JPS58182260A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS58182260A
JPS58182260A JP57065925A JP6592582A JPS58182260A JP S58182260 A JPS58182260 A JP S58182260A JP 57065925 A JP57065925 A JP 57065925A JP 6592582 A JP6592582 A JP 6592582A JP S58182260 A JPS58182260 A JP S58182260A
Authority
JP
Japan
Prior art keywords
region
conductivity type
type
transistor
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57065925A
Other languages
Japanese (ja)
Other versions
JPH0561775B2 (en
Inventor
Toyoki Takemoto
竹本 豊樹
Tsutomu Fujita
勉 藤田
Haruyasu Yamada
山田 晴保
Tadanaka Yoneda
米田 忠央
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57065925A priority Critical patent/JPS58182260A/en
Priority to DE8383103726T priority patent/DE3361832D1/en
Priority to EP83103726A priority patent/EP0093304B1/en
Publication of JPS58182260A publication Critical patent/JPS58182260A/en
Priority to US07/124,423 priority patent/US4826780A/en
Priority to US07/295,380 priority patent/US5066602A/en
Publication of JPH0561775B2 publication Critical patent/JPH0561775B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • H01L21/8228Complementary devices, e.g. complementary transistors
    • H01L21/82285Complementary vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0229Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of bipolar structures
    • H01L27/0233Integrated injection logic structures [I2L]
    • H01L27/0244I2L structures integrated in combination with analog structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/082Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only
    • H01L27/0823Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including bipolar components only including vertical bipolar transistors only
    • H01L27/0826Combination of vertical complementary transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an IC containing a high speed bi-polar transistor, by improving the low speed property of a transverse directional bipolar transistor and the controllability of a vertical type bi-polar transistor. CONSTITUTION:Two N<+> type buried regions and a buried regions 32 of lamination with N<-> type and P<+> type are provided on a P type semiconductor substrate 31, and an N type layer 33 is epitaxially grown over the entire surface including it. Next, the layer 33 is insulated and isolated into three islands by four P<+> type regions 35 which reach the substrate 31, while including the regions 32 respectively, then a P<-> type resistant region 40 is diffusion-formed in one of them, and resistant contact regions 44 are provided therein. A P type base region 43 of a transverse type N-P-N transistor is diffusion-formed in one of adjacent islands, then an N<+> type emitter region 46 is provided therein, and an N<+> type collector contact region 47 is diffusion-formed by being adjacent to the region 43. The remnant one of the island regions 32 is further surrounded by a P<+> type region 37 and an N<+> type region 38, then an N type base region 41 of the vertical type P-N-P transistor is diffusion-formed therein, and a P type emitter region 42 and an N<+> type base contact region 45 are provided therein.

Description

【発明の詳細な説明】 本発明は半導体集積回路装置に関し、特に高速のバイポ
ーラトランジスタを含む半導体集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device, and more particularly to a semiconductor integrated circuit device including a high-speed bipolar transistor.

半導体集積回路装置にはPNP )ランジスタ。Semiconductor integrated circuit devices include PNP) transistors.

NPNトランジスタ等が一体化構成されている。NPN transistors and the like are integrated.

ここで、一般にNPN)ランジスタのスイッチング速度
は高速にすることが出来る反面、PNP)ランジスタは
構造が複雑であったり、横方向形成されたものを使用出
来ない等の理由により高速にすることが出来ない欠点を
有する。従って、PNPトランジスタ、NPN)ランジ
スタとを含む半導体集積回路装置はその両トランジスタ
の速度的なアンバランスが生じる故に全体として見た場
合、回路的にも多くの制限があった。
Generally speaking, the switching speed of an NPN) transistor can be made high, but on the other hand, a PNP) transistor cannot be made to have a high switching speed due to its complicated structure or the inability to use one formed laterally. Has no drawbacks. Therefore, a semiconductor integrated circuit device including a PNP transistor and an NPN transistor has many limitations in terms of the circuit when viewed as a whole because an imbalance occurs in speed between the two transistors.

