JPS58183946A - Denitration catalyst and preparation thereof - Google Patents

Denitration catalyst and preparation thereof

Info

Publication number
JPS58183946A
JPS58183946A JP57065787A JP6578782A JPS58183946A JP S58183946 A JPS58183946 A JP S58183946A JP 57065787 A JP57065787 A JP 57065787A JP 6578782 A JP6578782 A JP 6578782A JP S58183946 A JPS58183946 A JP S58183946A
Authority
JP
Japan
Prior art keywords
catalyst
tio2
molded body
surface layer
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57065787A
Other languages
Japanese (ja)
Inventor
Toshikuni Sera
世良 俊邦
Shigeaki Mitsuoka
光岡 薫明
Yoshiaki Obayashi
良昭 尾林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57065787A priority Critical patent/JPS58183946A/en
Publication of JPS58183946A publication Critical patent/JPS58183946A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce SO2 oxidizing catacity without lowering denitration capacicy, in a TiO2.WO3.V2O5 denitration catalyst comprising a composition containing catalytic components in a specific ratio, by increasing the concn. of V2O5 only in the surface layer part of said catalyst. CONSTITUTION:This catalyst has such a composition that WO3 is 2-12wt% to TiO2, V2O5 is 0.1-3wt% to TiO2 and the remainder is TiO2 and the concn. of V2O5 is made high only in the surface layer part thereof. This catalyst is prepared by a method wherein a kneaded molded body consisting of TiO2 and WO3 is immersed in a V-containing solution and the impregnated molded body is rapidly dried to be baked. The obtained catalyst is adapted to an exhaust gas containing sulfur oxide easily converted to catalyst poison or soot other than nitrogen oxide and develops the function thereof in good efficiency without receiving influence of the above-mentioned poisoning component in removing nitrogen oxide in a harmless state by subjecting the same to catalytic reduction under a proper temp. by using ammonia as a reducing agent to convert the same to nitrogen and water and suppresses reaction oxidizing SO2 to SO3.

Description

【発明の詳細な説明】 じめとする各種化学装置に付設する燃焼炉.製鉄プラン
ト,及びディーゼルlシジシやタービシの如き内燃機関
等からの排ガス中に含有される窒素酸化物(以下NOx
と略称する)を効果的かつ経済的に還元し無害化する脱
硝触媒の調製法に関するものである。特に、本発明はN
Oxの他に触媒被毒となりやすい硫*酸化物(以下SO
χと略称する)や煤じんを含有する排ガスに通用してア
シ七ニアNH,を還元剤として適度の温度下でNOxを
接触還元し,窒素N,と水H,Oに転化して無害化除去
するに当り.上記被毒成分の影響を受けずに効率良くそ
の機能を発揮するとともに,亜硫酸カスSO,の三酸化
硫黄SO,への酸化反応を抑制する触媒を提供するもの
である。
[Detailed Description of the Invention] A combustion furnace attached to various chemical equipment including humidity. Nitrogen oxides (hereinafter referred to as NOx) are contained in exhaust gas from steel plants and internal combustion engines such as diesel engines and turbo engines.
The present invention relates to a method for preparing a denitrification catalyst that effectively and economically reduces and renders denitrification harmless. In particular, the present invention
In addition to Ox, sulfur * oxides (hereinafter referred to as SO
This method is commonly used for exhaust gases containing soot and soot, and catalytically reduces NOx at moderate temperatures using acinania NH as a reducing agent, converting it into nitrogen N, and water H and O, rendering it harmless. When removing it. The present invention provides a catalyst that efficiently performs its functions without being affected by the above-mentioned poisoning components and that suppresses the oxidation reaction of sulfite residue SO to sulfur trioxide SO.

従来よりアナターゼ型の酸化チタンTiO,,M化タシ
ジステシWQ,を主成分に五酸化ルナ5ウムVIOsを
少1添加するのが良いことを本発明者も促言しており,
その他TIO, −M。O, − V2O,  なども
既に触媒組成特許として多数出願されている。
The present inventor has previously recommended that it is good to add a small amount of 5um lunar pentoxide VIOs to the main ingredients of anatase-type titanium oxide TiO, and M-type titanium oxide WQ.
Other TIO, -M. Many patent applications have already been filed for catalyst compositions such as O, -V2O, etc.

