JPS5818503A - Power generation equipment by storing hot water - Google Patents

Power generation equipment by storing hot water

Info

Publication number
JPS5818503A
JPS5818503A JP11830381A JP11830381A JPS5818503A JP S5818503 A JPS5818503 A JP S5818503A JP 11830381 A JP11830381 A JP 11830381A JP 11830381 A JP11830381 A JP 11830381A JP S5818503 A JPS5818503 A JP S5818503A
Authority
JP
Japan
Prior art keywords
hot water
steam
water
accumulator
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11830381A
Other languages
Japanese (ja)
Other versions
JPS6239643B2 (en
Inventor
Hajime Endo
肇 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui Zosen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui Zosen KK filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP11830381A priority Critical patent/JPS5818503A/en
Publication of JPS5818503A publication Critical patent/JPS5818503A/en
Publication of JPS6239643B2 publication Critical patent/JPS6239643B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K1/00Steam accumulators
    • F01K1/08Charging or discharging of accumulators with steam

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To suppress the fall of the pressure and temperature in an accumulator during the consumption of hot water, by providing a steam generator in a power generation equipment by storing hot water, separating hot water into steam and warm water and supplying the steam to the accumulator. CONSTITUTION:In operation, warm water 9 in a warm water tank 8 is supplied to a steam drum 5 by a pump 11 and then conducted to a waste gas economizer 4 through a feed water heater 6 by a circulating pump 7 so that the water is made hot by high-temperature waste gas from an external separate equipment. When the temeprature of the hot water has reached a prescribed level, a control valve 18 is opened to supply the hot water to an accumulator 16. The hot water in the accumulator 16 is supplied to a hot water turbine 25 by opening a valve 34, so that the hot water is separated into steam and warm water of medium temperature. The steam is conducted to a steam turbine 27 to rotate a generator. The warm water of medium temperature is pressurized by a pump 33 so that the water is returned to the tank 8.

Description

【発明の詳細な説明】 本発明は設備の排熱で温水を加熱して得た熱水管貯蔵し
、とれを発電システムへ供給して発電を行なう熱水貯蔵
発電装置に関するものでるる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hot water storage power generation device that heats hot water using waste heat from equipment, stores it in hot water tubes, and supplies the waste to a power generation system to generate power.

蒸気タービンの回転によりこれと接続された尭電機で発
電を行なう蒸気タービン発電装置には、ピーク負荷時や
不時の発電に備えて低負荷時4IK熱エネルギーftI
?菫しておくための蒸気アキ具ムp−夕を設けゐことが
める。この種のアキエムレータは、熱水の取入口管熱水
先生装置Kl!I!畜れ、蒸気取出口を蒸気タービンに
接続1れてシ)、低負荷時勢には熱水取入口を開いて熱
水を貯蔵し、ピーク負荷時等には蒸気取出口を開いて尭
電用O蒸気を蒸気タービンへ供給するように11jl1
8f′している。
The steam turbine power generation system, which generates electricity with the electric machine connected to it through the rotation of the steam turbine, has 4IK thermal energy ftI during low load times in preparation for peak load times and unforeseen power generation.
? It is possible to install a steam accumulator to keep the water cool. This kind of Akiemator is a hot water intake pipe hot water teacher device Kl! I! After connecting the steam outlet to the steam turbine (1), open the hot water intake to store hot water during low load times, and open the steam outlet to store hot water during peak load times. 11jl1 to supply O steam to the steam turbine
8f'.

E1図はこの種従来のアキエムレータ付き蒸気タービン
発電装flKおけるアキュムレータの蒸気消費とタンク
内温度変化との関係線図であって、横軸には、蒸気消費
を初期熱水量に対する鞄生原気量の開会(姉で示してお
)、縦軸にはタンク内温度f℃で示している。図におい
て明らかなよ5K、・発電のために蒸気を消費するにし
たがって!ンタ内の温度と圧力が降下し、例えば満タン
のときのタンク内温度が294℃で圧力が80.5ψ−
の場合、40嘩S!度消費するとタンク内温度がlOO
℃Kfiる。実際には、圧力変化によゐ応力変動で生じ
るタンf材料の疲労を考慮して最高使用圧力けM Ok
v/lut 11度に制御Il畜れ、を比最低使用圧力
は勤電用ノ場合0.5 kv/m (80℃)、工場用
0場合!!〜6ks/m(110℃〜lso℃>でhh
から、最高が212℃、20J4/−の線図で明らかな
ように、20%程度消費するだけで最低使用圧力まで低
下してしまう。
Figure E1 is a diagram showing the relationship between the steam consumption of the accumulator and the temperature change inside the tank in this type of conventional steam turbine power generation system flK with an Akiemulator. The vertical axis shows the temperature inside the tank f°C. It is clear in the figure that 5K, as steam is consumed for power generation! For example, when the tank is full, the temperature and pressure inside the tank are 294℃ and the pressure is 80.5ψ-.
In the case of 40 fighting S! When the temperature is consumed, the temperature inside the tank decreases to lOO
℃Kfiru. In reality, the maximum working pressure M Ok
V/LUT is controlled at 11 degrees, and the minimum working pressure is 0.5 kv/m (80°C) for electrical work, 0 for factory use! ! 〜6ks/m(110℃〜lso℃>hh
As is clear from the diagram of 20J4/- with a maximum of 212° C., the pressure decreases to the lowest working pressure with only about 20% consumption.