第1図はPNP)ランジスタ、NPN)ランジスタを一
体化形成した従来の半導体集積回路装置を示す。
FIG. 1 shows a conventional semiconductor integrated circuit device in which a PNP transistor and an NPN transistor are integrally formed.

第1図において、1はp形基板、2は高濃度n形埋込み
層、3はn形エピタキシャル層、4は予備分離拡散層を
示す。6はエピタキシャル層3表面から形成された分離
拡散層で、予備分離拡散層4と途中で接続され、活性領
域の分離を行なっている。
In FIG. 1, 1 is a p-type substrate, 2 is a heavily doped n-type buried layer, 3 is an n-type epitaxial layer, and 4 is a preliminary isolation diffusion layer. Reference numeral 6 denotes an isolation diffusion layer formed from the surface of the epitaxial layer 3, which is connected to the preliminary isolation diffusion layer 4 midway to isolate the active region.

6・、6c 、7bはp型拡散層である。ここで、NP
N)ランジスタ部分においては7bはベースとなるp型
頭域で、ラテラルPNP )ランジスタ部分においては
6e、6aはそれぞれエミッタとコレクタを形成してい
る。8bはPNP)ランジスタのベース領域用のコンタ
クト、eeはNPNのトランジスタのエミッタ、9Cは
NPN)ランジスタのコレクタコンタクトのための高濃
度n膨拡散層である。第1図で1体化形成された、NP
N。
6., 6c, and 7b are p-type diffusion layers. Here, NP
N) In the transistor portion, 7b is a p-type head region serving as a base, and lateral PNP.) In the transistor portion, 6e and 6a form an emitter and a collector, respectively. 8b is a contact for the base region of the PNP transistor, ee is the emitter of the NPN transistor, and 9C is a high concentration n-swelled diffusion layer for the collector contact of the NPN transistor. NP formed integrally in Figure 1
N.

PNP)ランジスタにおいて、PNPの横型トランジス
タはベース巾(領域6eと6a間距離)が平面的、つま
りマスクのパターン精度で定まる。一般に、マスク精度
はそれほど正確なものでないため、通常短かいもので3
μm程度で、ある。従って、高密度PNP)ランジスタ
を形成出来ない。また、NPN)ランジスタのベース領
域7bにおいては拡散によって濃度傾斜がついているた
め、電界傾斜がベース領域で形成されるのでキャリアの
加速がなされ高速化が実現する。しかし、PNP)ラン
ジスタのベース領域3はエピタキシャル層ソのものであ
り、濃度傾斜がなく高速化が実現されない。
In the PNP transistor, the base width (distance between regions 6e and 6a) of the PNP lateral transistor is determined in a plane, that is, by the pattern accuracy of the mask. In general, the mask accuracy is not very accurate, so a short one is usually 3
It is on the order of μm. Therefore, high-density PNP) transistors cannot be formed. Furthermore, since the base region 7b of the (NPN) transistor has a concentration gradient due to diffusion, an electric field gradient is formed in the base region, so that carriers are accelerated and high speed is achieved. However, the base region 3 of the PNP transistor is made of an epitaxial layer, so there is no concentration gradient and high speed cannot be achieved.

更に、PNP)ランジスタのコレクタ領域6Cの濃度が
ベース領域3よりむしろ高く、ベース巾を縮少していっ
た場合、コレクタ、ベース間耐圧が急速に下がる。
Furthermore, the concentration of the collector region 6C of the PNP transistor is higher than that of the base region 3, and when the base width is reduced, the withstand voltage between the collector and the base decreases rapidly.

以上の様に、PNPトランジスタのベースが巾が広い、
拡散プロファイルにより電界傾斜がついていない、PN
P)ランジスタのエミッタ、コレクタが同一濃度である
等の理由により横型PNPトランジスタは縦型NPN)
7ンジスタに比し著しるしく特性が劣るのが通常である
。従って、第1図に示す半導体集積回路装置においては
全体としての特性が不充分なものとなっていた。
As mentioned above, the base of the PNP transistor is wide,
No electric field gradient due to diffusion profile, PN
P) Because the emitter and collector of the transistor have the same concentration, the horizontal PNP transistor becomes a vertical NPN)
Normally, the characteristics are significantly inferior to those of the 7-inch transistor. Therefore, the semiconductor integrated circuit device shown in FIG. 1 has insufficient characteristics as a whole.

