JPH0529014A - Fule cell - Google Patents

Fule cell

Info

Publication number
JPH0529014A
JPH0529014A JP3180045A JP18004591A JPH0529014A JP H0529014 A JPH0529014 A JP H0529014A JP 3180045 A JP3180045 A JP 3180045A JP 18004591 A JP18004591 A JP 18004591A JP H0529014 A JPH0529014 A JP H0529014A
Authority
JP
Japan
Prior art keywords
hydrogen
flow rate
fuel cell
storage alloy
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3180045A
Other languages
Japanese (ja)
Inventor
Toshihiro Sugiyama
智弘 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3180045A priority Critical patent/JPH0529014A/en
Publication of JPH0529014A publication Critical patent/JPH0529014A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To utilize waste heat so as to improve efficiency in a fuel cell by providing an exhaust oxidizer gas supply system by which at least part of exhaust oxidizer gas exhausted from an air electrode is made to flow into a heat exchange tube in a hydrogen storage alloy tank. CONSTITUTION:Heat generated according to power generation is removed through a cooling plate 4 by means of cooling water being circulated in a cooling water circulating system 17 by driving a pump 18, and is kept at an operation temperature of a fuel cell 1. The cooling water which became a high temperature due to removal of heat is cooled in a heat exchanger 19 by driving an air blower 21, and is flowed again into the plate 4. A part of high temperature exhaust air exhausted from an air electrode 3 flows into a heat exchanger tube in a hydrogen storage alloy tank 6 after passing through an exhaust air supply system 14, and is exhausted from an exhaust port 15. In this case, hydrogen storage alloy stored in the alloy tank 6 is heated by means of the high temperature exhaust air through the heat exchanger tube, and as a result of this, hydrogen is released from the hydrogen storage alloy, and is supplied to a hydrogen electrode 2. Furthermore, alloy, and is supplied to a hydrogen electrode 2. Furthermore, pressure of this released hydrogen is controlled so as to be put under prescribed pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素貯蔵合金に貯蔵し
た水素をこの合金の加熱により放出して燃料として用い
る燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell in which hydrogen stored in a hydrogen storage alloy is released by heating the alloy and used as a fuel.

【0002】[0002]

【従来の技術】燃料電池は、一般に電解質保持層を挟持
してその両側に水素極と空気極とを配設してなる単電池
を基本単位とし、この単電池を積層し、複数の単電池ご
とに冷却板を介挿してなる燃料電池本体を備えている。
この燃料電池本体の単電池に外部より水素極には燃料で
ある水素を、空気極には酸化剤を供給すると、電気化学
反応が生じて発電する。この発電に伴い発生する熱は、
冷却板に通流し、熱交換器を介して冷却ガスにより冷却
される冷却媒体としての冷却水又は冷却空気により除熱
され、燃料電池の運転温度が保持される。ここで酸化剤
としては一般に空気中の酸素が用いられる。
2. Description of the Related Art In general, a fuel cell has a basic unit of a unit cell in which an electrolyte holding layer is sandwiched and a hydrogen electrode and an air electrode are disposed on both sides of the layer, and the unit cells are stacked to form a plurality of unit cells. Each is equipped with a fuel cell body with a cooling plate interposed.
When hydrogen, which is a fuel, is supplied to the hydrogen electrode and an oxidant is supplied to the air electrode from the outside of the unit cell of the fuel cell main body, an electrochemical reaction occurs to generate electricity. The heat generated by this power generation is
Heat is removed by cooling water or cooling air as a cooling medium that flows through the cooling plate and is cooled by the cooling gas through the heat exchanger, and the operating temperature of the fuel cell is maintained. Here, oxygen in the air is generally used as the oxidant.

【0003】ところで、燃料である水素を得る方法とし
て水素製造装置を燃料電池に備える方法や水素製造装置
で製造される水素を貯槽にためて運搬して燃料電池に供
給する方法がある。この場合水素を貯槽にためる方法と
して水素ボンベに高圧で充填して、この水素ボンベから
水素を取出す等の方法があるが、水素貯蔵合金に水素を
貯め、この合金から水素を放出させて燃料電池の燃料と
する方法が知られている。
By the way, as a method of obtaining hydrogen as a fuel, there are a method of equipping a fuel cell with a hydrogen production apparatus and a method of transporting hydrogen produced by the hydrogen production apparatus in a storage tank and supplying it to the fuel cell. In this case, as a method of storing hydrogen in a storage tank, there is a method of filling a hydrogen cylinder at a high pressure and taking out hydrogen from the hydrogen cylinder, and the like. It is known to use it as fuel.

【0004】水素貯蔵合金による水素貯蔵の特徴は、水
素が原子状態で合金を構成する金属格子中に存在するた
め、液体水素よりも高い密度での水素貯蔵が可能であ
り、このため大気圧よりもわずかに高い圧力状態下で、
安全かつ大量に貯蔵できることである。これは、従来の
一般的な貯蔵方法であるガス状態での貯蔵であるボンベ
貯蔵法にない特徴である。水素貯蔵合金の種類として
は、Mg−Ni系合金、Ti−Mn系合金、Ti−Zr
系合金、Zr−Mn系合金など多くの合金が知られてい
るが、何れの場合にも水素貯蔵合金が水素を吸蔵する場
合には発熱し、放出する場合には吸熱する。この熱量
は、24000〜65000J/mol −H2である。したが
って、水素を放出するにあたってはこの熱を供給するこ
とが必要であるが、特に水素を短時間に大量に放出させ
る場合には、水素放出量に相当する上記熱量を確保する
必要がある。
The characteristic of hydrogen storage by a hydrogen storage alloy is that hydrogen is present in the metal lattice that constitutes the alloy in an atomic state, so that hydrogen can be stored at a density higher than that of liquid hydrogen, and as a result, it is higher than atmospheric pressure. Even under slightly higher pressure conditions,
It is safe and can be stored in large quantities. This is a characteristic which is not present in the conventional cylinder storage method of storing in a gas state which is a general storage method. The types of hydrogen storage alloys include Mg-Ni alloys, Ti-Mn alloys, Ti-Zr.
Many alloys such as a Zr-Mn alloy and a Zr-Mn alloy are known. In any case, the hydrogen storage alloy generates heat when it absorbs hydrogen, and absorbs it when it releases it. This heat is 24000~65000J / mol -H 2. Therefore, in order to release hydrogen, it is necessary to supply this heat, but especially when releasing a large amount of hydrogen in a short time, it is necessary to secure the heat amount corresponding to the hydrogen release amount.