te)!’)K%蒸気タービン発電装置においては、大
容量のタンタ七用いても、わずか2o−の蒸気【・消費
するだけズ発電を終ることになるので、容器の利用率力
よきわめて悪いばかシでなく、/ン!内に大幅な圧力変
化がS繁に繰返されるξとkよp大きな圧力変動が生じ
るので、これに基づく材料の疲労を避けるためにタンク
の容量か制限すれるという欠点がめった。   □ 一方、近年においてFiζOII気タービン発電装置K
気水分離装置を付設してこれに熱水管供給し、分離1r
TL皮蒸気で蒸気タービン【動かすようにしたトータル
フローKO発電システムが開発されでいる。そこで、前
記アキエムレータに熱水を貯蔵してこれをビータ負荷時
等に取出し、この−電νメテムに供給して発電を行なわ
せれば、前述し禽アキ為′ムレーI内0圧カ降下を大@
に抑制丁ゐヒとがで詣る仁とに着目しその研究が違dら
れてぃ為が、との場合でt熱水消費によりてタンク内に
できた9藺!充たす几め忙蒸発が行なわれ、これによっ
て//!内の温変、圧力が降下するので、満足し良効果
を期待する仁とができない。
te)! In a K% steam turbine power generation system, even if a large capacity tantalum is used, only 2 o- of steam will be consumed and power generation will end, so the utilization rate of the vessel will be extremely poor. No, /n! Since large pressure changes are frequently repeated during the process, large pressure changes occur, which often leads to the disadvantage that the capacity of the tank is limited in order to avoid fatigue of the material. □ On the other hand, in recent years, FiζOII air turbine generator K
A steam/water separator is attached and a hot water pipe is supplied to it to separate 1r.
A total flow KO power generation system has been developed that uses TL skin steam to drive a steam turbine. Therefore, if hot water is stored in the Akiemulator and taken out when the beater is loaded, and then supplied to the electric νmetem to generate electricity, the zero pressure drop in the Akiemulator I as described above can be greatly reduced. @
However, in the case of t hot water consumption, there were 9 cracks formed in the tank! The evaporation of the water is carried out, and this results in //! As the internal temperature changes and the pressure drops, it is impossible to be satisfied and expect good results.

本発明は以上の′ような点K11みな畜れ禽もので、装
置外設備に接続された温水加熱装置からの熱水をアキエ
ムレータに貯蔵し、必要に応じこれをトータルツク一式
の発電システムに供給して発電!行なわせるとともに、
蒸気発生装置を設けて温水加熱装置からの熱水を蒸気と
温水とく分離し、このうちの蒸気tアキエムレータへ供
給して熱水消費Kf’P表うアキ二ムレータ内の圧力、
am降下會兜食に規制するように構成することKよ)、
アキエムレータに貯蔵した勢エネルギのほとんど会量管
使用することを可能ならしめてアキュムレータの容器有
用率を向上畜せ、圧力変動の繰返しによるアキエムレー
タの応力変W11をなくしてその大賽量化と取出丁―エ
ネルギの高温高圧化を計った熱水貯ml!殉電鋏置tI
!供するものでるる。以下、本発明の夷總例tgwK*
−て詳細に説―する。
The present invention is based on the above-mentioned point K11, in which hot water from a hot water heating device connected to equipment outside the device is stored in the Akiemulator, and is supplied to the total power generation system as needed. And generate electricity! As well as
A steam generator is installed to separate the hot water from the hot water heating device into steam and hot water, and the steam is supplied to the aqueductor to calculate the hot water consumption Kf'P, which represents the pressure inside the akinemulator,
It should be configured so as to restrict the amount of am falling.
By making it possible to use most of the energy stored in the accumulator, the usefulness of the accumulator can be improved, and by eliminating the stress change W11 of the accumulator due to repeated pressure fluctuations, it is possible to increase the amount of energy stored in the accumulator, and to reduce the amount of energy stored in the accumulator. Hot water storage ml designed for high temperature and high pressure! Powerful scissors tI
! I have something to offer. Below is an example of the present invention tgwK*
I will explain it in detail.