これに対し2本発明者は、触媒調製法の観点から、ダス
トを含有する排ガス中のNOxを除去する触媒として多
用されているへ二カム状触媒で脱硝性能を晶(維持し、
かつ脱硝装置の後流機器における酸性硫安による腐食と
開基を極力低減させるためにSO,酸化性能を抑制する
脱硝触媒及びその調製法を見出したものである。
In contrast, from the viewpoint of a catalyst preparation method, the inventors of the present invention have attempted to crystallize (maintain) denitrification performance with a hemi-cam-shaped catalyst that is frequently used as a catalyst for removing NOx from exhaust gas containing dust.
In addition, we have discovered a denitrification catalyst that suppresses SO and oxidation performance, and a method for preparing the same, in order to minimize corrosion and radical opening caused by acidic ammonium sulfate in downstream equipment of a denitrification device.

まず、触媒における脱硝反応は接ガス部の表面から10
0μ程度、性能安定性の面からは高々20+jμもあれ
ば十分であることがムライト質あるいi工]−じコうイ
ト質のハニカム状基材に触媒成分を付着担持させたコー
ト型の触媒のテストで確認できた。(第1図参照) 又、S02が排ガス中のO2の存在下でSO,に転化す
る副反応は脱硝反応の如きガス拡散律速でな(、触媒自
体もSO2酸化反応を抑制し℃いることから触媒層全体
における反応律速で進んでいることかっ一ト型触媒での
反応解析を行うことで明らかとなった。
First, the denitrification reaction in the catalyst starts from the surface of the gas contact part.
A coating type catalyst in which catalyst components are adhered and supported on a gycovite honeycomb-like base material. This was confirmed by the test. (See Figure 1) Furthermore, the side reaction in which S02 is converted to SO in the presence of O2 in the exhaust gas is rate-limited by gas diffusion like the denitrification reaction (because the catalyst itself also suppresses the SO2 oxidation reaction). It was revealed through reaction analysis using a bracket-type catalyst that the reaction rate in the entire catalyst layer is rate-determining.

従って1以上の解析結果を触媒成分だけで構成されてい
るソリッド型触媒に利用すると。
Therefore, if one or more analysis results are used for a solid type catalyst composed only of catalyst components.

Tie、、  WO,を触媒形成層に均一に分布させ、
SO6酸化反応に敏感で脱硝活性にも優れている■20
゜を接ガス表面から高々200μ以内にできるだけ多く
分布させるのが良いことがわかる。石炭焚ボイラ排ガス
は多1の砂じんのよっな゛タストを含有しており、これ
に適用する触媒は耐マ七つ性の賦与も重視せねばならず
先述のコート型触媒よりソリ・ンド型触媒の方が触媒層
が厚いことから多用されている。
Tie,, WO, is uniformly distributed in the catalyst formation layer,
Sensitive to SO6 oxidation reaction and excellent denitrification activity■20
It can be seen that it is best to distribute as much as possible within 200 μm from the surface in contact with the gas. Coal-fired boiler exhaust gas contains a large amount of dust, such as sand and dust, and the catalyst used for this must be highly resistant to corrosion, so solid-type catalysts are preferred over coat-type catalysts as mentioned above. is more commonly used because it has a thicker catalyst layer.

以下において8本発明ではハニカム状のソリッド型触媒
で説明するが1粒状1円柱状などの触媒でも当然本発明
を通用でき、また、コート型触媒でも更に表面層近< 
VCVtOsを担持させることでさらに低SO!酸化能
にすることが可能である。
8 In the following, the present invention will be explained using a honeycomb-shaped solid catalyst, but the present invention can also be applied to catalysts such as one particle or one cylinder, and even coated catalysts can be used even closer to the surface layer.
Even lower SO by carrying VCVtOs! It is possible to increase the oxidizing ability.

一般的に触媒では耐マ七つ性を賦与するために成形体を
600〜650℃のII6@で焼成しているが、  V
、O,共存状態ではv、0.がTie、のアナターゼ型
をルチル型に変質させるため1本発明ではTtot#:
形体あるいはTidy−WO3の混練成形体を品温焼成
後*  VtOsを含浸法で担持させている。
Generally, catalysts are fired at 600 to 650°C II6@ to impart V resistance.
, O, in the coexistence state, v, 0. In order to transform the anatase type of Tie into the rutile type, in the present invention, Ttot#:
After the molded body or Tidy-WO3 kneaded body is fired at the same temperature, *VtOs is supported by an impregnation method.