【0005】上記の水素貯蔵合金から水素を放出して燃
料電池の燃料とする方法として、文献,U.Gable
r Schiff & Hafen/Kommando
bruecke,Heft11/1988 Vol40
にて燃料電池の発電時発生する熱を除熱する冷却水の熱
により水素貯蔵合金を加熱して水素を放出することが報
告されている。
As a method for releasing hydrogen from the above hydrogen storage alloy to be used as a fuel for a fuel cell, reference is made to U.S. Pat. Gable
r Schiff & Hafen / Kommando
brücke, Heft 11/1988 Vol40
Have reported that the hydrogen storage alloy is heated by the heat of the cooling water that removes the heat generated during the power generation of the fuel cell to release hydrogen.

【0006】[0006]

【発明が解決しようとする課題】上記の文献では水素貯
蔵合金から水素を放出する方法として燃料電池本体を冷
却する冷却水を使用しているが、本出願人は、電気化学
反応時空気極から排出される高温の排出空気及び燃料電
池本体内の冷却板を通流する冷却媒体を冷却することに
より高温になった排出冷却ガスが通常廃ガスとして棄て
られることに着目し、これらの排出空気及び排出冷却ガ
スにより水素貯蔵合金を加熱して水素を放出させること
について検討を行なった。
In the above literature, cooling water for cooling the fuel cell main body is used as a method for releasing hydrogen from the hydrogen storage alloy. Paying attention to the fact that the high-temperature exhaust air that is discharged and the exhaust cooling gas that has become hot by cooling the cooling medium that flows through the cooling plate in the fuel cell body are usually discarded as waste gas. The heating of the hydrogen storage alloy with the discharged cooling gas to release hydrogen was investigated.

【0007】本発明の目的は、空気極から排出される排
出空気又は燃料電池本体を冷却する冷却媒体を冷却する
冷却ガスにより水素貯蔵合金を効率よく加熱して水素を
放出して燃料とする燃料電池を提供することである。
It is an object of the present invention to efficiently heat a hydrogen storage alloy with exhaust air discharged from an air electrode or a cooling gas for cooling a cooling medium for cooling a fuel cell body to release hydrogen and use it as a fuel. It is to provide a battery.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明によれば電解質保持層と、これを挟持する水
素極と空気極とを備える単電池と、発電時発生する熱を
除熱する冷却媒体が通流する冷却板とを有する燃料電池
本体と、水素極に供給する水素を発生する水素貯蔵合金
を貯蔵し、伝熱管を内蔵する水素貯蔵合金槽と、前記冷
却媒体を冷却ガスとの熱交換により冷却する熱交換器と
を備える燃料電池において、空気極から排出される排出
酸化剤ガスの少なくとも一部を水素貯蔵合金槽の伝熱管
に通流させる排出酸化剤ガス供給系を設けるものとす
る。
In order to solve the above problems, according to the present invention, an electrolyte holding layer, a unit cell having a hydrogen electrode and an air electrode sandwiching the electrolyte holding layer, and heat generated during power generation are removed. A fuel cell main body having a cooling plate through which a heating cooling medium flows, a hydrogen storage alloy tank for storing a hydrogen storage alloy for generating hydrogen to be supplied to a hydrogen electrode, and a hydrogen storage alloy tank containing a heat transfer tube, and cooling the cooling medium. In a fuel cell including a heat exchanger that cools by heat exchange with gas, an exhausted oxidant gas supply system that causes at least a part of exhausted oxidant gas exhausted from an air electrode to flow through a heat transfer tube of a hydrogen storage alloy tank Shall be provided.

【0009】また上記の燃料電池において、熱交換器か
ら排出される排出冷却ガスの少なくとも一部を水素貯蔵
合金槽内の伝熱管に通流させる排出冷却ガス供給系を設
けるものとする。
Further, in the above fuel cell, an exhaust cooling gas supply system is provided to allow at least a part of the exhaust cooling gas discharged from the heat exchanger to flow through the heat transfer tube in the hydrogen storage alloy tank.

【0010】なお、前記の燃料電池において、排出酸化
剤ガス供給系を経る排出酸化剤ガスの加熱により放出す
る水素の水素貯蔵合金槽内の圧力を検出する圧力検出器
と、空気極から外部に排出される排出酸化剤ガスの流量
を制御する流量調整弁と、圧力検出器での検出圧力と所
定圧力の目標値との偏差から流量調整弁を制御する制御
手段とを設けるものとする。
In the above fuel cell, a pressure detector for detecting the pressure in the hydrogen storage alloy tank of hydrogen released by heating the exhausted oxidant gas passing through the exhausted oxidant gas supply system, and an external electrode from the air electrode A flow rate adjusting valve for controlling the flow rate of the discharged oxidant gas to be discharged and a control means for controlling the flow rate adjusting valve based on the deviation between the pressure detected by the pressure detector and the target value of the predetermined pressure are provided.

【0011】また、前記燃料電池において、排出酸化剤
ガス供給系を経る排出酸化剤ガスの加熱により放出する
水素を水素貯蔵合金槽から水素極に供給する水素流量を
検出する流量検出器と、空気極から外部に排出される排
出酸化剤ガスの流量を制御する流量調整弁と、流量検出
器での検出流量と所定流量の目標値との偏差から流量調
整弁を制御する制御手段とを設けるものとする。
Further, in the above fuel cell, a flow rate detector for detecting a flow rate of hydrogen which supplies hydrogen released from the hydrogen storage alloy tank to the hydrogen electrode by heating the exhaust oxidant gas passing through the exhaust oxidant gas supply system, and an air A flow rate adjusting valve for controlling the flow rate of the discharged oxidant gas discharged from the electrode to the outside, and a control means for controlling the flow rate adjusting valve from the deviation between the flow rate detected by the flow rate detector and the target value of the predetermined flow rate are provided. And

【0012】また、前記の燃料電池において、排出冷却
ガス供給系を経る排出冷却ガスの加熱により放出する水
素の水素貯蔵合金槽内の圧力を検出する圧力検出器と、
熱交換器から外部に排出される排出冷却ガスの流量を制
御する流量調整弁と、圧力検出器での検出圧力と所定圧
力の目標値との偏差から流量調整弁を制御する制御手段
とを設けるものとする。
In the above fuel cell, a pressure detector for detecting the pressure in the hydrogen storage alloy tank of hydrogen released by heating the exhaust cooling gas passing through the exhaust cooling gas supply system,
A flow rate adjusting valve for controlling the flow rate of the exhaust cooling gas discharged from the heat exchanger to the outside, and a control means for controlling the flow rate adjusting valve from the deviation between the pressure detected by the pressure detector and the target value of the predetermined pressure are provided. I shall.

