration curve as shown in FIG. 4, reliable measurements can be made during actual detection.

第4図は交流電源の周波数を144■Zとした場合のも
のであるが、この検量線から第5図Aの如き電圧が得ら
れた場合、同図Bの如き腐食損耗の状態を推測し得る。
Figure 4 shows the case where the frequency of the AC power supply is 144■Z, but if a voltage as shown in Figure 5A is obtained from this calibration curve, the state of corrosion and wear as shown in Figure 5B can be estimated. obtain.

なお、測定精度を上げるためには交流電源の周波数は高
い方が良い。
Note that in order to improve measurement accuracy, it is better to have a higher frequency of the AC power source.

以上のようにこの発明の検出方法によれば、比較的簡易
な構成であっても正確な腐食損耗の度合、位置を検知し
得る。
As described above, according to the detection method of the present invention, it is possible to accurately detect the degree and position of corrosion and wear even with a relatively simple configuration.

また、誘電率の変化に基づいて検出を行なっているので
管材質に制限はなく、迅速な測定が可能であり極めて能
率的である。
Furthermore, since detection is performed based on changes in dielectric constant, there are no restrictions on the material of the tube, and rapid measurement is possible, making it extremely efficient.

なお、上述の方法では検出プローブを構成する円筒部材
の全周面上に1個の検出用コンデンサを形成しているの
で、管内に局部的に存在する孔食状の腐食損耗に対して
は正確な状態を検知し得ないことも考えられる。
In addition, in the above method, one detection capacitor is formed on the entire circumferential surface of the cylindrical member that constitutes the detection probe, so it is difficult to accurately prevent pitting-like corrosion damage that exists locally within the pipe. It is also conceivable that certain conditions may not be detected.

かかる問題に対しては第6図に示す如く、円筒部材の全
面にわたって局部的にそれがなす中心角の角度的隔りが
均等に且つ筒内に軸対称に配置して複数個の検出用コン
デンサ30〜33を設け、これら各コンデンサに対応し
てそれぞれブリッジ回路34〜36を構成する。
To solve this problem, as shown in FIG. 6, a plurality of detection capacitors are arranged axially symmetrically within the cylinder so that the angular distance between the center angles formed locally is even over the entire surface of the cylindrical member. 30 to 33 are provided, and bridge circuits 34 to 36 are configured corresponding to each of these capacitors.

しかして、共通の交流電源38で各ブリッジ回路34〜
37を励磁すると共に、各ブリッジ回路からの出力電圧
の変化をそれぞれ電圧計39で読取る。
Therefore, each bridge circuit 34 to
37 is excited, and the change in output voltage from each bridge circuit is read with a voltmeter 39.

このようにすれば、複数個の各コンデンサ30〜33Q
こ対向した管内位置の腐食損耗の状態を確実に検知する
ことができる。
In this way, each of the plurality of capacitors 30 to 33Q
It is possible to reliably detect the state of corrosion and wear at the opposing positions in the pipe.

一方、このような複数のコンデンサ30〜33及びブリ
ッジ回路34〜37の他に前述の同様な検出用コンデン
サ40及びブリッジ回路41を並置し、全体的な腐食損
耗の状態を電圧計42で検知するようにするこきもでき
る。
On the other hand, in addition to the plurality of capacitors 30 to 33 and bridge circuits 34 to 37, a detection capacitor 40 and a bridge circuit 41 similar to those described above are arranged in parallel, and the overall state of corrosion and wear is detected by a voltmeter 42. You can also do this.

また、孔食状の腐食損耗を検出する場合、実際には上述
の如く全てのインピーダンスブリッジ回路の出力変化を
検知する必要はなく、その中で最も大きなもののみを検
知すれば良い。
Further, when detecting pitting-like corrosion wear, it is actually not necessary to detect output changes of all impedance bridge circuits as described above, and it is sufficient to detect only the largest one among them.

かかる場合には、たとえば各インピーダンスブリッジ回
路の出力を整流して直流に変換した後、オア回路で最大
電圧を検出するようにすれば良い。
In such a case, for example, the output of each impedance bridge circuit may be rectified and converted into direct current, and then the maximum voltage may be detected using an OR circuit.