そしてv、0.を担持させる時に本発明の調製法を用い
ることで■、0.を成形体の表面近くにたくさん分布さ
せることが可能となる。
and v, 0. By using the preparation method of the present invention when supporting ■, 0. This makes it possible to distribute a large amount of particles near the surface of the molded body.

その調製法の一つはTie、 、 WO,からなるハニ
カム成形体をメタバナジシ酸アシtニウムのシコウ酸加
熱溶液、硫酸バナジル水浴液、メタバナジシ酸アシtニ
ウ乙のアミシ溶液などの焼成することにより■、0.に
成る溶液中に十分に浸漬して1次いで成形体を乾燥さ゛
せる時に成形体に割れが生じない範囲で極力短時間に乾
燥させることで、  V、O,は蒸発する水分に同伴し
て成形体の表層側に寄る一種のり0マド現象を利用する
ことで達成できる。この時表層部のVtoelll度を
上げる方法としてはTidy +  Wowから成る成
形体を半乾状態で該バナジウム含有m液に浸漬する方法
、乾燥状態の該成形体を該バナジウム含有m液に瞬時1
!i!潰させて該成形体の内部まで入りこませないよう
にする方法がある。
One of the preparation methods is to calcinate a honeycomb molded body made of Tie, WO, in a heated solution of citric acid, vanadyl sulfate, a solution of citric acid, etc. ,0. By thoroughly immersing the molded body in a solution containing evaporated water and then drying it in as short a time as possible without causing cracks in the molded body, V, O, and O are molded together with the evaporated water. This can be achieved by utilizing a type of adhesive phenomenon that tends toward the surface of the body. At this time, methods for increasing the Vtoell degree of the surface layer include a method of immersing the molded body made of Tidy + Wow in the vanadium-containing liquid in a semi-dry state, and a method of instantly immersing the molded body in a dry state in the vanadium-containing liquid m.
! i! There is a method of crushing it to prevent it from entering the inside of the molded body.

他の方法は該成形体内部での化学反応により■20.を
該成形体の表層近くに濃厚担持させるものである。即ち
TiO2,WO3から成る成形体を希酸処理して1次い
で表層近(の水分を風乾あるいは熱風乾燥の併用により
一部除いてバナジウムのアミシ溶解液に浸漬させて酸と
アルカリの中和反応を利用することにより該成形体の表
層近(にvt asを担持させる方法である。ここで使
用するバナ5つムのアミシ浴解液はメタバナジy−ア:
Jv:ニウムを′ジェタノールアミンのようなアミノア
ルコールあるいはtノメチルアミシなどで加熱溶解させ
たものである。又ここで使用する希酸としては塩酸、硫
酸、酢鐵、シコウ酸などがある。なお、該成形体内部で
の中和反応を利用する方法としては該成形体をアシ七二
ア水で処理後、半乾状態にしてシ】つ酸バナじルや硫酸
バナじルのようなバナジウムを含有する酸弓液に浸漬さ
せる方法も考えられるが、アンモニアは気相になりやす
く1通常のv4製法では該成形体内部にアンモニアとし
て封じこめてお(ことは困雌であることから実用的では
ない。
Another method is 20. by chemical reaction inside the molded body. is densely supported near the surface layer of the molded body. That is, a molded body made of TiO2 and WO3 is treated with dilute acid, then part of the moisture near the surface layer is removed by air drying or a combination of hot air drying, and then immersed in a vanadium amici solution to carry out a neutralization reaction between acid and alkali. This is a method of supporting Vt as near the surface layer of the molded body by utilizing metavanadium y-a:
Jv: Nium is heated and dissolved in an amino alcohol such as diethanolamine or t-methylamic acid. The dilute acids used here include hydrochloric acid, sulfuric acid, iron acetate, and sychoic acid. In addition, as a method of utilizing the neutralization reaction inside the molded product, the molded product is treated with acetic acid water, left in a semi-dry state, and then treated with vanadyl oxalate or vanadyl sulfate. A method of immersing it in an acid powder solution containing vanadium is also considered, but ammonia tends to turn into a gas phase (1) In the normal V4 manufacturing method, it is sealed as ammonia inside the molded body (this is difficult to do, so it is difficult to put it into practical use). Not the point.