嬉2図社本角@に係゛る蒸気タービン発電装置の一実施
例の概要構成図でるる。図において、配管1.2.3で
構成てれた温水循環径路内Ka、温水加熱装置としての
排ガスエコノマイザ4と、蒸気発生装置としての蒸気ド
ラム5と、給水加熱器6とが配設されており、配管2内
には、この循環径路内で温水管循環させる循環ポンプ7
が設けられている。8は後述する発電システム22から
吐出ぢnる温水9t−貯蔵する温水タンクで6って、こ
の温水タンク容と蒸気ドラム5との間は、給水加熱Is
B内管通過する配管10で連結石れてシ1、この配管内
には、給水ポンプ11が設けられている。前ll!排ガ
スエコノマイザ4は、この発電装置外部の設備の排熱部
に接続葛nていてそO高温排ガスか導かnており、温水
$はこの排ガスで加熱てれて熱水と愈)熱水取入れ口1
宜から蒸気ドラム5へ導かれる。また、廖気ドラム5は
熱水管蒸気と温水とに分離する機能を有してシ〕、分離
畜れた温水は前述したように循環して給水加熱sisへ
導かれるとともに、蒸気敗出口13は、配管14、によ
って後述するアキエムレータ16KiI&[れてい−る
。tた、給水加熱器6は、配管1t−過って蒸気ドラム
5へ供給ぢれる温水を予熱する機能を有している。ざら
に、給水加熱器6t−通過し丸めとの配管10内にL1
蒸気ドラムs内の圧力を検出して配管10の温水通路全
開閉する給水調節弁1Sか設けられている。
This is a schematic configuration diagram of an embodiment of a steam turbine power generation device according to the Japanese company Honkaku@. In the figure, a hot water circulation path Ka consisting of piping 1.2.3, an exhaust gas economizer 4 as a hot water heating device, a steam drum 5 as a steam generator, and a feed water heater 6 are installed. In the piping 2, there is a circulation pump 7 that circulates hot water in the circulation path.
is provided. Reference numeral 8 denotes a hot water tank for storing 9 tons of hot water discharged from a power generation system 22, which will be described later.
A pipe 10 passing through the inner pipe B is connected to the pipe 1, and a water supply pump 11 is provided in this pipe. Previously! The exhaust gas economizer 4 is connected to the exhaust heat section of the equipment outside the power generation device, and high-temperature exhaust gas is guided there.The hot water is heated by this exhaust gas, and the hot water is heated to the hot water intake. 1
The steam is then guided to the steam drum 5. In addition, the air drum 5 has a function of separating hot water into hot water pipe steam and hot water, and the separated hot water is circulated and guided to the feed water heating SIS as described above, and the steam outlet 13 is , piping 14, and the Akiemulator 16KiI & [Reteiru, which will be described later. In addition, the feed water heater 6 has a function of preheating the hot water that passes through the pipe 1t and is supplied to the steam drum 5. Roughly, L1 passes through the feed water heater 6t and enters the round pipe 10.
A water supply control valve 1S is provided which detects the pressure within the steam drum s and fully opens and closes the hot water passage of the piping 10.

曽紀ア中ユムレータ16′は、密閉円筒状に形成葛れて
お9、前述したように配管14によって蒸気ドラム5に
接続されているとともに、前記排ガスエコノマイザ4と
の間を配管11に、よって接続iれている。さらに、配
管11内にはζILを通過する熱水の温度上検出して管
路を開閉する調節弁18が設けられてお砂、噛良配管1
4内には、こt′L管通過する蒸気の価Ii!が、[袈
アキュムレー11・へ向う径路と、混合器1sで熱水と
蟲舎畜せてアキエムレータ16へ肉う径路とのいず−r
Lかとなるように選択的Kil閉する一対の弁2・、2
1が歇けられて!A為。
The middle humerator 16' is formed into a closed cylindrical shape and is connected to the steam drum 5 by the piping 14 as described above, and is connected to the exhaust gas economizer 4 by the piping 11. The connection is closed. Furthermore, a control valve 18 is provided in the piping 11 to detect the temperature of the hot water passing through ζIL and open/close the piping.
4, the value of steam passing through the t'L pipe Ii! However, there is a route that goes to the pedestal accumulator 11 and a route that feeds hot water and insects in the mixer 1s and goes to the achi accumulator 16.
A pair of valves 2, 2 that are selectively closed so that the
1 has been postponed! For A.

