JPS58185734A - Production of permanent magnet alloy - Google Patents

Production of permanent magnet alloy

Info

Publication number
JPS58185734A
JPS58185734A JP57066312A JP6631282A JPS58185734A JP S58185734 A JPS58185734 A JP S58185734A JP 57066312 A JP57066312 A JP 57066312A JP 6631282 A JP6631282 A JP 6631282A JP S58185734 A JPS58185734 A JP S58185734A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
oxide
permanent magnet
earth elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57066312A
Other languages
Japanese (ja)
Inventor
Kimio Uchida
内田 公穂
Makoto Ushijima
誠 牛嶋
Takeshi Mizuhara
水原 猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP57066312A priority Critical patent/JPS58185734A/en
Publication of JPS58185734A publication Critical patent/JPS58185734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a permanent magnet having an excellent magnetic characteristic at a low cost in the stage of producing a permanent magnet alloy consisting of a rare earth element and Co by using an oxide of a rare earth element as a raw material and melting the alloy of Co and a rare earth element. CONSTITUTION:An inexpensive oxide of a rare earth element is used and a reducing agent such as Ca, Mg or the like and CO for an alloy compsn. are used for the same in the stage of producing a premanent magent expressed by the formula RCo5 or R2CO17 (R is >=1 kind rare earth elements including Y). These materials are heated in an inert gaseous atmosphere to reduce the oxide of the rare earth elements and to diffuse the same mutually in Co, thereby forming an alloy. The unreduced oxide of the rare earth elements, the oxide CaO or MgO, of the reducing agents, etc. are interposed in the alloy in this case; therefore, the alloy is once melted to separate the above-mentioned unreduced oxide of the rare earth elements and the oxide of the reducing agent as molten slag, whereby the permanent magnet having an excellent magnetic characteristic is produced.

Description

【発明の詳細な説明】 本発明は希土類金f1m石合金、特に永久磁り合金のH
m方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to rare earth gold f1m alloys, particularly permanent magnetic alloys.
This relates to the m method.

従来、RCo5系(RはYを含む希土類金属の1橿以上
)希土類金属永久[5の大部分とR2Co1y系希土類
金属永久媛6の一部では、七のah金合金製造において
、安価なR7C素酸化物を償冗削で還元しさらに拡散ざ
セる、いわゆる還元拡散法が採用されている。しかし、
このRT、拡散法においてに、R7c累酸化物の一部が
未還元で残存するか、あるいは使用した還元剤の酸化物
が後処理工程で元号に除去されずに一部がy1介すると
いう問題があった。どれら残有酸化物のため還元拡散法
で製造したRCo5糸、JColy系希土類金属水久砿
6に、溶解法で製造した場合に比べ輯気%注、その内で
も特にfiw!磁來密度Brが数慢低いことであった。
Conventionally, most of the RCo5 series (R is one or more of the rare earth metals containing Y) rare earth metal permanent [5] and some of the R2Co1y series rare earth metal permanent [6] were used in the production of 7-ah gold alloys using inexpensive R7C elements. A so-called reduction-diffusion method is used in which oxides are reduced and further diffused. but,
In this RT and diffusion method, there is a problem that a part of the R7c accumulated oxide remains unreduced, or the oxide of the reducing agent used is not removed in the post-processing process and a part of it becomes y1. was there. Due to residual oxides, the RCo5 yarn manufactured by the reduction diffusion method and the JColy rare earth metal Mizukuro 6 have a higher concentration than those manufactured by the dissolution method, especially fiw! The magnetic flux density Br was considerably low.