【0013】また、前記の燃料電池において、排出冷却
ガス供給系を経る排出冷却ガスの加熱により放出する水
素を水素貯蔵合金槽から水素極に供給する水素流量を検
出する流量検出器と、熱交換器から外部に排出される排
出冷却ガスの流量を制御する流量調整弁と、流量検出器
での検出流量と所定流量の目標値との偏差から流量調整
弁を制御する制御手段とを設けるものとする。
Further, in the above fuel cell, heat exchange with a flow rate detector for detecting the flow rate of hydrogen supplied from the hydrogen storage alloy tank to the hydrogen electrode by releasing hydrogen released by heating the exhaust cooling gas passing through the exhaust cooling gas supply system. And a control means for controlling the flow rate adjusting valve based on the deviation between the flow rate detected by the flow rate detector and the target value of the predetermined flow rate. To do.

【0014】[0014]

【作用】電解質保持層を挟持する水素極と空気極を有す
る単電池を積層し、複数の単電池ごとに冷却板が介挿さ
れてなる燃料電池本体は、供給される水素と酸化剤ガス
としての空気により単電池にて電気化学反応を起こして
発電する。この際発電時発生する熱は熱交換器にて冷却
ガスにより冷却された冷却媒体を冷却板に通流させるこ
とにより除熱し、燃料電池の運転温度に保持する。
[Function] A fuel cell body in which unit cells each having a hydrogen electrode and an air electrode sandwiching an electrolyte holding layer are laminated, and a cooling plate is inserted for each of the plurality of unit cells, is used as the supplied hydrogen and oxidant gas. The air causes an electrochemical reaction in a single cell to generate electricity. At this time, the heat generated at the time of power generation is removed by passing a cooling medium cooled by cooling gas in a heat exchanger through a cooling plate, and the operating temperature of the fuel cell is maintained.

【0015】この際空気極から排出される高温の排出空
気の少なくとも一部を排出酸化剤ガス供給系を経て水素
貯蔵合金槽内の伝熱管に通流させることにより、貯蔵さ
れた水素貯蔵合金を排出空気により加熱して水素を放出
して燃料として水素極に供給する。
At this time, at least a part of the high temperature exhaust air exhausted from the air electrode is passed through the exhaust oxidant gas supply system to the heat transfer tube in the hydrogen storage alloy tank, whereby the stored hydrogen storage alloy is removed. It is heated by exhaust air to release hydrogen and supply it to the hydrogen electrode as fuel.

【0016】また冷却板を通流する冷却媒体と熱交換し
て高温になって熱交換器から排出される排出冷却ガスの
少なくとも一部を水素貯蔵合金槽の伝熱管に通流させる
ことにより、前述と同様に水素貯蔵合金から水素を放出
して燃料として水素極に供給する。
Further, at least a part of the exhausted cooling gas, which has a high temperature due to heat exchange with the cooling medium flowing through the cooling plate and is discharged from the heat exchanger, is caused to flow through the heat transfer tube of the hydrogen storage alloy tank. Similar to the above, hydrogen is released from the hydrogen storage alloy and supplied to the hydrogen electrode as fuel.

【0017】ここで、水素極に水素貯蔵合金から放出す
る水素を供給する水素量は、水素貯蔵合金槽内の放出す
る水素の圧力を所定圧力に制御することにより所定量に
制御される。すなわち水素貯蔵合金の加熱により放出す
る水素の水素貯蔵合金槽内の圧力を圧力検出器で検出
し、この検出圧力と所定圧力の目標値との偏差から空気
極から外部に排出される排出空気量を流量調整弁により
制御することにより、排出酸化剤ガス供給系を経て水素
貯蔵合金槽内の伝熱管に流れる排出酸化剤ガス量を制御
して水素貯蔵合金を加熱して放出する水素の水素貯蔵合
金槽内の圧力を所定圧力に制御する。
Here, the amount of hydrogen supplied from the hydrogen storage alloy to the hydrogen electrode is controlled to a predetermined amount by controlling the pressure of the hydrogen released in the hydrogen storage alloy tank to a predetermined pressure. That is, the pressure in the hydrogen storage alloy tank of hydrogen released by heating the hydrogen storage alloy is detected by the pressure detector, and the amount of exhaust air discharged from the air electrode to the outside from the deviation between this detected pressure and the target value of the predetermined pressure. By controlling the flow rate control valve, the amount of exhausted oxidant gas flowing to the heat transfer tube in the hydrogen storage alloy tank via the exhausted oxidant gas supply system is controlled to heat the hydrogen storage alloy to release hydrogen stored in hydrogen. The pressure in the alloy tank is controlled to a predetermined pressure.

【0018】また、水素貯蔵合金槽から水素極に供給す
る水素の流量を流量検出器で検出し、この検出流量と所
定流量との目標値との偏差から空気極からの排出空気量
を前記流量調整弁を制御することにより、空気極から排
出酸化剤ガス供給系を経て水素貯蔵合金槽内の伝熱管を
流れる排出酸化剤ガスを制御して水素貯蔵合金を加熱し
て水素貯蔵合金槽から水素極に供給する水素量を所定量
に制御する。
Further, the flow rate of hydrogen supplied from the hydrogen storage alloy tank to the hydrogen electrode is detected by a flow rate detector, and the amount of air discharged from the air electrode is determined from the deviation between the detected flow rate and a target value. By controlling the adjusting valve, the exhaust oxidant gas flowing from the air electrode through the exhaust oxidant gas supply system and through the heat transfer tube in the hydrogen storage alloy tank is controlled to heat the hydrogen storage alloy to discharge hydrogen from the hydrogen storage alloy tank. The amount of hydrogen supplied to the electrode is controlled to a predetermined amount.