前記発電システム2!は、配管ISKよってアキュムレ
ータ16の熱水取出口!4に接続畜れ、熱水を蒸気と中
温水とに分離する熱水I−ビン!葛と、この熱水タービ
ン2Sと配管26で接続畜れ−fi:、蒸気タービン2
1と、この蒸気タービン2Tとm続aftた発電機2@
および蒸気タービン!TO吐田口に接続でれて吐比蒸気
を復水する復水器!■とで構成さnていゐ。復水器2自
と前記温水タンク8とを接続する配管30には、熱水タ
ービン2sの吐出口に接続さf′L友配′t!31が合
流さルており、各配管30.31には、ポンプ32.3
3がそれぞn設けらnている。34は配管23t−開閉
する弁でめる。
The power generation system 2! is the hot water outlet of accumulator 16 by piping ISK! Connect to 4! A hot water I-bin that separates hot water into steam and medium-temperature water! Connect this hot water turbine 2S and piping 26 with kudzu-fi:, steam turbine 2
1, this steam turbine 2T and m aft generator 2@
and steam turbines! A condenser that connects to the TO outlet and condenses the discharge steam! It consists of ■ and. A pipe 30 connecting the condenser 2 and the hot water tank 8 is connected to a discharge port of the hot water turbine 2s. 31 are connected to each other, and each pipe 30.31 has a pump 32.3.
3 are provided respectively. 34 is a valve that opens and closes the pipe 23t.

以上のように構成さnた熱水貯破発電装置の動作を説明
する。当靭、温水タンク8に温水9を蓄えて装*tt始
動すると、温水9は、給水ポンプ11によりて配管10
内を蒸気ドラム5へ送給畜れ、この温水S社循環ポンプ
TKより配管2、給水加熱!I6、配管1、排ガスエコ
ノマイザ4、およびf4に社、装置外設備oisvn排
ガスが導かれているので、循環する温水は仁の排ガスに
よって次第に昇温さnて熱水となゐ。したがって、ζO
Toと給水加熱齢6内を通過する配管10内の温水9は
、循環する熱水で予熱されて蒸気ドラム5へ供給店nる
ようになる。そして、熱水の温度が所定の温度に達する
と、調節弁18がζrtを検出して配管170熱水通路
が開か几、熱水がアキュムレータ1εへ供給ざnるが、
この熱水には、蒸気ドラム5の蒸気取出口13から取出
されて配管14内を通る蒸気が弁20の開放によって混
合器1sで拠金され、所定の温度に設定された給水とし
てアキエムレータ16へ供給てれる。この熱水紘、弁S
4を開くことにより配管21tPa少熱水タービン宜藤
へ供給ぜnて蒸気と中温水とに分離式れ、こOうちの蒸
気が配管26を通って蒸気タービン2Tへ供給ぢnると
ともに、中温水状ポンプ3sで加圧式れて配管31内【
配管3・へ向う。そして、蒸気タービン2Tは供給@れ
た蒸気によって一転し、これKll続畜れ曳−電機が1
転して発電−遂行なわれゐ、S気タービンtyの吐出蒸
気は、復水器3で復水’5rt、、ポンプ32で加圧嘔
れて配管3e内を送給され・るときに加熱タービン25
からの中温水と合流して温水となり温水タンク8に貯1
1.1!詐る。なお、蒸気ドラム5に対する温水9の供
給は、給水調節弁15によって制御さnる。
The operation of the hot water storage power generation device configured as above will be explained. When the hot water 9 is stored in the hot water tank 8 and the system is started, the hot water 9 is supplied to the piping 10 by the water supply pump 11.
The inside is fed to the steam drum 5, and the hot water is heated from the S company circulation pump TK to the piping 2, and the feed water is heated! Since exhaust gas from equipment outside the equipment is led to I6, piping 1, exhaust gas economizer 4, and f4, the circulating hot water is gradually heated up by the exhaust gas and becomes hot water. Therefore, ζO
The hot water 9 in the pipe 10 passing through the heating stage 6 and the feed water heating stage 6 is preheated by the circulating hot water and supplied to the steam drum 5. When the temperature of the hot water reaches a predetermined temperature, the control valve 18 detects ζrt and the piping 170 hot water passage opens, and hot water is supplied to the accumulator 1ε.
This hot water is supplied with steam taken out from the steam outlet 13 of the steam drum 5 and passed through the pipe 14 by the mixer 1s when the valve 20 is opened, and then sent to the Akiemator 16 as feed water set at a predetermined temperature. I can supply it. Konozu Hiro, Ben S
By opening 4, the water supplied to the 21 tPa low-heat water turbine is separated into steam and medium-temperature water, and this steam is supplied to the steam turbine 2T through the pipe 26, and The inside of the piping 31 is pressurized with a hot water pump 3s [
Head to Piping 3. Then, the steam turbine 2T is completely turned around by the supplied steam, and the electric machine is 1
The steam discharged from the S-air turbine ty is condensed in the condenser 3, pressurized by the pump 32, and heated as it is fed through the pipe 3e. turbine 25
It merges with the medium temperature water from the water and becomes hot water and is stored in the hot water tank 8.
1.1! deceive Note that the supply of hot water 9 to the steam drum 5 is controlled by a water supply control valve 15.