一般[RCo6あるVh fl R2CO17系水久磁
a合金の製!11においては、Rt宮む構成元素を真空
溶解炉にて溶解する方法が採られている。この溶解法で
得られる磁気特性は、はぼ満足すべきものであったが原
料として使用する金属R7C累が高価であり、その結果
永久l1B6としての1曲格が高価となる欠点があった
。これを解決するために、現在前記還元拡散法が採用さ
れており、安価なR元素酸化物を還元剤で還元し、しか
る後VC−Coなと他の元素に拡散させて合金を生成し
ているものである。すなわち5rnl o、、Gd、0
.、CI 01等の希土類元素酸化物をCa%Mg等の
還元剤および合金を傳戟すべきCo等の他元素と混合し
、これら混合物を900〜1.500℃の範囲で、不粘
性ま九は還に雰囲気中で反応aた ゼる例もある。こうして製造しt合金によって、はぼF
9I足の磁気特性は得られるが、反応条件を光分調整し
ても若干のR7c素酸化物が未還元で残るのが機状であ
る。また反応波の洗浄によっても、使用還元剤の酸化物
が看干残るのは避けられない。
General [RCo6 Vh fl R2CO17 series Mizuku magnetic a alloy made! In No. 11, a method is adopted in which the constituent elements of Rt are melted in a vacuum melting furnace. Although the magnetic properties obtained by this melting method were quite satisfactory, the metal R7C used as a raw material was expensive, and as a result, the single curvature as permanent 11B6 was expensive. In order to solve this problem, the above-mentioned reduction diffusion method is currently being used, in which the inexpensive R element oxide is reduced with a reducing agent and then diffused into other elements such as VC-Co to form an alloy. It is something that exists. That is, 5rnl o,,Gd,0
.. , a rare earth element oxide such as CI 01 is mixed with a reducing agent such as Ca%Mg and other elements such as Co which is to be used to transform the alloy, and the mixture is heated to an inviscid temperature of 900 to 1.500°C. In some cases, the reaction slows down in the atmosphere. By using the t-alloy manufactured in this way, HaboF
Although the magnetic properties of 9I can be obtained, even if the reaction conditions are optically adjusted, some R7c element oxide remains unreduced. Furthermore, even when the reaction wave is washed, it is inevitable that the oxide of the reducing agent used remains.

このような酸化物の残有ニより、還元拡散法で製造した
希土類金属の永久磁わは浴S法に比べ残留磁束密度が低
いという欠点があった。
Due to the residual presence of such oxides, rare earth metal permanent magnets produced by the reduction diffusion method have a disadvantage in that they have a lower residual magnetic flux density than those produced by the bath S method.

本発明は上記従来技術の欠点を改良し、R7C累酸化物
を原料として使用しても高い残留磁束密度を肩する永久
4iIib合金とすることができるia方法提供するこ
とを目的とする。
It is an object of the present invention to provide an ia method that improves the drawbacks of the prior art described above and can produce a permanent 4iIib alloy that has a high residual magnetic flux density even when R7C accumulated oxide is used as a raw material.

X発明は1種類以上のR元素の酸化物を還元剤およびC
o等他の合金(s欣元素と混合し、その混合物から還元
・拡散反応にて合金を生成し、該合金を溶解することに
よって永久磁6合金を製造することを特徴とするもので
ある。
The X invention uses an oxide of one or more R elements as a reducing agent and C
It is characterized in that a permanent magnetic 6 alloy is produced by mixing other alloys such as 0 and s elements, producing an alloy from the mixture through a reduction/diffusion reaction, and melting the alloy.

本発明において磁気%性に肩書なR7C素酸化物と還元
剤の酸化物は、還元拡散攻込、恢若干残介したとしても
それらは#鱗時にスラグとして完全に除去される。七の
結果末完#13VCよる水久磁仙合金の磁気特性口、従
来のf@解法と同等である。
In the present invention, the R7C elementary oxide and the oxide of the reducing agent, which have a title in terms of magnetic properties, undergo reduction diffusion invasion, and even if some remain, they are completely removed as slag when scaled. The magnetic properties of Mizuku magnetic alloy by VC #13 are equivalent to the conventional f@ solution method.

以下X発明による実施例を説明する・ 実施例t Co粉246縁、Sm20B 初17.4 Kf、  
c1メタル6初を秤l混合し、この混合物をルツボ中に
入れ不活性ガス芥囲気中で?00〜1.200 Uの温
度範囲で少な(とも1時間121上〃口熱し、Sm10
3の還元と、還元されたSmとCoとの相互拡散を行っ
てsmCoB合金を生成した。
Examples according to invention X will be described below. Example t Co powder 246 edges, Sm20B initial 17.4 Kf,
Mix C1 Metal 6 on a scale, put this mixture into a crucible, and put it in an inert gas atmosphere. In the temperature range of 00 to 1.200
An smCoB alloy was produced by reduction of 3 and interdiffusion of the reduced Sm and Co.

この合金を50〜2QDpに粗粉砕し洗浄後分析したと
ころ、1菫百分比率でSm55,6g、、CoA17囁
であった。また残をCaOはα5%であった。X#鵡析
の結果若干のSm2O3の介在が確認された。
This alloy was coarsely pulverized to 50 to 2 QDp, washed and analyzed, and found to have 55.6 g of Sm and 17 g of CoA at a ratio of 1 violet. The remaining CaO was α5%. As a result of X# analysis, the presence of some Sm2O3 was confirmed.