【0019】熱交換器から排出され、排出冷却ガス系を
経る高温の冷却ガスを水素貯蔵合金槽の伝熱管に通流さ
せることにより、水素貯蔵合金を加熱して水素を放出す
る場合には、水素貯蔵合金槽内の放出する水素の圧力を
圧力検出器で検出し、この検出圧力と所定圧力の目標値
との偏差から、熱交換器から外部に排出される排出冷却
ガス量を流量調整弁により制御することにより、排出冷
却ガス供給系を経て水素貯蔵合金槽内の伝熱管に流れる
排出冷却ガス量を制御して水素貯蔵合金を加熱して放出
する水素の水素貯蔵合金槽内の圧力を所定圧力に制御す
る。
When high-temperature cooling gas discharged from the heat exchanger and passing through the discharged cooling gas system is passed through the heat transfer tube of the hydrogen storage alloy tank to heat the hydrogen storage alloy and release hydrogen, The pressure of hydrogen released in the hydrogen storage alloy tank is detected by a pressure detector, and the amount of exhaust cooling gas discharged from the heat exchanger to the outside is detected from the deviation between the detected pressure and the target value of the predetermined pressure. By controlling the amount of exhaust cooling gas flowing through the exhaust cooling gas supply system to the heat transfer tubes in the hydrogen storage alloy tank to control the pressure in the hydrogen storage alloy tank of hydrogen released by heating the hydrogen storage alloy. Control to a predetermined pressure.

【0020】また水素貯蔵合金槽から水素極に供給する
水素の流量を流量検出器で検出し、この検出流量と所定
流量の目標値との偏差から、熱交換器からの排出冷却ガ
スの流量を流量調整弁により制御することにより、熱交
換器から排出冷却ガス供給系を経る冷却ガス量を制御し
て水素貯蔵合金を加熱して放出する水素の水素極に供給
する水素量を制御する。
Further, the flow rate of hydrogen supplied from the hydrogen storage alloy tank to the hydrogen electrode is detected by the flow rate detector, and the flow rate of the exhaust cooling gas from the heat exchanger is determined from the deviation between the detected flow rate and the target value of the predetermined flow rate. By controlling the flow rate adjusting valve, the amount of cooling gas passing through the exhaust cooling gas supply system from the heat exchanger is controlled to control the amount of hydrogen supplied to the hydrogen electrode of the hydrogen that is heated and released from the hydrogen storage alloy.

【0021】[0021]

【実施例】以下図面に基づいて本発明の実施例について
説明する。図1は本発明の実施例1による燃料電池の系
統図である。図1において、燃料電池の燃料電池本体1
は模式的に示す水素極2,空気極3,冷却板4を備えて
構成されている。水素貯蔵合金槽6は図示しない伝熱管
を内蔵し、水素貯蔵合金が貯蔵されている。
Embodiments of the present invention will be described below with reference to the drawings. 1 is a system diagram of a fuel cell according to Embodiment 1 of the present invention. In FIG. 1, a fuel cell body 1 of a fuel cell
Is provided with a hydrogen electrode 2, an air electrode 3 and a cooling plate 4 which are schematically shown. The hydrogen storage alloy tank 6 contains a heat transfer tube (not shown) and stores the hydrogen storage alloy.

【0022】水素供給系7は水素貯蔵合金槽6と水素極
2とに接続して設けられ、水素貯蔵合金の加熱により放
出する水素を水素極2に供給する。なお水素供給系7に
は本発明に係る水素貯蔵合金槽6内の放出した水素の圧
力を検出する圧力検出器8が設けられている。水素排出
系9は水素極2に接続され、電気化学反応に寄与しない
水素を外部に排出する。
The hydrogen supply system 7 is connected to the hydrogen storage alloy tank 6 and the hydrogen electrode 2, and supplies the hydrogen electrode 2 with hydrogen released by heating the hydrogen storage alloy. The hydrogen supply system 7 is provided with a pressure detector 8 for detecting the pressure of hydrogen released in the hydrogen storage alloy tank 6 according to the present invention. The hydrogen discharge system 9 is connected to the hydrogen electrode 2 and discharges hydrogen that does not contribute to the electrochemical reaction to the outside.

【0023】空気供給系10は送風機11を備えて空気
極3に接続され、送風機11の駆動により空気を空気極
3に供給する。空気排出系12は空気極3に接続され、
空気極3から電気化学反応に寄与しない酸素を含む空気
を外部に排出する。なお空気排出系12には本発明に係
る流量調整弁13と、この流量調整弁13の上流の空気
排出系12から分岐して水素貯蔵合金槽6の図示しない
伝熱管に接続して空気極3からの排出空気を伝熱管に通
流させる排出空気供給系14が設けられている。なお1
5はこの供給系14の排出口である。
The air supply system 10 is provided with a blower 11 and is connected to the air electrode 3, and supplies air to the air electrode 3 by driving the blower 11. The air discharge system 12 is connected to the air electrode 3,
Air containing oxygen that does not contribute to the electrochemical reaction is discharged from the air electrode 3 to the outside. The air discharge system 12 has a flow rate adjusting valve 13 according to the present invention, and the air discharge system 12 upstream of the flow rate adjusting valve 13 is branched and connected to a heat transfer tube (not shown) of the hydrogen storage alloy tank 6 to connect the air electrode 3 to the air electrode 3. An exhaust air supply system 14 is provided to allow the exhaust air from the exhaust gas to flow through the heat transfer tube. 1
Reference numeral 5 is an outlet of the supply system 14.

【0024】冷却水循環系17は冷却板4を経由してポ
ンプ18,熱交換器19を備えて構成され、ポンプ18
により冷却水を循環する。熱交換器19は冷却板4にて
燃料電池本体1を冷却することにより高温になった冷却
水を冷却空気と熱交換して冷却する。
The cooling water circulation system 17 comprises a pump 18 and a heat exchanger 19 via the cooling plate 4, and the pump 18
To circulate cooling water. The heat exchanger 19 cools the cooling water, which has become hot by cooling the fuel cell body 1 by the cooling plate 4, by exchanging heat with the cooling air.

【0025】冷却空気供給系20は送風機21を備えて
熱交換器19に接続され、送風機21の駆動により冷却
空気を熱交換器19に供給する。冷却空気排出系22は
熱交換器19から冷却水との熱交換により高温になった
冷却空気を外部に排出する。
The cooling air supply system 20 is provided with a blower 21 and is connected to the heat exchanger 19, and the cooling air is supplied to the heat exchanger 19 by driving the blower 21. The cooling air discharge system 22 discharges the cooling air, which has become high temperature due to heat exchange with the cooling water, from the heat exchanger 19 to the outside.