このように動作する発電装置においては、アキエムレー
タ16から熱水が取出でれるととにより、アキエムレー
タ16内の温度、圧力≠i降下しようとするが、弁20
t−閉じ弁21を開いてアキエムレータ16へは蒸気ド
ラム5がら熱水取出量に応じた量の蒸気が供給されてい
るOで、アキエムレータ1@内の熱水とH気とが常に一
定の温度と圧力を保持することができる。なお、ヒの場
合、アキュムレータ11内で起きようとする温度、圧力
の低下は、熱水消費によるタンク内の空間tall気が
#Iた丁ための順先によって発止するもので参るから、
アキエムレータ16から蒸気を取出す場合と比頓してそ
の量が少1kVhので、蒸気の補充は全量ずつでよい。
In the power generation device that operates in this way, as hot water is taken out from the Akiem generator 16, the temperature and pressure inside the Akiemator 16 tend to drop ≠i, but the valve 20
t- Close valve 21 is opened and steam is supplied from the steam drum 5 to the Akie emulator 16 in an amount corresponding to the amount of hot water taken out. and can hold pressure. In the case of H, the decrease in temperature and pressure that is about to occur in the accumulator 11 will occur depending on the order in which the space in the tank is filled up due to the consumption of hot water.
Since the amount of steam is 1 kVh compared to when steam is taken out from the Akiem generator 16, it is sufficient to replenish the entire amount of steam.

1113図はアキュムレータ16の熱水消費とタンダ内
温度変化との関係1811図に対応して示す線図で6っ
て、横軸には熱水消費上初期熱水量に対する消費熱水量
の割合情で示しており、縦軸にはタンク内温度1℃で示
している。但し、この場合は第2図の蒸気ドラム5によ
る蒸気の補充を行なわない1合を示している。図におい
て明らかなように、熱水を50−程度消費するまではタ
ンク内温度、圧力の降Fが少なく、そのろと拡第1図の
蒸気取出し式と比較してそのカーブが緩ヤかでるるか、
なお温度、圧力の降下が見られる。そこで、蒸気ドラム
5による蒸気の補充を行なうと、熱水全量を消費し終る
まで温度、圧力の降下を完全に規制丁すことができる。
Figure 1113 is a diagram showing the relationship between the hot water consumption of the accumulator 16 and the temperature change in the tanker corresponding to Figure 1811, and the horizontal axis shows the ratio of the consumed hot water amount to the initial hot water amount. The vertical axis indicates the tank internal temperature of 1°C. However, this case shows a case in which steam is not replenished by the steam drum 5 in FIG. 2. As is clear from the figure, the temperature and pressure drop in the tank is small until about 50% of the hot water is consumed, and after that, the curve becomes gentler compared to the steam extraction type shown in enlarged figure 1. Ruka,
Note that a drop in temperature and pressure can be seen. Therefore, by replenishing steam using the steam drum 5, the drop in temperature and pressure can be completely regulated until the entire amount of hot water is consumed.