この佳粉tジェットミルで5〜5μに粉砕し、侍られた
倣粉倉配向憾界7,0O00e以上の磁場中でhX、形
出2〜b toV傭”で成形した。この成形体を不II
5性カス※囲気中で1.100〜1,200Cの範囲で
焼結し、焼結体を900〜1. o s o℃の範囲で
俗体化し、その後1〜5Q萄inの速度で750〜85
0℃の範囲まで徐冷し、その後水中に急冷した。
This fine powder was pulverized to 5 to 5 microns in a jet mill, and molded in a magnetic field with an orientation limit of 7,0000e or higher, at hX, with a molding process of 2 to 5 microns. II
5. Sintered in an ambient atmosphere at a temperature of 1.100 to 1,200 C, and the sintered body is heated to a temperature of 900 to 1. It becomes popular in the range of o so o ℃, then 750 to 85 at a rate of 1 to 5 Q in
The mixture was slowly cooled to a temperature of 0° C., and then rapidly cooled in water.

磁気特性の測足結果、残留磁束′l!!度Br1L40
GG、保磁力BHOa10006.保磁力’II(02
540000s。
Measurement result of magnetic properties, residual magnetic flux 'l! ! Degree Br1L40
GG, coercive force BHOa10006. Coercive force 'II (02
540000s.

最大エネルギー槓(BH)maw 1411 MG−O
sであった。
Maximum energy hammer (BH) maw 1411 MG-O
It was s.

そこでftrft K Co粉244 &I、Sm20
z1t7.jKp、αメタル6〜を秤量混合し、この混
合@をルヅボ中に入れ不活性カス雰曲気中で900〜t
200℃の温度範囲で少なくとも1時間以上加熱した。
So ftrft K Co powder 244 &I, Sm20
z1t7. Weigh and mix 6~ of α metals, put this mixture into a rudubo, and heat it for 900~t in an inert gas atmosphere.
It was heated in a temperature range of 200° C. for at least 1 hour.

引き続き温度をl、 550℃以上によけ、ルツボ内の
混合物をf#解した。混合物が完全に浴融したことを確
認した彼、その浴湯をインゴットケースに注湯し丸。イ
ンゴットケースが冷却した後そのインゴットを分析した
ところ重量百分比率でSm3t%、c。
Subsequently, the temperature was increased to 550° C. or higher, and the mixture in the crucible was melted. After confirming that the mixture was completely melted, he poured the hot water into the ingot case. After the ingot case had cooled down, the ingot was analyzed and found to be Sm3t%, c by weight percentage.

64%の合金・であった。X線解析の結果Sm103の
介在は確認できなかった。残存Cartel量百分比率
でα03%以下であった。
It was 64% alloy. As a result of X-ray analysis, no presence of Sm103 could be confirmed. The residual Cartel amount percentage was α03% or less.

この合金をシェツトミルで3〜5μに一粉砕し、この微
粉を前述と同条件で処理し磁り化した。
This alloy was pulverized to a size of 3 to 5 μm using a shet mill, and the fine powder was treated and magnetized under the same conditions as described above.

磁気%性を測足したところ残M磁宋題匿Brへ700G
1保磁力nHoa4000s、保婢力zHo 25.0
000s最大工゛ネルギー槓(BH)max 17.6
M G @ Osであっ九。
When I measured the magnetic percentage, it was 700G to the remaining M magnetic Song Dynasty Br.
1 Coercive force nHoa4000s, Coercive force zHo 25.0
000s maximum energy (BH) max 17.6
MG @ Os.

従来法人と本発明Bとを比較すると第1表のとお9であ
る。
Comparing the conventional corporation and the present invention B, it is 9 in Table 1.

第1表から明らかな如く、従来広と同等かむしろ本発明
によるものははるかに上回った%性が得られているもの
である。
As is clear from Table 1, the percentage properties obtained are the same as those of the conventional coatings, or even far superior to those of the present invention.

実m?l12゜ Co粉22 W4. SmaOx粉’3Kf、F*粉’
 KfsCu粉L5Q、Hf粉t、 I R4,c@メ
タA、 4 s Qを秤量混合し、この混合物をルツボ
中に入れ、実施例1と同条件で還元・拡散を行いSm2
(Co−F・・CumHf入7合金を生成し友。
Real m? l12゜Co powder 22 W4. SmaOx powder '3Kf, F* powder'
KfsCu powder L5Q, Hf powder t, I R4,c@Meta A, 4s Q were weighed and mixed, this mixture was placed in a crucible, and reduced and diffused under the same conditions as in Example 1 to obtain Sm2.
(Co-F...CumHf-containing 7 alloys are produced.