本発明者らはすでにTr02 r WOs l v10
!から成るハニカム触媒組成をTidy K対してWO
lを2〜10wt%+  V、O,を005〜3wt%
にするのが高い脱硝性能と低いSO2酸化性能を得るの
に好ましいとして提案している。(特願昭53−077
818)しかし1本発明によると脱硝活性に有効なハニ
カム成形体の表面層(〜200μ)での■、0.相持濃
度を高めろことだけで脱硝性能を低下させることな(、
So、酸化性能を低減させることが可能となる。
The inventors have already developed Tr02 r WOs l v10
! Honeycomb catalyst composition consisting of WO to Tidy K
2 to 10 wt% of l + 005 to 3 wt% of V, O,
It is proposed that it is preferable to obtain high denitrification performance and low SO2 oxidation performance. (Special application 1977-077
818) However, according to the present invention, ■, 0. Don't lower the denitrification performance just by increasing the mutual concentration.
So, it becomes possible to reduce the oxidation performance.

以下実施例により本発明を具体的に述べる。The present invention will be specifically described below with reference to Examples.

〔実 b簀A’fリ 1 〕 硫酸チタニルを原料にして製造されたアナターゼ型のT
iO、とWO5から成るハニカム成形体(穴の形状;正
方形、目開き;6.Omg++ 壁厚;165朋)をシ
コウ酸バナジル溶液に30分浸漬後、110℃に設定し
た熱風乾燥機で5時間乾燥させ1次いで450℃で3時
間焼成して、  Ti0290部W0310部に対して
V、O,0,5部含有するハニカム触媒Aを得た。また
比較触媒として前述のハニカム成形体をシコウ酸バナジ
ル浴iK浸漬後室温で1日風乾して1次いで常温から5
C/Mi11 で昇温する乾燥機にて5時間乾燥させ。
[Actual A'fli 1] Anatase-type T produced from titanyl sulfate as a raw material
A honeycomb molded body (hole shape: square, opening: 6.0mg++, wall thickness: 165mm) consisting of iO and WO5 was immersed in a vanadyl sicolate solution for 30 minutes, and then dried in a hot air dryer set at 110°C for 5 hours. The catalyst was dried and then calcined at 450° C. for 3 hours to obtain a honeycomb catalyst A containing 0.5 parts of V and O based on 290 parts of Ti and 310 parts of W. In addition, as a comparative catalyst, the above-mentioned honeycomb molded body was immersed in vanadyl sikolate bath iK and then air-dried at room temperature for 1 day.
Dry for 5 hours in a dryer heated at C/Mi11.

さらK 450℃で3時間焼成した触媒Bを調製した。Further, catalyst B was prepared by calcining at 450°C for 3 hours.

触媒A、Hのバナジウム濃度分布を調べるためにX線マ
イクロアナライザーで線分析したところ第2図に示すよ
うに触媒人はハニカム成形体の表層近゛くで■が高濃度
に分布しているのに対し触媒Bは全体にほぼ均一に分布
している。
In order to investigate the vanadium concentration distribution of catalysts A and H, ray analysis was performed using an X-ray microanalyzer, and as shown in Figure 2, it was found that ``■'' was distributed in high concentration near the surface layer of the honeycomb formed body. On the other hand, catalyst B is distributed almost uniformly throughout.

さらに触媒A、Hの活性を調べるためIKポプラ排ガス
を使用して第1表の試験条件で脱硝性能、SOt@化性
能全性能した結果第2表に示すように触媒Aは触媒Bに
比べて高活性かつ低SO,fI!化性能を有しているこ
とがわかった。
Furthermore, in order to investigate the activity of Catalysts A and H, IK poplar exhaust gas was used to perform all the denitrification and SOt conversion performance under the test conditions shown in Table 1. As shown in Table 2, Catalyst A was superior to Catalyst B. High activity and low SO, fI! It was found that it has the ability to