畜らに、第4図はこのアキエムレータ1@の内部温度と
、飽和熱水対飽和蒸気の比容積の比および工yタルピの
比との関係−閤で黍って、横軸にはアdPj−ムレータ
内温度ctとり、縦軸には飽和熱水対胞和履気O比容積
比、工/Iルビ比ta水[1として倍数で懺わしている
。’gc)KllEIS図は、アキエムレータ11の内
部温度と、飽和熱水対飽和蒸気のエネルギ比との関係@
図でるって、横軸にはアキュムレータ内温度℃管と發、
硬軸には飽和熱水対飽和蒸気のエネルギ比を、蒸気を1
として倍数で費わしている。@4図におhで例えば20
0℃のアキエムレータでは、同一温度、圧力O環気を補
給する場合、蒸気の比容積が熱水の比容積の110倍で
ろる。し念がって、アキエムレータ16から壜出丁熱水
の171□0.の重量、流量の覇気管補充丁九ばアキュ
ムレータ16内の圧力管一定に保つことができる。この
場合、両者のエンタルピ比が3.274  であるから
、[5m1に示すように、蒸気によるエネルギの補給は
、熱水による1274    1 エネルギ補給の□社□でめる。
In fact, Figure 4 shows the relationship between the internal temperature of this Akiemulator 1@, the ratio of the specific volume of saturated hot water to saturated steam, and the ratio of saturated hot water to saturated steam, and the horizontal axis shows the adPj. - The temperature inside the mulator is taken as ct, and the vertical axis shows the saturated hot water to cell/air O specific volume ratio, engineering/I ruby ratio ta water [expressed in multiples as 1]. 'gc) The KllEIS diagram shows the relationship between the internal temperature of Akie Emulator 11 and the energy ratio of saturated hot water to saturated steam @
As shown in the diagram, the horizontal axis shows the accumulator internal temperature °C tube,
The hard axis shows the energy ratio of saturated hot water to saturated steam, and the steam is 1
It is spent in multiples. @For example 20 with h in figure 4
In an Akiem reactor at 0°C, when replenishing air at the same temperature and pressure, the specific volume of steam is 110 times the specific volume of hot water. Just to be sure, I took a bottle of hot water from Akiemureta 16 to 171□0. The pressure in the accumulator 16 can be kept constant by replenishing the weight and flow rate of the trachea. In this case, the enthalpy ratio between the two is 3.274, so as shown in [5ml], energy replenishment by steam can be done by hot water at 1274 1 Energy Replenishment □ Company □.

110  33.6 なお、本実権例においては発電システ!として発電機2
8の他に熱水タービン25、蒸気タービン2Tおよび復
水器29を用i九例を示し喪か、例えば熱水タービン2
5のみを用す念シ、参るい線熱水用フツクシャタンクと
蒸気ターピy27とを併設した発電システムとしてもよ
い。
110 33.6 In this case, the power generation system! as generator 2
In addition to 8, a hot water turbine 25, a steam turbine 2T, and a condenser 29 are used.
It is also possible to create a power generation system that uses only 5, and a power generation system that includes a hot water tank for hot water and a steam turbine Y27.