次に、これを改善した半導体集積回路装置の従来例を第
2図に示す。第2図の場合はPNP)ランジスタを縦型
形成したものである。
Next, FIG. 2 shows a conventional example of a semiconductor integrated circuit device that has improved this. In the case of FIG. 2, a PNP transistor is formed vertically.

第2図において、11はp型基板、12は高濃度n型埋
込み層、13はn型エピタキシャル層、14はp型予備
分離拡散層で、15は分離拡散層である。この分離拡散
層14及び15により、活性領域を分離させているt)
1611離領域12上にイオン注入法等で製作されたp
型頭域で、縦型PNPのコレクタとなる領域である。、
17.18はそれぞれ分離拡散層14.15の領域形成
時に同時形成されるもので、コレクタ領域12の引出し
拡散層となっている。19はコレクタウオールである。
In FIG. 2, 11 is a p-type substrate, 12 is a heavily doped n-type buried layer, 13 is an n-type epitaxial layer, 14 is a p-type preliminary isolation diffusion layer, and 15 is an isolation diffusion layer. The active regions are separated by these isolation diffusion layers 14 and 15.t)
1611 P made on the isolated region 12 by ion implantation method etc.
This is the type head area and is the area that becomes the collector of the vertical PNP. ,
17 and 18 are formed at the same time as the separation diffusion layers 14 and 15, respectively, and serve as lead-out diffusion layers for the collector region 12. 19 is the collector all.

2゜はp+の拡散層で分離拡散層16と同時に形成され
、縦型PNP )ランジスタのベースとなる領域である
2° is a p+ diffusion layer formed at the same time as the isolation diffusion layer 16, and is a region that becomes the base of a vertical PNP transistor.

21は通常のNPN)ランジスタのエミツタ層、22は
ベース層、23はエミッタ21と同時に形成されたコレ
クタ・コンタクト部である。
21 is an emitter layer of a normal NPN transistor, 22 is a base layer, and 23 is a collector contact portion formed at the same time as the emitter 21.

さて、第2図でp+層層数散層20n型エピタキシャル
層13、p+型コレクタ膚16によって縦WPNPトラ
ンジスタが形成される。このPNPトランジスタ第1図
で示した横型PNPと違い、ペース巾がマスクの寸法及
び寸法精度によって決定されておらず、エピタキシャル
層13の厚み及び、p+層被拡散領域16深さに依存し
ているため、拡散制御によってベース巾は狭く出来る利
点がある。しかしこの構造においても多くの欠点がある
。まず第1にベース巾であるが、これはエピタキシャル
層13の厚みからエミッタ20の拡散深さとp型頭域1
6の上方拡散を引いたものにようX−タ って決定されるので、三つの拡散バカ二の制御加減のた
め、ベース巾の分布が非常に大きい。
Now, in FIG. 2, a vertical WPNP transistor is formed by the p+ layer dispersed layer 20, the n type epitaxial layer 13, and the p+ type collector layer 16. This PNP transistor differs from the horizontal PNP shown in FIG. 1 in that the pace width is not determined by the dimensions and dimensional accuracy of the mask, but depends on the thickness of the epitaxial layer 13 and the depth of the p+ layer diffused region 16. Therefore, there is an advantage that the base width can be narrowed by diffusion control. However, this structure also has many drawbacks. First of all, the base width is determined by the thickness of the epitaxial layer 13, the diffusion depth of the emitter 20, and the p-type head area 1.
6 minus the upward diffusion, the distribution of the base width is very large due to the control of the three diffusion coefficients.

それに加えるにp型拡散層16の濃度は埋込み層12と
の濃度との加減によって決まるため、上方拡散は、p型
拡散層16のドーピング量によって1義的に決まらず、
従って、ベース巾の分布はますます大きくなってしまい
、ペース巾がパターン精度で決定されないと云うものの
ベース巾の決定制御が困難である。
In addition, since the concentration of the p-type diffusion layer 16 is determined by adjusting the concentration of the buried layer 12, the upward diffusion is not determined primarily by the doping amount of the p-type diffusion layer 16.
Therefore, the distribution of the base width becomes increasingly large, and although the pace width cannot be determined with pattern accuracy, it is difficult to control the base width.