この合金を50〜200pに粗粉砕し洗浄恢分析したと
ころ、1量6分比軍でSm 2 N 7%、C。
When this alloy was coarsely ground to 50 to 200 particles, washed and analyzed, it contained 7% Sm 2 N and C at a ratio of 6 parts per unit.

511G%、Fs114%、Cu Z 4%、Hf2.
5%であった。また残存CaOは(LA−であった。X
l1IIl鱗析の結果若干のSm1O1の存在が確認さ
れた。
511G%, Fs114%, Cu Z 4%, Hf2.
It was 5%. In addition, the residual CaO was (LA-.X
As a result of l1lll scale analysis, the presence of some Sm1O1 was confirmed.

この合金をジェットミルで5〜5P1粉砕し、実施例1
と同条件で成形体を作った。この成形体を実温的な冥9
中にて1,200〜t、250℃の範囲で焼結し、焼結
体をt100〜1.11(Icの範囲で溶体化し水中に
急冷し、その後s00〜!00℃の範囲で時効処理を施
した。
This alloy was pulverized to 5-5P1 with a jet mill, and Example 1
A molded body was made under the same conditions. This molded body is heated to a temperature of 9.
The sintered body is sintered in a temperature range of 1,200~1.11 (Ic) and quenched in water, and then aged at a temperature of s00~!00℃. was applied.

磁気特性の測定結果、残留磁束’?EK Br v、s
o、oG、保磁力nHo5,1000e、最大エネルギ
ー8[BH)max 2α5MG・0・であった。
Measurement results of magnetic properties, residual magnetic flux'? EK Br v,s
o, oG, coercive force nHo5,1000e, and maximum energy 8[BH)max 2α5MG·0·.

そこで倉た4CC(1粉22匂、SmzO@粉I S 
Kg、 F@粉bKg、Cu粉五sg4、Hf粉L I
 Ti4. Caメタルt5Kfを秤量混合し、この混
合物をルツボ中に入れ、実施例1と同条件で還元・拡散
およびffjSをおこなった。得られたインゴットを分
析したところat百分比率でSm 25L 6%、Co
 5α2%、Fe1五7%、Cu Z 7%、Hf 2
.4%の合金であった。
So Kurata 4CC (1 powder 22 odor, SmzO @ powder I S
Kg, F@powder bKg, Cu powder 5sg4, Hf powder L I
Ti4. Ca metal t5Kf was weighed and mixed, this mixture was placed in a crucible, and reduction/diffusion and ffjS were performed under the same conditions as in Example 1. Analysis of the obtained ingot revealed that the at percentage was Sm 25L 6%, Co
5α2%, Fe157%, Cu Z7%, Hf2
.. It was 4% alloy.

X@解析の結果Sm20Bの存在は確認できなかった。As a result of X@ analysis, the presence of Sm20B could not be confirmed.

残存CaOはam百分比率でα03囁以下であった。The residual CaO was less than α03 whisper in terms of am percentage.

磁気特性を測定した結果、残留磁束密度Brは9.80
0G、保磁力BHO40000@、保磁力xH。
As a result of measuring the magnetic properties, the residual magnetic flux density Br was 9.80
0G, coercive force BHO40000@, coercive force xH.

45000@、最大エネルギー槓(BH)mhx 21
 。
45,000 @, maximum energy (BH) mhx 21
.

MG・0・であった。It was MG・0・.

従来広Cと本発明りとを比較すると第2表のとおりであ
る。
Table 2 shows a comparison between the conventional wide C and the invention.

第2表から明らかな如く、従来広と同等か、むしろ本発
明によるものははるかに上回った特性が得られているも
のである。
As is clear from Table 2, the characteristics obtained are the same as those of the conventional wide one, or even far superior to those of the present invention.

以上祝明したようV−不発#!Aは、還元拡散法では従
来問題であった残wIeIt化物による残留磁束密度の
低下が、R7C素の酸化物と還元剤およびco等の他の
合金wi元累と混合し、これを還元・拡散反応にて合金
を生成して融点以上に加熱溶解することにより、従来の
溶解法と四等か、それ以上の磁気特性を有する合金が得
られ、しかも安価なR元素酸化物を原料として使用した
場合でも製造することが可能である等の効果を肩するも
のである。
As if to congratulate you above, V-Unexploded #! A is that the decrease in residual magnetic flux density due to residual wIeIt compounds, which was a conventional problem in the reduction diffusion method, is caused by mixing the R7C element oxide with the reducing agent and other alloys such as co, and reducing and diffusing this. By generating an alloy through a reaction and heating and melting it above the melting point, an alloy with magnetic properties equal to or higher than that of conventional melting methods can be obtained, and an inexpensive R element oxide is used as a raw material. It has advantages such as being able to be manufactured even in the case of various cases.