この場合、検出プローブ内で直流に変換して後伝送すれ
ば、プローブの出口信号の配線が簡略化される利点があ
る。
In this case, converting the signal into direct current within the detection probe and transmitting it later has the advantage of simplifying the wiring for the output signal of the probe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aはこの発明の詳細な説明するための図、第1図
Bは第1図AのX−Y位置における視野図、第2図はそ
の原理を実施する場合の構成例を示す図、第3図はその
電気回路図、第4図はこの発明を適用して測定した検量
線、第5図A、Bは実際の測定結果を示す図、第6図は
他の構成例を展開して示す図である。 1.2・・・・・・導体円板、3・・・・・・管、4・
・・・・・腐食損耗部、10・・・・・・円筒部材、l
L12・・・・・・導体片、13・・・・・・ブリッジ
回路、20・・・・・・交流電源、21・・・・・・増
幅器、22・・・・・・電圧計。
FIG. 1A is a diagram for explaining the invention in detail, FIG. 1B is a field of view at the X-Y position of FIG. 1A, and FIG. 2 is a diagram showing an example of the configuration for implementing the principle. , Fig. 3 is its electrical circuit diagram, Fig. 4 is a calibration curve measured by applying this invention, Fig. 5 A and B are diagrams showing actual measurement results, and Fig. 6 is an expanded example of another configuration. FIG. 1.2... Conductor disk, 3... Tube, 4...
... Corrosion wear part, 10 ... Cylindrical member, l
L12...Conductor piece, 13...Bridge circuit, 20...AC power supply, 21...Amplifier, 22...Voltmeter.

Claims (1)

【特許請求の範囲】 1 対向せる導体を管の長手方向に対して直角になるよ
うに絶縁体の円筒部材上に巻回し且つその管内に配置し
、間隔を一定に保持した前記導体を前記管内において長
手方向に移動させ、この移動に基づき前記導体間に生ず
る静電容量の変化によって前記管に存在する腐食損耗の
状態を検知するようにしたことを特徴とする腐食損耗度
検出方法。 2 対向せる1対の導体を管の長手方向に対して直角に
なるように絶縁体の円筒部材上に巻回し且つその管内に
配置して1個の検出用コンデンサを形成し、基準コンデ
ンサ及び又は基準インダクタンスと共にインピーダンス
ブリッジ回路を構成し、このインピーダンスブリッジ回
路を高周波信号で励磁するき共に前記検出用コンア゛ン
サを前記管内の長手方向に移動させ、この時生ずる前記
ブリッジ回路の出力電圧の変化によって前記管に存在す
る腐食損耗の状態を検知するようにしたことを特徴とす
る腐食損耗度検出方法。 3 対向せる複数対の導体を管の長手方向に対して直角
になるように絶縁体の円筒部材の表面全周にわたって局
部的にそれがなす中心角の角度的隔りが均等に且つ管内
に軸対称的に配置して複数個の検出用コンデンサを形成
し、基準コンデンサ及び又は基準インダクタンスと共に
前記検出用コンデンサのそれぞれに対応して複数個のイ
ンピーダンスブリッジ回路を構成し、これら各インピー
ダンスブリッジ回路を高周波信号で励磁すると共に前記
各検出用コンデンサを前記管内の長手方向に移動させ、
この時生ずる前記各インピーダンスブリッジ回路の出力
電圧の変化によって前記管に存在する腐食損耗の状態を
検知するようにしたことを特徴とする腐食損耗度検出方
法。
[Scope of Claims] 1. Opposing conductors are wound around a cylindrical member made of an insulator so as to be perpendicular to the longitudinal direction of the tube, and placed within the tube, and the conductors with a constant spacing are placed inside the tube. A method for detecting the degree of corrosion damage, characterized in that the state of corrosion damage existing in the pipe is detected by a change in capacitance that occurs between the conductors based on the movement in the longitudinal direction. 2 A pair of opposing conductors are wound around a cylindrical insulating member at right angles to the longitudinal direction of the tube and placed inside the tube to form one detection capacitor, and a reference capacitor and/or An impedance bridge circuit is configured together with a reference inductance, and while this impedance bridge circuit is excited with a high frequency signal, the detection capacitor is moved in the longitudinal direction of the tube, and the change in the output voltage of the bridge circuit that occurs at this time causes A method for detecting the degree of corrosion and wear and tear, characterized in that the state of corrosion and wear that exists in the pipe is detected. 3. The plurality of pairs of conductors facing each other are arranged so that the angular distance between their center angles is uniform locally over the entire surface of the cylindrical member of the insulator so that the conductors are perpendicular to the longitudinal direction of the pipe, and A plurality of detection capacitors are arranged symmetrically to form a plurality of impedance bridge circuits corresponding to each of the detection capacitors together with a reference capacitor and/or reference inductance, and each of these impedance bridge circuits is connected to a high frequency Exciting with a signal and moving each of the detection capacitors in the longitudinal direction within the tube,
A method for detecting the degree of corrosion wear and tear, characterized in that the state of corrosion wear existing in the tube is detected by the change in the output voltage of each of the impedance bridge circuits that occurs at this time.
JP50133724A 1975-11-07 1975-11-07 Corrosion wear detection method Expired JPS5818602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50133724A JPS5818602B2 (en) 1975-11-07 1975-11-07 Corrosion wear detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50133724A JPS5818602B2 (en) 1975-11-07 1975-11-07 Corrosion wear detection method