しかも、第1図で示したPNP )ランジスタでみレク
タ12の濃度が高い問題は改善されていない。
Furthermore, the problem of the high concentration of the reflector 12 in the PNP transistor shown in FIG. 1 has not been solved.

本発明は従来の欠点にかんがみなされたもので、高速の
バイポーラトランジスタを含む半導体集積回路装置を提
供することを目的とする。すなわち、本発明は横方向バ
イポーラトランジスタの低速性と縦型バイポーラトラン
ジスタの制御性を改善することによって、高速のバイポ
ーラトランジスタを含む半導体集積回路装置を提供せん
とするものである。更に、本発明は高速のバイポーラト
ランジスタと高抵抗素子、IL素子等のデバイスを何ら
製造工程を増加することなく一体化形成可能な半導体集
積回路装置を提供せんとするものである。
The present invention has been made in view of the conventional drawbacks, and an object of the present invention is to provide a semiconductor integrated circuit device including a high-speed bipolar transistor. That is, the present invention aims to provide a semiconductor integrated circuit device including a high-speed bipolar transistor by improving the low speed of the lateral bipolar transistor and the controllability of the vertical bipolar transistor. Furthermore, the present invention aims to provide a semiconductor integrated circuit device in which devices such as a high-speed bipolar transistor, a high resistance element, and an IL element can be integrally formed without any increase in manufacturing steps.

以下、本発明の構成を図面を用いて説明する。Hereinafter, the configuration of the present invention will be explained using the drawings.

第3図は本発明の一実施例に係る半導体集積回路装置の
構造断面図を示すものである。本実施例においては縦型
のPNP )ランジスタと横形NPNトランジスタ、高
抵抗素子を一体化形成したものであり、縦型PNP )
ランジスタの部分に改良を\加えたものである。第3図
において、31はp型0.6〜1.0Ω程度のn型エピ
タキシャル層で3〜4μmの厚さに成長される。34は
p型高濃度の予備拡散領域で、エピタキシャル層33表
面から形成されるp型窩濃度拡散領域35と対をなし、
エピタキシャル層33の分離を行なっている。この分離
領域34.35は酸化膜分離によって行なっても本発明
の効果は変らない。36はp型の高濃度領域で、埋込み
領域32の内側に設置せられ、分離領域35と同時に形
成せられている。しかし、高濃度埋込領域36の表面濃
度は、基板31上の埋込領域32が高#度のためにかな
り下がっており、そのだめ上方への拡散は拡散領域34
はど高くならない。37は拡散領域36と同時に形成さ
れたp1拡散領域で、コレクタ抵抗の削減のために設置
せられたものである。
FIG. 3 shows a structural sectional view of a semiconductor integrated circuit device according to an embodiment of the present invention. In this example, a vertical PNP transistor, a horizontal NPN transistor, and a high resistance element are integrated.
This is an improvement to the transistor part. In FIG. 3, numeral 31 is a p-type n-type epitaxial layer having a resistance of about 0.6 to 1.0 Ω and is grown to a thickness of 3 to 4 μm. Reference numeral 34 denotes a p-type high concentration preliminary diffusion region, which is paired with a p-type cavity concentration diffusion region 35 formed from the surface of the epitaxial layer 33;
The epitaxial layer 33 is separated. Even if these isolation regions 34 and 35 are formed by oxide film isolation, the effects of the present invention will not change. Reference numeral 36 denotes a p-type high concentration region, which is placed inside the buried region 32 and formed at the same time as the isolation region 35. However, the surface concentration of the high concentration buried region 36 is considerably lowered due to the high concentration of the buried region 32 on the substrate 31, so that the upward diffusion is limited to the diffusion region 34.
Don't get too high. Reference numeral 37 denotes a p1 diffusion region formed at the same time as the diffusion region 36, and is provided to reduce collector resistance.