第2表 C実施例2〕 実施例1ではSO,酸化性能の低減効果が顕著番・こな
らないので、実用的でにないがV、 O,担持層なTi
e、 90部W0.10部のハニカム成形体に対して4
 wt%にして実施例1のA触媒と同様に触媒Cを調製
するとともに比較触媒として触媒りを実施例10B触媒
と同様の方法で調製して表1に示す触媒菫を生滅した以
外は実施例1と同じ方法で触媒性能を評画したところ触
媒Cは脱i11率755%、so、酸化軍2.8%、触
媒りは脱硝4755俤、S偽酸化率59%の結果を得た
Table 2 C Example 2] In Example 1, the effect of reducing SO and oxidation performance was not significant, so it was not practical, but V, O, and Ti as a support layer were used.
e, 4 for a honeycomb formed body of 90 parts W0.10 parts
Catalyst C was prepared in the same manner as catalyst A in Example 1 in terms of wt%, and a catalyst C was prepared as a comparative catalyst in the same manner as catalyst B in Example 10, except that the catalyst violet shown in Table 1 was destroyed. When the catalyst performance was evaluated using the same method as in 1, catalyst C had a denitrification rate of 755%, SO and oxidation forces were 2.8%, and catalyst C had a denitrification rate of 4755 and a S false oxidation rate of 59%.

■、0.纒度が4wtチもある′場合には脱硝性りとで
は差がないが、SO7酸化性能は表面層の■、0.濃度
を上げた触媒Cの方がはるかに少なくなっており本発明
の効鼓が顕著に示されている。
■、0. There is no difference in denitrification performance when the degree of fineness is as high as 4wt, but the SO7 oxidation performance is lower than that of the surface layer. The amount of Catalyst C with increased concentration was much smaller, clearly demonstrating the effectiveness of the present invention.

〔実施例3〕 実施例1のTie、 r  WOB成形体を1N希硫酸
溶液に浸漬後、50Cで1時間乾燥させ、メタパナジ:
/酸アシ[ニリムを七ノエタノールアミシで加熱浴屏し
た浴液に浸漬させる。次いで通常の方法により110℃
で10時間乾燥させて450Cで5時間焼成することに
より実施例1と同量の触媒成分を含有する触媒Eを得、
実施例1と同様に計画した結果、脱硝率9468%、S
O,#R化404チとなった。
[Example 3] The Tie, r WOB molded body of Example 1 was immersed in a 1N dilute sulfuric acid solution, dried at 50C for 1 hour, and metapanaji:
/Acid acid [Nirimu is immersed in a bath solution heated with 7-ethanol acid. Then, the temperature was increased to 110°C by the usual method.
Catalyst E containing the same amount of catalyst components as in Example 1 was obtained by drying for 10 hours at 450C and calcining for 5 hours at 450C.
As a result of planning in the same manner as in Example 1, the denitrification rate was 9468%, S
O, #R became 404 chi.

以上述べたように1本発明方法によると、成形体表面層
のVzOs 11度を故意に増加させることで、従来の
TiO2−WOB −V、O8触媒に比べて菌活性でか
つ低SO2酸化性能を有する脱硝触媒を提供することが
hJ能である。
As described above, according to the method of the present invention, by intentionally increasing the VzOs of the surface layer of the molded article by 11 degrees, it has higher bacterial activity and lower SO2 oxidation performance than the conventional TiO2-WOB-V, O8 catalyst. The ability of hJ to provide a denitrification catalyst with

【図面の簡単な説明】[Brief explanation of drawings]

第1図は脱硝反応に有効な触媒層厚さの説明図、第2図
及び第6図は触媒A及びBにおけろWと■の濃度分布の
説明図である。
FIG. 1 is an explanatory diagram of the catalyst layer thickness effective for the denitrification reaction, and FIGS. 2 and 6 are explanatory diagrams of the concentration distribution of W and ■ in catalysts A and B.