代理へ升理士 本 間   崇 〜16′。Deputy Masaru Takashi Honma ~16'.

Claims (1)

【特許請求の範囲】[Claims] RCo5あるいはRxCoty(RはYを営む希土類元
素の1種類以上)の組成式で衣される水久砿6合金(金
属間化合物を含む)の製fiにおいて、少なくと%)1
種類以上のR元素の酸化物と還元剤およびCo等の他の
合金構成元素を混合し、該混合物を加熱してR元素の酸
化物を還元し、さらに他7C累との相互拡散を行い、朗
足のRCogあるいはRI Co 17合金を生成し、
該生成合金を溶解することを特徴とする永久磁6合金の
製造方法。
In the production of Mizukuto 6 alloy (including intermetallic compounds) coated with the composition formula of RCo5 or RxCoty (R is one or more rare earth elements containing Y), at least %) 1
Mixing the oxide of the R element or more with a reducing agent and other alloy constituent elements such as Co, heating the mixture to reduce the oxide of the R element, and further interdiffusion with other 7C elements, Produces a successful RCog or RI Co 17 alloy,
A method for producing a permanent magnetic 6 alloy, which comprises melting the produced alloy.
JP57066312A 1982-04-22 1982-04-22 Production of permanent magnet alloy Pending JPS58185734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57066312A JPS58185734A (en) 1982-04-22 1982-04-22 Production of permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57066312A JPS58185734A (en) 1982-04-22 1982-04-22 Production of permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPS58185734A true JPS58185734A (en) 1983-10-29

Family

ID=13312176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57066312A Pending JPS58185734A (en) 1982-04-22 1982-04-22 Production of permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS58185734A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246603A (en) * 1984-05-22 1985-12-06 Sumitomo Metal Mining Co Ltd Manufacture of rare earth-cobalt magnet powder for resin magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60246603A (en) * 1984-05-22 1985-12-06 Sumitomo Metal Mining Co Ltd Manufacture of rare earth-cobalt magnet powder for resin magnet

Similar Documents

Publication Publication Date Title
GB1564969A (en) Permanent magnet alloy
US4849035A (en) Rare earth, iron carbon permanent magnet alloys and method for producing the same
US4192696A (en) Permanent-magnet alloy
US3695945A (en) Method of producing a sintered cobalt-rare earth intermetallic product
JPS63104406A (en) Manufacture of permanent magnet
JPS58185734A (en) Production of permanent magnet alloy
US4396441A (en) Permanent magnet having ultra-high coercive force and large maximum energy product and method of producing the same
JPH04506093A (en) Magnetic alloy compositions and permanent magnets
JP2869966B2 (en) Manufacturing method of alloy powder
JPH08203715A (en) Raw material for permanent magnet and manufacture thereof
Sidhu Influence of particle size of iron powder on the microstructure of Nd–Fe–B alloy powder prepared by reduction-diffusion
US2865085A (en) Preparation of magnetic materials and magnetic members
CA1158460A (en) Process for the production of cobalt/rare earth alloy powders
JPWO2003040421A1 (en) Alloy for Sm-Co magnet, its manufacturing method, sintered magnet and bonded magnet
JPS5664406A (en) Permanent magnet having ready manufacture and large product of coercive force and maximum energy and manufacture thereof
JPH11323508A (en) Rare earth metal-iron-nitrogen magnetic material and its production
JP2985546B2 (en) Manufacturing method of alloy powder
JPS59179703A (en) Manufacture of rare earth cobalt alloy powder having two-phase separation type coercive force producing mechanism
US3463678A (en) Method for improving magnetic properties of cobalt-yttrium or cobalt-rare earth metal compounds
JPS5945745B2 (en) Permanent magnet material and its manufacturing method
JPH0841565A (en) Titanium alloy casting having high strength and high toughness
JPS62262406A (en) Manufacture of powder for permanent magnet alloy
JPS63216307A (en) Alloy powder for magnet
US2872308A (en) Metal compositions
JPS61106735A (en) Manufacture of permanent magnet alloy