38 ハn+の拡散領域でコレクタウオールを形成して
おり、埋込領域32と接続される。39は本発明にかか
わる主要拡散部で、低ドーズのイオン注入法により形成
され、シート抵抗値として通常のペース抵抗の20oΩ
んに比し1桁以上高い2KIJ、73〜4にΩ/口程度
のp−″領域である。
38 A collector wall is formed by the Hn+ diffusion region, and is connected to the buried region 32. 39 is the main diffusion part related to the present invention, which is formed by a low-dose ion implantation method, and has a sheet resistance value of 20oΩ, which is the usual pace resistance.
2KIJ is more than an order of magnitude higher than that of 73 to 4, and is in the p-'' region of about Ω/mouth.

40は同時に形成されたp−領域で、ここでは高抵抗部
となっている。41はn型ウェルでp−領域39上に形
成されPNP)ランジスタのペースとなる。
Reference numeral 40 denotes a p- region formed at the same time, which here serves as a high resistance portion. Reference numeral 41 denotes an n-type well formed on the p- region 39 and serving as a base for a PNP transistor.

42は約200Ωん程度に形成されるp領域でP N 
Pトランジスタのエミッタであり、NPNトランジスタ
のペース領域43と同時に形成される。
42 is a p region formed to about 200Ω, P N
It is the emitter of the P transistor and is formed simultaneously with the space region 43 of the NPN transistor.

44は高抵抗部のコンタクト用拡散領域で、領域42.
43と同時形成される。46はベース領域41のコンタ
クト拡散領域であり、NPNトランジスタのエミッタ領
域46と同時に形成される。
Reference numeral 44 denotes a contact diffusion region of the high resistance portion, and the region 42.
Formed at the same time as 43. 46 is a contact diffusion region of the base region 41, which is formed simultaneously with the emitter region 46 of the NPN transistor.

47はNPN)ランジスタのコレクタ33のコンタクト
領域である。
47 is a contact region of the collector 33 of the NPN transistor.

以上の明らかなように、本実施例では領域42゜41.
39で縦型PNP)ランジスタが形成され、領域46.
43.33で横型NPN)ランジスタが形成され、領域
40.44で高抵抗が形成されていることかわかる。こ
こで、縦型Pt’JP )ランジスタの特性を次に説明
する。従来例で述べて来た3つの問題点すなわち、ベー
ス巾については、ペースであるn領域41の形成が、低
濃度のp−領域39内に形成されており、その濃度の制
御及び深さの制御がp−領域39上から打込まれるイオ
ン注入によって精度良く定められる。すなわち、ベース
巾はn領域41とp領域42の拡散のみによって決定さ
れるので制御性が良い。つまり、第2図の場合は3つの
パラメータであったが本実施例では2つのパラメータで
ベース巾が決定される。
As is clear from the above, in this embodiment, the area 42°41.
A vertical PNP) transistor is formed in region 46 .
It can be seen that a horizontal NPN transistor is formed in the region 43.33, and a high resistance is formed in the region 40.44. Here, the characteristics of the vertical type Pt'JP transistor will be explained next. Regarding the three problems mentioned in the conventional example, that is, regarding the base width, the n-region 41, which is the pace, is formed in the low-concentration p-region 39, and it is difficult to control the concentration and the depth. Control is precisely determined by ion implantation from above p- region 39. That is, since the base width is determined only by the diffusion of the n region 41 and the p region 42, controllability is good. In other words, the base width is determined by two parameters in this embodiment, whereas in the case of FIG. 2 there are three parameters.

また、n領域41は最終的にはイオン注入後のドライブ
インによって決められるため、上から下方向に濃度勾配
がついており、電界加速が行なわれる構造になっている
のでキャリアの走行速度が増大し、高速動作が可能とな
る。又、コレクタ表なるp領域39の#度は従来例と異
なり、p−であるため、耐圧も高い。
Furthermore, since the n-region 41 is ultimately determined by drive-in after ion implantation, it has a concentration gradient from top to bottom, and has a structure in which electric field acceleration is performed, so that the traveling speed of carriers increases. , high-speed operation is possible. Further, since the # degree of the p region 39 on the collector surface is p-, unlike the conventional example, the withstand voltage is also high.