【0026】このような構成により、水素貯蔵合金槽6
で後述する加熱により放出し、水素供給系7を経て燃料
電池本体1の水素極2に供給される水素と送風機11に
より空気極3に供給される空気とにより、燃料電池本体
1は単電池にて電気化学反応を起こして発電する。この
際水素極2からは電気化学反応に寄与しない排出水素、
空気極からは電気化学反応に寄与しない酸素を含む排出
空気がそれぞれ水素排出系9,空気排出系12を経て排
気される。
With such a configuration, the hydrogen storage alloy tank 6
The hydrogen which is released by heating described later and is supplied to the hydrogen electrode 2 of the fuel cell body 1 through the hydrogen supply system 7 and the air supplied to the air electrode 3 by the blower 11 make the fuel cell body 1 into a single cell. Generates an electrochemical reaction to generate electricity. At this time, exhausted hydrogen that does not contribute to the electrochemical reaction from the hydrogen electrode 2,
Exhaust air containing oxygen that does not contribute to the electrochemical reaction is exhausted from the air electrode through the hydrogen exhaust system 9 and the air exhaust system 12, respectively.

【0027】発電に伴って発生する熱はポンプ18の駆
動により冷却水循環系17を循環する冷却水により冷却
板4にて除熱され、燃料電池の運転温度に保持される。
除熱することにより高温になった冷却水は熱交換器19
にて送風機21の駆動により送気される冷却空気により
冷却されて再び冷却板4に流入される。一方冷却水を冷
却することにより高温になった排出冷却空気は冷却空気
排出系22を経て排出される。
The heat generated by the power generation is removed by the cooling water circulated in the cooling water circulation system 17 by driving the pump 18 at the cooling plate 4, and is maintained at the operating temperature of the fuel cell.
The cooling water that has become high temperature by removing heat is used in the heat exchanger 19.
At, the air is cooled by the cooling air sent by the drive of the blower 21 and again flows into the cooling plate 4. On the other hand, the discharged cooling air which has become high temperature by cooling the cooling water is discharged through the cooling air discharging system 22.

【0028】ところで空気極3から排出された高温の排
出空気の少なくとも一部は排出空気供給系14を経て水
素貯蔵合金槽6の伝熱管を通流し、排出口15から排気
される。この際水素貯蔵合金槽6内に貯蔵された水素貯
蔵合金は伝熱管を介して高温の排出空気により加熱さ
れ、この結果水素貯蔵合金からは水素を放出し、水素極
2に供給する。
By the way, at least part of the high-temperature exhaust air discharged from the air electrode 3 flows through the heat transfer pipe of the hydrogen storage alloy tank 6 via the exhaust air supply system 14, and is discharged from the discharge port 15. At this time, the hydrogen storage alloy stored in the hydrogen storage alloy tank 6 is heated by the high-temperature exhaust air via the heat transfer tube, and as a result, hydrogen is released from the hydrogen storage alloy and supplied to the hydrogen electrode 2.

【0029】つぎに水素極2に水素を所定量供給する制
御方法について説明する。水素貯蔵合金槽6で放出した
水素の圧力を圧力検出器8で検出し、この検出圧力の信
号を圧力調節器25に入力し、この調節器により検出圧
力と水素の所定量を水素極2に供給するに足る所定圧力
の目標値との偏差から空気排出系12に設けられた流量
調整弁13を制御する。この制御により空気排出系12
から排気される空気極3からの排出空気量を制御するこ
とにより、排出空気供給系14を経て水素貯蔵合金槽6
の伝熱管を流れる排出空気量を制御して水素貯蔵合金を
加熱し、この結果放出される水素の圧力は所定圧力に制
御される。
Next, a control method for supplying a predetermined amount of hydrogen to the hydrogen electrode 2 will be described. The pressure of hydrogen released in the hydrogen storage alloy tank 6 is detected by the pressure detector 8, and a signal of this detected pressure is input to the pressure controller 25, and this controller supplies the detected pressure and a predetermined amount of hydrogen to the hydrogen electrode 2. The flow rate adjusting valve 13 provided in the air exhaust system 12 is controlled based on the deviation from the target value of the predetermined pressure sufficient for supply. With this control, the air exhaust system 12
By controlling the amount of exhaust air from the air electrode 3 exhausted from the hydrogen storage alloy tank 6 via the exhaust air supply system 14.
The hydrogen storage alloy is heated by controlling the amount of exhaust air flowing through the heat transfer tube, and the pressure of hydrogen released as a result is controlled to a predetermined pressure.

【0030】図2は本発明の実施例2による燃料電池の
系統図である。図2においては図1の圧力検出器8に代
えて水素供給系7を流れる水素の流量を検出する流量検
出器27と圧力調節器25に代えて流量調節器28とを
設けた他は図1と同じである。
FIG. 2 is a system diagram of a fuel cell according to Embodiment 2 of the present invention. 1, a flow rate detector 27 for detecting the flow rate of hydrogen flowing through the hydrogen supply system 7 in place of the pressure detector 8 in FIG. 1 and a flow rate controller 28 in place of the pressure regulator 25 are provided in FIG. Is the same as.

【0031】図2において水素極2に所定流量の水素を
供給するときには流量検出器27で水素流量を検出し、
この検出流量の信号を流量調節器28に入力し、この調
節器により検出流量と水素極へ供給する所定流量の目標
値との偏差から空気排出系12に設けられた流量制御弁
13を制御する。この制御により空気排出系12から排
気される空気極3からの排出空気量を制御することによ
り、排出空気供給系14を経て水素貯蔵合金槽6の伝熱
管を流れる排出空気量を制御して水素貯蔵合金を加熱し
て所定流量の水素を放出し水素極2に供給する。
In FIG. 2, when supplying a predetermined flow rate of hydrogen to the hydrogen electrode 2, the flow rate detector 27 detects the hydrogen flow rate,
The signal of the detected flow rate is input to the flow rate controller 28, and the flow rate control valve 13 provided in the air exhaust system 12 is controlled by the controller based on the deviation between the detected flow rate and the target value of the predetermined flow rate supplied to the hydrogen electrode. . By controlling the amount of exhaust air from the air electrode 3 exhausted from the air exhaust system 12 by this control, the amount of exhaust air flowing through the heat transfer tube of the hydrogen storage alloy tank 6 via the exhaust air supply system 14 is controlled to control hydrogen. The storage alloy is heated to release hydrogen at a predetermined flow rate and supply it to the hydrogen electrode 2.