以上の説明によル明らかなように、本弗−によれば熱水
貯蔵発電装置において、装置列設備に接続された温水加
熱装置からの熱水をアキエムレータに貯蔵し、必要に応
じこntトータルツク一式の発電システムに供給して発
電を行なわせるとともに、蒸気発生装Rを設けて温水加
熱Wrmらの熱水を蒸気と温水とに分離し、このうちの
蒸気をアキュムレータへ供給して熱水消費に伴なうアキ
ュムレータ内の圧力、温度降下を完全に規制するように
構成することによシ、アキュムレータに貯蔵した熱エネ
ルギのほとんど全iを使用することができるので、蓄熱
効果が高く容器の利用率が向上するとともに、圧力変動
の繰返しによるアキエムレータ容器の応力変動がなくな
るので、こrtt大容量とすることができ取出す熱エネ
ルギの高温高圧化を計ることができる。また、常に一定
状態に近い熱水と蒸気を発生することができるので、発
電システムの構造が簡素化さtlその効率を向上てせる
ことができるとともに、こn【ピークロード−電に用い
為ときは、補給蒸気の数倍ないし数百倍ON気を尭生畜
せることかでき、きわめて効率的でろゐ。
As is clear from the above explanation, according to this book, in a hot water storage power generation system, hot water from the hot water heating device connected to the equipment row equipment is stored in the Akiemulator, and as needed, the total At the same time, a steam generator R is installed to separate hot water from hot water heating Wrm into steam and hot water, and the steam is supplied to an accumulator to generate hot water. By completely regulating the pressure and temperature drop inside the accumulator due to consumption, almost all of the thermal energy stored in the accumulator can be used, resulting in a high heat storage effect and a reduction in the temperature of the container. Since the utilization rate is improved and stress fluctuations in the Achiemulator container due to repeated pressure fluctuations are eliminated, the rtt can be made large in capacity and the heat energy extracted can be taken out at high temperatures and high pressures. In addition, since it is possible to generate hot water and steam in a nearly constant state at all times, the structure of the power generation system can be simplified and its efficiency can be improved. It is extremely efficient as it can produce several times to hundreds of times more ON air than make-up steam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の熱水貯蔵発電装置におけるアキエムシー
・夕の蒸気消費とタンク内温度変化との関係線図、第2
図ないし嬉51i!i3は本発明に係る熱水貯蔵発電装
置の実施例を示し、餠2図はそO概要構成図、第3図は
蒸気発生装置を用いない場合における熱水消費とタ、ン
タ内温度変化との関係線図、W44図はアキュムレータ
の内部温度と飽和熱水対飽和蒸気の比容積の比およびエ
ンタルどの比との関係m図、鵠5図はアキエムレータの
内部温度と飽和熱水対飽和蒸気のエネルギ比との関係@
図で6、!1゜ 4・・・・排ガスエコノマイザ、5・・・・蒸気ドラム
、12・・・・熱水権人口、13・・・・蒸気堆出口、
1@・・・・アキエムし一一、22・・・・発電システ
ム、24・・・・熱水職出口。 手続補正書(白和 1.事件の表示 昭和56年特 許 願第118303号2、発明の名称 熱水貯蔵発電装置 3、補正をする者 事件との関係   特  許   出願人名称(氏名)
  (590)三井造船株式会社6・補正の内容 (11%許請求の範囲を別紙の通シ補正する。 (2)  明細書第4頁第7行〜第15行Or本発明は
・・・・構成することにより、」を次の通シ補正する。 「本発明は以上のような点に鑑みなされたもので、温熱
水加熱装置にその熱エネルギを貯蔵するアキュムレータ
を接続し、このアキュムレータに設は九熱水取出口に発
電システムを接続して発電を行なわせるとと4に、アキ
エムレータに蒸気発生装置を接続してアキエムレータの
熱水消費による圧力降下を補填するように構成すること
Kよシ、」 (3)同第5員第5行〜第6行の「温水加熱装置」を「
温熱水加熱装置」と補正する。 (4)同第12頁第3行ないし第11行「装置性設備に
接続された・・・拳構成することにより」を次の通り補
正する。 「温熱水加熱装置からの熱水をアキエムレータ□に貯蔵
し、その熱水取出口から取出した熱水で発電を行なわせ
るとともに、アdP3−ムレータに蒸気発生装置を接続
してアdP3−ムレータの熱水消費による圧力降下を補
填するように構成することにより、」 以  上 1水を加圧下で加熱する温熱水加熱装置と、この温熱水
加熱装置と接続されその熱エネルギを貯蔵するアキュム
レータと、このアキュムレータ(設けた熱水取出口に接
続された発電システムと、蒸気取出口を前記アキュムレ
ータに接続され前記アキュムレータの熱水消費による圧
力降下を補填する蒸気発生装置とを設けたことを特徴と
する熱水貯蔵発電装置。
Figure 1 is a diagram showing the relationship between steam consumption and temperature changes inside the tank in a conventional hot water storage power generation system.
I'm so happy 51i! Figure i3 shows an example of the hot water storage power generation device according to the present invention, Figure 2 is a schematic diagram of its configuration, and Figure 3 shows hot water consumption and internal temperature changes when no steam generator is used. Figure W44 shows the relationship between the internal temperature of the accumulator and the specific volume ratio of saturated hot water to saturated steam and the ental ratio. Figure 5 shows the relationship between the internal temperature of the accumulator and the ratio of saturated hot water to saturated steam. Relationship with energy ratio @
6 in the figure! 1゜4... Exhaust gas economizer, 5... Steam drum, 12... Hot water right population, 13... Steam composting port,
1 @... Akiem 11, 22... Power generation system, 24... Hot water job exit. Procedural amendment (Hakuwa 1. Indication of the case 1982 Patent Application No. 118303 2, Name of the invention Hot water storage power generation device 3, Person making the amendment Relationship to the case Patent Applicant name (name)
(590) Mitsui Engineering & Shipbuilding Co., Ltd. 6. Contents of the amendment (11% The scope of the claims is amended in a separate document. (2) Page 4 of the specification, lines 7 to 15, or the present invention... By configuring the system, the following is amended: ``The present invention has been made in view of the above points, and includes connecting an accumulator that stores thermal energy to a hot water heating device, and installing an accumulator in this accumulator. (9) A power generation system is connected to the hot water outlet to generate electricity, and (4) a steam generator is connected to the Achiemulator to compensate for the pressure drop due to hot water consumption of the Achiemulator. ,” (3) “Hot water heating device” in lines 5 and 6 of the 5th member is “
"Hot water heating device". (4) On page 12, lines 3 to 11, ``Connected to device-related equipment...by forming a fist'' is amended as follows. "The hot water from the hot water heating device is stored in the Akiemulator □, and the hot water taken out from the hot water outlet is used to generate electricity. At the same time, a steam generator is connected to the AdP3-Mulator. By configuring the system to compensate for the pressure drop due to hot water consumption, 1. a hot water heating device that heats water under pressure; an accumulator that is connected to the hot water heating device and stores the thermal energy; This accumulator is characterized by being provided with a power generation system connected to a hot water outlet provided therein, and a steam generator having a steam outlet connected to the accumulator and compensating for a pressure drop due to hot water consumption in the accumulator. Hot water storage power generation equipment.