以上の様に、本実施例に係る半導体集積回路装置は高耐
圧、高速、高密度縦型PNPトランジスタと高速の横型
NPN)ランジスタと高抵抗を一体化構成出来るので高
速化ICを実現する上で効果は極めて大きい。
As described above, the semiconductor integrated circuit device according to this embodiment can integrate a high-voltage, high-speed, high-density vertical PNP transistor, a high-speed horizontal NPN) transistor, and a high resistance, which is useful for realizing a high-speed IC. The effect is extremely large.

次に、本実施例に係る縦型PNP)ランジスタの深さ方
向不純物分布を第4図に示す。
Next, FIG. 4 shows the impurity distribution in the depth direction of the vertical PNP transistor according to this example.

同図において、埋込み領域32はたとえばA、(砒素)
のような拡散係数の小さいものを使用し、分離領域36
はボロン等を使用することによシ、基板31からの上方
拡散が図示したようになる。またエミッタ領域36.ベ
ース領域41及びコレクタ領域39は、イオン注入法で
それぞれボロン。
In the figure, the embedded region 32 is, for example, A, (arsenic)
Use a material with a small diffusion coefficient such as
By using boron or the like, upward diffusion from the substrate 31 occurs as shown in the figure. Also, the emitter region 36. The base region 41 and collector region 39 are each made of boron by ion implantation.

リン、ポロ7等を打込みその後の熱処理によシ形成され
る。同図であきらかなように、ベース領域41の濃度傾
斜が大きく、ペースに電界傾斜が得られる。更に、コレ
クタ領域39がきわめて低濃度であるため、ベース領域
41の形成はその深さも、ペースへの不純物の添加像と
、エミッタ領域42不純物量の両者により、実質的に定
められコレクタ領域39の不純物濃度に依存することな
いので、その制御に困難性はない。また、本実施例に係
る構造では、高抵抗部分領□域40と39が共通プロセ
スであり、NPN)ランジスタのベース領域43がPN
P)ランジスタのエミッタ領域42及び高抵抗の抵抗領
域40と共通プロセスで形成されるため、縦型PNP)
ランジスタを形成するために、新たなプロセスとして、
単にベースとなるn影領域41を形成するプロセスの追
加にすぎなく非常に簡便な構造となっている。
It is formed by implanting phosphorus, PORO 7, etc. and subsequent heat treatment. As is clear from the figure, the concentration gradient in the base region 41 is large, and an electric field gradient is obtained at the pace. Furthermore, since the collector region 39 has an extremely low concentration, the depth of the base region 41 is substantially determined by both the amount of impurities added to the paste and the amount of impurities in the emitter region 42. Since it does not depend on impurity concentration, there is no difficulty in controlling it. In addition, in the structure according to this embodiment, the high resistance partial regions 40 and 39 have a common process, and the base region 43 of the NPN transistor is
P) Since it is formed in a common process with the transistor emitter region 42 and the high resistance resistance region 40, it is a vertical PNP)
As a new process to form transistors,
This is a very simple structure as it is simply an addition of the process of forming the n-shaded area 41 which is the base.

次に本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.

第5図は本発明の他の実施例を示す半導体回路装置の構
造断面図で、第3図と同一番号は同一部分を示す。
FIG. 5 is a structural sectional view of a semiconductor circuit device showing another embodiment of the present invention, in which the same numbers as in FIG. 3 indicate the same parts.

第6図に示す実施例のものはPNP)ランジスタのベー
ス領域41がコレクタウオール38に接続されたものを
示す。本実施例においては、縦型PNP )ランジスタ
のベース領域41はn影領域33にまたがって設置され
コレクタウオール38に接するごとく形成されているの
で抵抗値が減少することとなり、高周波特性が改善され
る。
In the embodiment shown in FIG. 6, the base region 41 of a PNP transistor is connected to the collector wall 38. In this embodiment, the base region 41 of the vertical PNP transistor is installed across the n-shaded region 33 and is formed so as to be in contact with the collector all 38, so that the resistance value is reduced and the high frequency characteristics are improved. .