【0032】図3は本発明の実施例3による燃料電池の
系統図である。図3において冷却空気排出系22に流量
調整弁30を設け、流量調整弁30の上流側の冷却空気
排出系22から分岐して水素貯蔵合金槽6の伝熱管に接
続し、排出冷却空気を伝熱管に通流させる排出冷却空気
供給系31を設け、排出空気供給系14を取除いた他は
図1と同じである。なお32は排出冷却空気供給系31
の排出口である。
FIG. 3 is a system diagram of a fuel cell according to Embodiment 3 of the present invention. In FIG. 3, the cooling air discharge system 22 is provided with a flow rate adjusting valve 30, which is branched from the cooling air discharge system 22 on the upstream side of the flow rate adjusting valve 30 and connected to the heat transfer pipe of the hydrogen storage alloy tank 6 to transfer the discharged cooling air. The same as FIG. 1 except that an exhaust cooling air supply system 31 for flowing the heat pipe is provided and the exhaust air supply system 14 is removed. In addition, 32 is an exhaust cooling air supply system 31.
It is the outlet of.

【0033】このような構成により水素貯蔵合金槽6に
貯蔵された水素貯蔵合金は、熱交換器19にて燃料電池
本体1の冷却板4で発電時発生した熱を除熱した冷却水
を冷却したために昇温し、排出冷却空気供給系31を経
て水素貯蔵合金槽6の伝熱管に通流する高温の排出冷却
空気の少なくとも一部により加熱されて水素を放出す
る。この水素は水素供給系7を経て燃料電池本体1の水
素極2に燃料として供給される。
The hydrogen storage alloy stored in the hydrogen storage alloy tank 6 with such a configuration cools the cooling water from which the heat generated by the cooling plate 4 of the fuel cell body 1 in the heat exchanger 19 is removed. Therefore, the temperature rises, and the hydrogen is released by being heated by at least a part of the high-temperature exhaust cooling air flowing through the exhaust cooling air supply system 31 to the heat transfer tube of the hydrogen storage alloy tank 6. This hydrogen is supplied as a fuel to the hydrogen electrode 2 of the fuel cell body 1 via the hydrogen supply system 7.

【0034】また水素極2に所定量の水素を供給すると
きには、前述と同様に圧力検出器8で検出された検出圧
力の信号が圧力調節器25に入力され、この調節器によ
り検出圧力と所定圧力の目標値との偏差から流量調整弁
30を制御する。この制御により冷却空気排出系22か
ら排気される熱交換器19からの排出冷却空気量を制御
することにより、排出冷却空気供給系31を経て水素貯
蔵合金槽6の伝熱管を流れる排出冷却空気量を制御して
水素貯蔵合金を加熱し、この結果放出される水素の圧力
は所定圧力に制御される。
When a predetermined amount of hydrogen is supplied to the hydrogen electrode 2, a signal of the detected pressure detected by the pressure detector 8 is input to the pressure regulator 25 as in the above, and the regulator detects the detected pressure and the predetermined pressure. The flow rate adjusting valve 30 is controlled based on the deviation from the target pressure value. By controlling the amount of exhaust cooling air from the heat exchanger 19 exhausted from the cooling air exhaust system 22 by this control, the amount of exhaust cooling air flowing through the heat transfer pipe of the hydrogen storage alloy tank 6 via the exhaust cooling air supply system 31. Is controlled to heat the hydrogen storage alloy, and the pressure of hydrogen released as a result is controlled to a predetermined pressure.

【0035】図4は本発明の実施例4による燃料電池の
系統図である。図4において図3の圧力検出器8に代え
て流量検出器27と圧力調節器25に代えて流量調節器
28を設けた他は図3と同じである。
FIG. 4 is a system diagram of a fuel cell according to Embodiment 4 of the present invention. 4 is the same as FIG. 3 except that a flow rate detector 27 is provided instead of the pressure detector 8 of FIG. 3 and a flow rate adjuster 28 is provided instead of the pressure adjuster 25.

【0036】このような構成により、燃料電池本体1の
水素極2に所定流量の水素を供給するときには水素貯蔵
合金槽6から水素供給系7を流れる水素流量を流量検出
器27で検出した検出流量の信号を流量調節器28に入
力し、この調節器により検出流量と所定流量の目標値と
の偏差から流量制御弁30を制御する。この制御により
冷却空気排出系22から排気される熱交換器19からの
排出冷却空気量を制御することにより、排出冷却空気供
給系31を経て水素貯蔵合金槽6の伝熱管を流れる排出
冷却空気量を制御して水素貯蔵合金を加熱して所定流量
の水素を放出して水素極2に供給する。
With such a configuration, when a predetermined flow rate of hydrogen is supplied to the hydrogen electrode 2 of the fuel cell main body 1, the flow rate of hydrogen flowing through the hydrogen supply system 7 from the hydrogen storage alloy tank 6 is detected by the flow rate detector 27. Is input to the flow rate controller 28, which controls the flow rate control valve 30 from the deviation between the detected flow rate and the target value of the predetermined flow rate. By controlling the amount of exhaust cooling air from the heat exchanger 19 exhausted from the cooling air exhaust system 22 by this control, the amount of exhaust cooling air flowing through the heat transfer pipe of the hydrogen storage alloy tank 6 via the exhaust cooling air supply system 31. Is controlled to heat the hydrogen storage alloy to release a predetermined amount of hydrogen and supply the hydrogen to the hydrogen electrode 2.

【0037】[0037]

【発明の効果】以上の説明から明らかなように、本発明
によれば水素貯蔵合金槽に燃料電池本体の空気極から排
出される高温の排出空気又は燃料電池本体を冷却する冷
却媒体を冷却して昇温した高温の排出冷却空気を導いた
ことにより、水素貯蔵合金槽内の水素貯蔵合金を加熱し
て水素を放出して燃料電池本体の水素極に供給でき、ま
た水素貯蔵合金槽内で放出する水素の圧力又は水素極に
供給する水素流量を制御する制御手段を設けたことによ
り、放出された水素はその圧力又は流量が所定値に制御
されて水素極に供給され、燃料電池本体で発電を行なわ
せることができるので、水素貯蔵合金を加熱するのに新
しい熱源を設けることなく排出空気や排出冷却空気の廃
熱を利用でき、したがって燃料電池の効率が向上すると
いう効果がある。
As is apparent from the above description, according to the present invention, the high temperature exhaust air discharged from the air electrode of the fuel cell body or the cooling medium for cooling the fuel cell body is cooled in the hydrogen storage alloy tank. By guiding the high temperature exhaust cooling air that has been heated up, the hydrogen storage alloy in the hydrogen storage alloy tank can be heated to release hydrogen and be supplied to the hydrogen electrode of the fuel cell body. By providing the control means for controlling the pressure of released hydrogen or the flow rate of hydrogen supplied to the hydrogen electrode, the released hydrogen is supplied to the hydrogen electrode with its pressure or flow rate controlled to a predetermined value, and the fuel cell main body Since the electricity can be generated, the waste heat of the exhaust air or the exhaust cooling air can be used to heat the hydrogen storage alloy without providing a new heat source, and thus the efficiency of the fuel cell is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による燃料電池の系統図FIG. 1 is a system diagram of a fuel cell according to a first embodiment of the present invention.