Publications (2)

Publication Number Publication Date
JPS5257880A JPS5257880A (en) 1977-05-12
JPS5818602B2 true JPS5818602B2 (en) 1983-04-14

Family

ID=15111415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50133724A Expired JPS5818602B2 (en) 1975-11-07 1975-11-07 Corrosion wear detection method

Country Status (1)

Country Link
JP (1) JPS5818602B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107387A (en) * 1978-02-09 1979-08-23 Koa Oil Co Ltd Device for detecting degree of corrosion and wear
JPS54107385A (en) * 1978-02-09 1979-08-23 Koa Oil Co Ltd Device for detecting degree of corrosion and wear
JPS60111144A (en) * 1983-11-21 1985-06-17 Osaka Gas Co Ltd Detecting method of corrosion resistance effect area of coated metallic pipe
JP2008224409A (en) * 2007-03-13 2008-09-25 Railway Technical Res Inst Capacitance sensor for nondestructive inspection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443211A (en) * 1965-04-01 1969-05-06 American Mach & Foundry Magnetometer inspection apparatus for ferromagnetic objects
US3483466A (en) * 1967-11-03 1969-12-09 American Mach & Foundry Pipeline inspection apparatus for detection of longitudinal defects
GB1258910A (en) * 1968-05-07 1971-12-30

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443211A (en) * 1965-04-01 1969-05-06 American Mach & Foundry Magnetometer inspection apparatus for ferromagnetic objects
US3483466A (en) * 1967-11-03 1969-12-09 American Mach & Foundry Pipeline inspection apparatus for detection of longitudinal defects
GB1258910A (en) * 1968-05-07 1971-12-30

Also Published As

Publication number Publication date
JPS5257880A (en) 1977-05-12

Similar Documents

Publication Publication Date Title
US4295092A (en) Apparatus for and method of detecting and measuring corrosion damage in pipe
JP4917899B2 (en) Eddy current flaw detection sensor and eddy current flaw detection method
AU595748B2 (en) Magnetic flux leakage probe with radially offset coils for use in nondestructives testing of pipes and tubes
CN109781838B (en) Vortex-ultrasonic detection probe based on V-shaped coil excitation
US4806863A (en) Eddy current apparatus including cylindrical coil with flux concentrator for high resolution detection of flaws in conductive objects
CA3015451C (en) Apparatus and method for measuring deposits inside a tube
US3401332A (en) Magnetic leakage field and eddy current flaw detection system
CN105548348A (en) An online detecting method for metal wire surface detects and a detecting device
US5942894A (en) Radially focused eddy current sensor for detection of longitudinal flaws in metallic tubes
US5623204A (en) Eddy current probe
CN112415088B (en) Internal penetrating type transverse pulse eddy current detection probe and application method thereof
JPS5818603B2 (en) Fushiyokusonmodokenshiyutsusouchi
CA2316614C (en) Tri-tip probe
JPS5818602B2 (en) Corrosion wear detection method
KR101977921B1 (en) A nondestructive testing apparatus including spiral direction current induction means
JP2007163263A (en) Eddy current flaw detection sensor
JP5290020B2 (en) Eddy current flaw detection method and eddy current flaw detection sensor
JP2004251839A (en) Pipe inner surface flaw inspection device
JPH0552816A (en) Internally inserted probe for pulse-type eddy current examination
JPS5823563B2 (en) Corrosion wear detection method
US11821869B2 (en) Method and apparatus for stationary electromagnetic inspection (EMI) with orthogonal magnetizers
KR102283396B1 (en) Sensor Probe tesing System for Eddy Current Nondestructive Testing
KR102099140B1 (en) Probe for eddy current testing and apparatus for nondestructive testing using the same
JPH10160710A (en) Division-type flaw-detecting sensor and flaw detecting method for conductive tube
Roy et al. Comparative study of E-shaped coil and evolution of new methodology for crack detection using eddy current testing