Claims (1)

【特許請求の範囲】 +1)  組成にWQ、がTie、に対して2〜12w
tチ。 ■20.がTi 02に対して01〜3wt係、残部が
T10.であり、  VtO,の濃度(工表層部のみが
高(。 用途はアシ七ニアによる排ガス中の窒素酸化物の接触還
元用であることを特徴とする脱硝触媒。 +21  Tie、とWO,の混練成形体をバナジウム
含有溶液に浸漬して急速に乾燥させたのち焼成すること
を特徴とする脱硝触媒の調製法。 (31Tie、とWO,の混練成形体を酸性浴液に浸漬
して半乾燥させ1次にルナ5ウム含有アルカリ性溶液に
浸漬して乾燥させたのち焼成することを%徴とする脱硝
触媒の調製法。
[Claims] +1) WQ in the composition is 2 to 12W for Tie.
tchi. ■20. is 01-3wt for Ti 02, and the rest is T10. , and the concentration of VtO (high only in the surface layer) is a denitrification catalyst characterized in that it is used for catalytic reduction of nitrogen oxides in exhaust gas by acinanium. +21 Kneading of Tie and WO. A method for preparing a denitrification catalyst characterized by immersing a molded body in a vanadium-containing solution, rapidly drying it, and then firing it. A method for preparing a denitrification catalyst, which comprises firstly immersing it in an alkaline solution containing Luna-5U, drying it, and then firing it.
JP57065787A 1982-04-20 1982-04-20 Denitration catalyst and preparation thereof Pending JPS58183946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57065787A JPS58183946A (en) 1982-04-20 1982-04-20 Denitration catalyst and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57065787A JPS58183946A (en) 1982-04-20 1982-04-20 Denitration catalyst and preparation thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62171728A Division JPS63147548A (en) 1987-07-09 1987-07-09 Preparation of catalyst for denitration

Publications (1)

Publication Number Publication Date
JPS58183946A true JPS58183946A (en) 1983-10-27

Family

ID=13297090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57065787A Pending JPS58183946A (en) 1982-04-20 1982-04-20 Denitration catalyst and preparation thereof

Country Status (1)

Country Link
JP (1) JPS58183946A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966882A (en) * 1987-06-05 1990-10-30 Babcock-Hitachi Kabushiki Kaisha Catalyst for denitration by catalytic reduction using ammonia and a process for producing the same
US5087600A (en) * 1987-06-05 1992-02-11 Babcock-Hitachi Kabushiki Kaisha Process for producing a catalyst for denitration by catalytic reduction using ammonia
KR100295370B1 (en) * 1998-08-04 2001-10-26 이종훈 Method for producing a vanadium pentoxide-based catalyst for removing nitrogen oxides using titanium dioxide for pigment as a carrier of catalyst
US6380128B1 (en) 1999-10-19 2002-04-30 Korea Hydro & Nuclear Power Co., Ltd. V2O5-based catalyst for removing NOx from flue gas and preparing method therefor
WO2006114831A1 (en) * 2005-04-06 2006-11-02 Mitsubishi Heavy Industries, Ltd. Catalyst for exhaust gas treatment capable of carrying out reduction treatment of so3, method for production thereof, and method for treating exhaust gas using the catalyst
JP2007014960A (en) * 2006-09-28 2007-01-25 Babcock Hitachi Kk Production method of catalyst for removing nox in exhaust gas
JP2012206058A (en) * 2011-03-30 2012-10-25 Nippon Shokubai Co Ltd Denitration catalyst and denitrification method
JP2013538121A (en) * 2010-08-09 2013-10-10 コーメテック, インコーポレイテッド Catalyst composition and its application
CN106111119A (en) * 2016-06-20 2016-11-16 浙江三龙催化剂有限公司 A kind of remove the preparation method and applications of the catalyst of two English in flue gas
CN106111118A (en) * 2016-06-20 2016-11-16 浙江三龙催化剂有限公司 A kind of preparation method and applications of denitrating catalyst
CN108910951A (en) * 2018-06-15 2018-11-30 金堆城钼业股份有限公司 A kind of preparation method of titanium dioxide and molybdenum trioxide composite granule