第6図は本発明の別の実施例を示すもので、縦型PNP
 )ランジスタ、横型NPN)ランジスタ。
FIG. 6 shows another embodiment of the present invention, in which a vertical PNP
) transistor, horizontal NPN) transistor.

高抵抗素子、ILを一体化した半導体集積回路装置の構
造断面図を示すものである。
1 is a structural cross-sectional view of a semiconductor integrated circuit device that integrates a high resistance element and an IL.

本実施例においては、第3図と同一番号は同一部分を示
し、48,49はp−領域で領域39.40と同一工程
により形成され同−深さに設置される。
In this embodiment, the same numbers as in FIG. 3 indicate the same parts, and 48 and 49 are p-regions, which are formed by the same process as the regions 39 and 40 and are placed at the same depth.

50.51は領域42,43.44と同一工程により形
成されたp型頭域である。この領域48と60は図示し
たごとく重ね合わされて形成されているが、これがIL
素子のインジェクターとなっている。領域511L素子
のゲート領域となっている。領域49は上向きのNPN
)ランジスタのベースとなっている。領域52は! L
素子での逆方向トランジスタのコレクタとなっている。
50.51 is a p-type head region formed by the same process as regions 42, 43.44. These regions 48 and 60 are formed overlapping each other as shown, and this is the IL
It serves as an injector for the element. Region 511L serves as the gate region of the element. Region 49 is an upward NPN
) is the base of the transistor. Area 52 is! L
It serves as the collector of the reverse direction transistor in the device.

本実施例に係るILは領域50.51を有するために、
12Lの横型PNP)ランジスタのインジェクタ電流が
少なくなるので、充分にI  L縦型NPN)ランジス
タに吸い込みが可能となる。
Since the IL according to this embodiment has a region 50.51,
Since the injector current of the 12L horizontal PNP transistor is reduced, it is possible to draw sufficient current into the IL vertical NPN transistor.

すなわち、本実施例においては特性の優れたILを何ら
プロセスを変更することなく一体化形成出来る効果があ
る。尚、ここで、縦型PNP)ランジスダの特性は第3
図、第5図で示した場合と同様に高速性等を満足するも
のであることは云うまでもない。
That is, this embodiment has the advantage that an IL with excellent characteristics can be integrally formed without changing the process. In addition, here, the characteristics of vertical PNP) Langisuda are the third
It goes without saying that the system satisfies the high-speed performance and the like as in the case shown in FIGS.

第7図は本発明の更に別の実施例を示す半導体集積回路
装置の構造断面図であり、第6図に示す実施例のI2L
部分の改良形である。同図において第6図と同一番号は
同一部分を示す。本実施例においては12Lのp−領域
49に領jllJ52をおおう如く、n型領域53が形
成されていることが特長である。この領域63は縦型P
NP )ランジスタのベース領域41と同一工程で形成
されたものである。縦って、本実施例においてはILの
p−領域49の巾が狭くなるので、ILの縦型NPN 
トランジスタのhFEが増加することにナル。
FIG. 7 is a structural cross-sectional view of a semiconductor integrated circuit device showing still another embodiment of the present invention, and the I2L of the embodiment shown in FIG.
This is an improved version of the part. In this figure, the same numbers as in FIG. 6 indicate the same parts. This embodiment is characterized in that an n-type region 53 is formed in the p- region 49 of 12L so as to cover the region jllJ52. This area 63 is vertical P
NP) is formed in the same process as the base region 41 of the transistor. Vertically, in this embodiment, the width of the p-region 49 of the IL is narrower, so that the vertical NPN of the IL is narrower.
Null that the hFE of the transistor increases.