Claims (1)

【特許請求の範囲】[Claims] 装置外設備の排熱をオU用し給水を加圧下で加熱する温
水加熱装置と、この温水加熱装置と!II&1れその排
出熱エネルギを貯蔵するアキエムレータと、このアキエ
ムレータの熱水取出口に接続さn九発電システムと、蒸
気取出口を前記アキュムレータに接続さn前記アキエム
レータの熱水消費による圧力降下を補填する漏気発生装
置と1aけたこと金4I徴とする熱水貯蔵発電装置。
A hot water heating device that uses waste heat from equipment outside the device to heat supplied water under pressure, and this hot water heating device! II&1 is an Akie emulator for storing its discharged heat energy, a power generation system connected to the hot water outlet of this Akie emulator, and a steam outlet connected to the accumulator to compensate for the pressure drop due to hot water consumption of the Akie emulator. Hot water storage power generation device with air leakage generator and 1A and 4I features.
JP11830381A 1981-07-27 1981-07-27 Power generation equipment by storing hot water Granted JPS5818503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11830381A JPS5818503A (en) 1981-07-27 1981-07-27 Power generation equipment by storing hot water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11830381A JPS5818503A (en) 1981-07-27 1981-07-27 Power generation equipment by storing hot water

Publications (2)

Publication Number Publication Date
JPS5818503A true JPS5818503A (en) 1983-02-03
JPS6239643B2 JPS6239643B2 (en) 1987-08-24

Family

ID=14733335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11830381A Granted JPS5818503A (en) 1981-07-27 1981-07-27 Power generation equipment by storing hot water

Country Status (1)

Country Link
JP (1) JPS5818503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193007A (en) * 1988-01-29 1989-08-03 Mitsubishi Heavy Ind Ltd Heat accumulating power generating device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435938U (en) * 1977-08-17 1979-03-09
JPS5464241A (en) * 1977-10-31 1979-05-23 Mitsubishi Heavy Ind Ltd Hot water regenerative type generator
JPS5650204A (en) * 1979-09-28 1981-05-07 Sanfuremu Akiyumu Kk Steam accumulator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5178240A (en) * 1974-12-27 1976-07-07 Canon Kk GENZOEKIRYOKISEIHOHO

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435938U (en) * 1977-08-17 1979-03-09
JPS5464241A (en) * 1977-10-31 1979-05-23 Mitsubishi Heavy Ind Ltd Hot water regenerative type generator
JPS5650204A (en) * 1979-09-28 1981-05-07 Sanfuremu Akiyumu Kk Steam accumulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193007A (en) * 1988-01-29 1989-08-03 Mitsubishi Heavy Ind Ltd Heat accumulating power generating device

Also Published As

Publication number Publication date
JPS6239643B2 (en) 1987-08-24

Similar Documents

Publication Publication Date Title
US4549401A (en) Method and apparatus for reducing the initial start-up and subsequent stabilization period losses, for increasing the usable power and for improving the controllability of a thermal power plant
US4674285A (en) Start-up control system and vessel for LMFBR
US4555905A (en) Method of and system for utilizing thermal energy accumulator
HUE030845T2 (en) A closed cycle heat transfer device and method
NL8201698A (en) STEAM GENERATOR FOR RECOVERING HEAT.
US6895068B2 (en) Method for providing a pressurized fluid
US4291537A (en) Thermal energy storage for covering peak loads
US3019774A (en) Once-through vapor generator
JPS5818503A (en) Power generation equipment by storing hot water
US3003479A (en) Steam and air boiler with heating surface of smallest load
JPH0249359A (en) Fuel cell power generating system
DE69002544T2 (en) Protection of components of a steam generator with fluidized bed combustion.
KR900004870B1 (en) Start-up control system for lmfbr
JPS5823204A (en) Steam accumulator
JPS637242B2 (en)
JPS6239644B2 (en)
JPH0529014A (en) Fule cell
JP3085785B2 (en) Boiler feedwater heating device
US1583557A (en) Steam generation in two stages
JPS6110875A (en) Fuel cell system
JP7255293B2 (en) Water supply controller
KR101868271B1 (en) Device and method for suppling of working fuid
JPS5813112A (en) Waste-heat recovery power plant
JPS6110874A (en) Fuel cell system
US998568A (en) Steam generation.