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411093A (en) * 1977-06-27 1979-01-26 Sakai Chem Ind Co Ltd Production of catalyst and denitration method
JPS5594643A (en) * 1979-01-11 1980-07-18 Mitsubishi Heavy Ind Ltd Denitrification catalyst
JPS56168835A (en) * 1980-05-31 1981-12-25 Mitsubishi Petrochem Co Ltd Denitrating catalyst and denitrating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5411093A (en) * 1977-06-27 1979-01-26 Sakai Chem Ind Co Ltd Production of catalyst and denitration method
JPS5594643A (en) * 1979-01-11 1980-07-18 Mitsubishi Heavy Ind Ltd Denitrification catalyst
JPS56168835A (en) * 1980-05-31 1981-12-25 Mitsubishi Petrochem Co Ltd Denitrating catalyst and denitrating method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966882A (en) * 1987-06-05 1990-10-30 Babcock-Hitachi Kabushiki Kaisha Catalyst for denitration by catalytic reduction using ammonia and a process for producing the same
US5087600A (en) * 1987-06-05 1992-02-11 Babcock-Hitachi Kabushiki Kaisha Process for producing a catalyst for denitration by catalytic reduction using ammonia
KR100295370B1 (en) * 1998-08-04 2001-10-26 이종훈 Method for producing a vanadium pentoxide-based catalyst for removing nitrogen oxides using titanium dioxide for pigment as a carrier of catalyst
US6380128B1 (en) 1999-10-19 2002-04-30 Korea Hydro & Nuclear Power Co., Ltd. V2O5-based catalyst for removing NOx from flue gas and preparing method therefor
WO2006114831A1 (en) * 2005-04-06 2006-11-02 Mitsubishi Heavy Industries, Ltd. Catalyst for exhaust gas treatment capable of carrying out reduction treatment of so3, method for production thereof, and method for treating exhaust gas using the catalyst
JP2007014960A (en) * 2006-09-28 2007-01-25 Babcock Hitachi Kk Production method of catalyst for removing nox in exhaust gas
JP2013538121A (en) * 2010-08-09 2013-10-10 コーメテック, インコーポレイテッド Catalyst composition and its application
JP2012206058A (en) * 2011-03-30 2012-10-25 Nippon Shokubai Co Ltd Denitration catalyst and denitrification method
CN106111119A (en) * 2016-06-20 2016-11-16 浙江三龙催化剂有限公司 A kind of remove the preparation method and applications of the catalyst of two English in flue gas
CN106111118A (en) * 2016-06-20 2016-11-16 浙江三龙催化剂有限公司 A kind of preparation method and applications of denitrating catalyst
CN108910951A (en) * 2018-06-15 2018-11-30 金堆城钼业股份有限公司 A kind of preparation method of titanium dioxide and molybdenum trioxide composite granule

Similar Documents

Publication Publication Date Title
WO2018047378A1 (en) Denitration catalyst and production method for denitration catalyst
KR100370460B1 (en) DeNOx CATALYST FOR REDUCING THE NOx CONCENTRATION IN A STREAM OF FLUID, AND METHOD OF MANUFACTURING THE CATALYST
JPS6323740A (en) Selective contact reducing catalyst
JPS58183946A (en) Denitration catalyst and preparation thereof
JPH02194819A (en) Reducing method of nitrogen oxide present in waste gas containing oxygen
JP3389005B2 (en) Nitrogen oxide removal catalyst
JPH0768172A (en) Catalyst for catalyst production of nox and method thereof
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
JPS60106535A (en) Catalyst for treating waste gas
US4849392A (en) Catalyst material for reducing the nitrogen oxides in flue gases
JPH11342334A (en) Nox removal catalyst, its production and method for removing nox using the same
JP4508597B2 (en) Exhaust gas treatment catalyst capable of SO3 reduction treatment, method for producing the same, and exhaust gas treatment method using the exhaust gas treatment catalyst
JPS6038037A (en) Regeneration of denitrification catalyst
JPS5812057B2 (en) Shiyokubaisosabutsu
JPS63147548A (en) Preparation of catalyst for denitration
JPS58210849A (en) Denitration catalyst for catalytic reduction with ammonia
JPH11267459A (en) Reducing method of nitrogen oxide and so3 in exhaust gas
JP3150519B2 (en) Regeneration method of denitration catalyst
JP2004074106A (en) Method for regeneration of catalyst
JPS5823136B2 (en) How to remove nitrogen oxides from exhaust gas
JPH09155190A (en) Catalyst for removing nitrogen oxides in exhaust gas, production thereof and method for removing nitrogen oxides in exhaust gas using the catalyst
JPH01111443A (en) Nitrogen oxide removing catalyst
JPS6018450B2 (en) Method for treating exhaust gas containing nitrogen oxides
JPS6260937B2 (en)
JPS6388047A (en) Preparation of catalyst for removing nitrogen oxide