【図2】本発明の実施例2による燃料電池の系統図FIG. 2 is a system diagram of a fuel cell according to a second embodiment of the present invention.

【図3】本発明の実施例3による燃料電池の系統図FIG. 3 is a system diagram of a fuel cell according to a third embodiment of the present invention.

【図4】本発明の実施例4による燃料電池の系統図FIG. 4 is a system diagram of a fuel cell according to Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

1 燃料電池本体 2 水素極 3 空気極 4 冷却板 6 水素貯蔵合金槽 8 圧力検出器 13 流量調整弁 14 排出空気供給系 19 熱交換器 25 圧力調節器 27 流量検出器 28 流量調節器 30 流量調整弁 31 排出冷却空気供給系 1 Fuel cell body 2 hydrogen electrode 3 air electrode 4 Cooling plate 6 Hydrogen storage alloy tank 8 Pressure detector 13 Flow rate adjustment valve 14 Exhaust air supply system 19 heat exchanger 25 Pressure regulator 27 Flow rate detector 28 Flow controller 30 Flow control valve 31 Exhaust cooling air supply system

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】電解質保持層と、これを挟持する水素極と
空気極とを備える単電池と、発電時発生する熱を除熱す
る冷却媒体が通流する冷却板とを有する燃料電池本体
と、水素極に供給する水素を放出する水素貯蔵合金を貯
蔵し、伝熱管を内蔵する水素貯蔵合金槽と、前記冷却媒
体を冷却ガスとの熱交換により冷却する熱交換器とを備
える燃料電池において、空気極から排出される排出酸化
剤ガスの少なくとも一部を水素貯蔵合金槽内の伝熱管に
通流させる排出酸化剤ガス供給系を設けたことを特徴と
する燃料電池。
1. A fuel cell main body having an electrolyte holding layer, a unit cell having a hydrogen electrode and an air electrode sandwiching the electrolyte holding layer, and a cooling plate through which a cooling medium for removing heat generated during power generation flows. A fuel cell comprising a hydrogen storage alloy tank for storing a hydrogen storage alloy that releases hydrogen supplied to a hydrogen electrode and having a heat transfer tube built therein; and a heat exchanger for cooling the cooling medium by heat exchange with a cooling gas. A fuel cell comprising an exhaust oxidant gas supply system for allowing at least a part of the exhaust oxidant gas exhausted from the air electrode to flow through a heat transfer tube in the hydrogen storage alloy tank.
【請求項2】請求項1記載の燃料電池において、熱交換
器から排出される排出冷却ガスの少なくとも一部を水素
貯蔵合金槽内の伝熱管に通流させる排出冷却ガス供給系
を設けたことを特徴とする燃料電池。
2. The fuel cell according to claim 1, wherein an exhaust cooling gas supply system is provided to allow at least a part of the exhaust cooling gas exhausted from the heat exchanger to flow through the heat transfer tube in the hydrogen storage alloy tank. Is a fuel cell.
【請求項3】請求項1記載の燃料電池において、排出酸
化剤ガス供給系を経る酸化剤ガスの加熱により放出する
水素の水素貯蔵合金槽内の圧力を検出する圧力検出器
と、空気極から外部に排出される排出酸化剤ガスの流量
を制御する流量調整弁と、圧力検出器での検出圧力を所
定圧力の目標値との偏差から流量調整弁を制御する制御
手段とを設けたことを特徴とする燃料電池。
3. The fuel cell according to claim 1, wherein a pressure detector for detecting the pressure in the hydrogen storage alloy tank of hydrogen released by heating the oxidant gas passing through the exhaust oxidant gas supply system, and an air electrode A flow rate adjusting valve for controlling the flow rate of the discharged oxidant gas discharged to the outside, and a control means for controlling the flow rate adjusting valve from the deviation of the pressure detected by the pressure detector from the target value of the predetermined pressure are provided. Characteristic fuel cell.
【請求項4】請求項1記載の燃料電池において、排出酸
化剤ガス供給系を経る排出酸化剤ガスの加熱により放出
する水素を水素貯蔵合金槽から水素極に供給する水素流
量を検出する流量検出器と、空気極から外部に排出され
る排出酸化剤ガスの流量を制御する流量調整弁と、流量
検出器での検出流量と所定流量の目標値との偏差から流
量調整弁を制御する制御手段とを設けるものとする。
4. The fuel cell according to claim 1, wherein a flow rate detection for detecting a flow rate of hydrogen supplied from the hydrogen storage alloy tank to the hydrogen electrode, the hydrogen being released by heating the exhaust oxidant gas passing through the exhaust oxidant gas supply system. And a flow rate adjusting valve for controlling the flow rate of the discharged oxidant gas discharged from the air electrode to the outside, and a control means for controlling the flow rate adjusting valve based on the deviation between the detected flow rate of the flow rate detector and the target value of the predetermined flow rate. And shall be provided.
【請求項5】請求項2記載の燃料電池において、排出冷
却ガス供給系を経る排出冷却ガスの加熱により放出する
水素の水素貯蔵合金槽内の圧力を検出する圧力検出器
と、熱交換器から外部に排出される排出冷却ガスの流量
を制御する流量調整弁と、圧力検出器での検出圧力と所
定圧力の目標値の偏差から流量調整弁を制御する制御手
段とを設けたことを特徴とする燃料電池。
5. The fuel cell according to claim 2, wherein a pressure detector for detecting the pressure in the hydrogen storage alloy tank of hydrogen released by heating the exhaust cooling gas passing through the exhaust cooling gas supply system, and a heat exchanger. A flow control valve for controlling the flow rate of the discharged cooling gas discharged to the outside, and a control means for controlling the flow control valve from the deviation between the pressure detected by the pressure detector and the target value of the predetermined pressure are provided. Fuel cell to do.
【請求項6】請求項2記載の燃料電池において、排出冷
却ガス供給系を経る排出冷却ガスの加熱により放出する
水素を水素貯蔵合金槽から水素極に供給する水素流量を
検出する流量検出器と、熱交換器から外部に排出される
排出冷却ガスの流量を制御する流量調整弁と、流量検出
器での検出流量と所定流量の目標値との偏差から流量調
整弁を制御する制御手段とを設けたことを特徴とする燃
料電池。
6. The fuel cell according to claim 2, further comprising a flow rate detector for detecting a flow rate of hydrogen supplied from the hydrogen storage alloy tank to the hydrogen electrode, the hydrogen being released by heating the exhaust cooling gas passing through the exhaust cooling gas supply system. A flow rate adjusting valve for controlling the flow rate of the exhaust cooling gas discharged from the heat exchanger to the outside, and a control means for controlling the flow rate adjusting valve from the deviation between the flow rate detected by the flow rate detector and the target value of the predetermined flow rate. A fuel cell characterized by being provided.
JP3180045A 1991-07-22 1991-07-22 Fule cell Pending JPH0529014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3180045A JPH0529014A (en) 1991-07-22 1991-07-22 Fule cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3180045A JPH0529014A (en) 1991-07-22 1991-07-22 Fule cell

Publications (1)

Publication Number Publication Date
JPH0529014A true JPH0529014A (en) 1993-02-05

Family

ID=16076526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3180045A Pending JPH0529014A (en) 1991-07-22 1991-07-22 Fule cell

Country Status (1)

Country Link
JP (1) JPH0529014A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0817298A1 (en) * 1996-01-22 1998-01-07 Matsushita Electric Industrial Co., Ltd. Fuel cell system
JP2000012056A (en) * 1998-06-26 2000-01-14 Aqueous Reserch:Kk Fuel cell system
WO2002028767A1 (en) * 2000-10-02 2002-04-11 Tohoku Techno Arch Co., Ltd. Method of absorption-desorption of hydrogen storage alloy and hydrogen storage alloy and fuel cell using said method
WO2002028768A1 (en) * 2000-10-03 2002-04-11 Tohoku Techno Arch Co., Ltd. Method of absorption-desorption of hydrogen storage alloy and hydrogen storage alloy and fuel cell using said method
EP1195353A4 (en) * 1999-04-02 2003-01-22 Ebara Corp Method and apparatus for production of hydrogen by gasification of combusible material
US6835490B1 (en) 1999-03-29 2004-12-28 Tohoku Techno Arch Co., Ltd. Alloy for hydrogen storage, method for absorption and release of hydrogen using the alloy, and hydrogen fuel cell using the method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962155A (en) * 1996-01-22 1999-10-05 Matsushita Electric Industrial Co., Ltd. Fuel cell system
EP0817298A1 (en) * 1996-01-22 1998-01-07 Matsushita Electric Industrial Co., Ltd. Fuel cell system
EP0817298A4 (en) * 1996-01-22 2005-04-20 Matsushita Electric Ind Co Ltd Fuel cell system
JP2000012056A (en) * 1998-06-26 2000-01-14 Aqueous Reserch:Kk Fuel cell system
US6835490B1 (en) 1999-03-29 2004-12-28 Tohoku Techno Arch Co., Ltd. Alloy for hydrogen storage, method for absorption and release of hydrogen using the alloy, and hydrogen fuel cell using the method
US7094493B2 (en) 1999-03-29 2006-08-22 Tohoku Techno Arch Co., Ltd. Hydrogen storage metal alloy, method for absorption and release of hydrogen using the said alloy and hydrogen fuel battery using the said method
EP1195353A4 (en) * 1999-04-02 2003-01-22 Ebara Corp Method and apparatus for production of hydrogen by gasification of combusible material
WO2002028767A1 (en) * 2000-10-02 2002-04-11 Tohoku Techno Arch Co., Ltd. Method of absorption-desorption of hydrogen storage alloy and hydrogen storage alloy and fuel cell using said method
JPWO2002028767A1 (en) * 2000-10-02 2004-02-12 株式会社東北テクノアーチ Method for absorbing and releasing hydrogen storage alloy, hydrogen storage alloy, and fuel cell using the method
JP4716304B2 (en) * 2000-10-02 2011-07-06 株式会社 東北テクノアーチ Hydrogen storage alloy storage and release method, hydrogen storage alloy and fuel cell using the method
JPWO2002028768A1 (en) * 2000-10-03 2004-02-12 株式会社東北テクノアーチ Method for absorbing and releasing hydrogen from hydrogen storage alloy and fuel cell using the method
WO2002028768A1 (en) * 2000-10-03 2002-04-11 Tohoku Techno Arch Co., Ltd. Method of absorption-desorption of hydrogen storage alloy and hydrogen storage alloy and fuel cell using said method
JP4716305B2 (en) * 2000-10-03 2011-07-06 株式会社 東北テクノアーチ Hydrogen storage / release method of hydrogen storage alloy and fuel cell using the method

Similar Documents

Publication Publication Date Title
CN106558713B (en) Low-temperature starting system and operation method for fuel cell
JP3849375B2 (en) Combined heat and power unit
JPH11339831A (en) On-vehicle fuel cell system
JP2002121001A (en) Hydrogen supply device
US6758981B2 (en) Method and apparatus for by-product removal in a hydrogen generation system
US20100261094A1 (en) Apparatus for containing metal-organic frameworks
JPH0529014A (en) Fule cell
JP2006177535A (en) Device and method for detecting deterioration of hydrogen storage material of hydrogen storage tank, and hydrogen storage supply system
JP2811905B2 (en) Steam generator for fuel cell power generation system
JP3263129B2 (en) Fuel cell system
JP2003282108A (en) Fuel cell system
US7112382B2 (en) Fuel cell hydrogen recovery system
JP2002061797A (en) Halogen station
JP2003243009A (en) Warming up device for fuel cell
JP2018037300A (en) Fuel battery device
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JPS58164165A (en) Circulating air feeding device of fuel cell
JP3997466B2 (en) Fuel cell power generator and operation control method thereof
CN217933882U (en) High-temperature fuel cell system for supplying hydrogen by liquid organic hydrogen storage material
KR101200689B1 (en) Heat recovery apparatus of fuel cell
CN217933874U (en) Fuel cell system based on quick self-heating solid hydrogen storage device
JPH06140066A (en) Fuel cell power generating system
JPH0447674A (en) Temperature control device for fuel cell
JPS60207256A (en) Fuel cell power generation system
JP2807635B2 (en) Temperature control method for fuel cell power generation equipment