以上、本発明によれば従来の様に縦型トランジスタのベ
ース中を定める方法が、たとえばマスク精度で決まった
り、プロセスの3〜4の拡散プロファイルのからみで定
まったりというように特定できず、かつ巾もバラツキが
大きいため、広めに設定せねばならない欠点がなく、本
発明は実質的に領域41.42の拡散のみでベース中が
決まり、制御性が良い。
As described above, according to the present invention, the conventional method of determining the inside of the base of a vertical transistor cannot be determined, for example, because it is determined by mask accuracy, or it is determined by the diffusion profile of 3 or 4 of the process, and Since the width also varies widely, there is no disadvantage that it must be set wide, and in the present invention, the base is substantially determined only by the diffusion of the regions 41 and 42, and the controllability is good.

父、本発明での縦型トランジスタのコレクタカ領域39
で形成されるので、コレクタの濃度が高く、ベース長を
狭くした場合耐圧劣化をおこす欠点が生じない。更に、
本発明の縦型トランジスタはベースは領域41で形成さ
れるので濃度傾Rがあり、電界加速され高速化を実現出
来る。また、本発明は、他のNPN素子、I2L・、高
抵抗素子とも、同一工程で製作出来しかもこれらの素子
特性に悪影響を与えない利点を有する。
Father, collector region 39 of vertical transistor in the present invention
Since the collector has a high concentration, there is no drawback that breakdown voltage deterioration occurs when the base length is narrowed. Furthermore,
Since the base of the vertical transistor of the present invention is formed in the region 41, there is a concentration gradient R, and electric field acceleration can be achieved to achieve high speed. Further, the present invention has the advantage that other NPN elements, I2L, and high resistance elements can be manufactured in the same process without adversely affecting the characteristics of these elements.

以上、本発明は簡単な構成により高速化半導体集積回路
装置を実現出来るので工業的価値が高い。
As described above, the present invention has high industrial value because it can realize a high-speed semiconductor integrated circuit device with a simple configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の半導体集積回路装置の構造断
面図、第3図は縦型PNP )ランジスタ、横型NPN
)ランジスタ及び高抵抗素子を一体化した本発明の実施
例に係る半導体集積回路装置の構造断面図、第4図は第
3図の縦型PNP )ラン゛ ジスタの不純物分布図、
第6図は第3図における縦型PNP )ランジスタを改
良した本発明の他の実施例を示す構造断面図、第6図及
び第7図は第3図のものに12Lを一体化した本発明の
別の実施例に係る構造断面図を示す。 36・−・・・・p+埋込領域、39・・・・・・p−
コレクタ領域、4o−・・・・・p−抵抗領域、41・
・・・・・n型ベース領域、42・・・・・・p型エミ
ッタ領域、43・・・・−・p型ベース領域、44・・
・・・・抵抗コンタクト領域、50・・・・・・I2L
インジェクタ領域、51・・・・・・12Lゲート領域
、52・・・・・・ILコレクタ領域、63・・・・・
・n型領域。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
Figures 1 and 2 are structural cross-sectional views of conventional semiconductor integrated circuit devices, and Figure 3 is a vertical PNP transistor, a horizontal NPN transistor, and a horizontal NPN transistor.
) A structural sectional view of a semiconductor integrated circuit device according to an embodiment of the present invention in which a transistor and a high resistance element are integrated, FIG. 4 is a vertical PNP shown in FIG. 3.) Impurity distribution diagram of a transistor,
FIG. 6 is a structural sectional view showing another embodiment of the present invention which is an improved version of the vertical PNP transistor shown in FIG. FIG. 5 shows a structural cross-sectional view according to another embodiment of the invention. 36...p+ embedded area, 39...p-
Collector region, 4o-...p-resistance region, 41.
...N type base region, 42...P type emitter region, 43...P type base region, 44...
...Resistive contact area, 50...I2L
Injector area, 51...12L gate area, 52...IL collector area, 63...
・N-type region. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
figure

Claims (1)

【特許請求の範囲】 (1)一方導電型の半導体基板上に形成さ扛た他方導電
型の半導体層と、前記半導体基板と前記半導体層界面に
形成さ扛た他方導電型筒1の埋込領域と、前記第1の埋
込領域上に形成された一方導電型高濃度第2の埋込領域
と、前記半導体層表面から前記第2の埋込領域に達する
様に形成さ扛た一方導電型低濃度コレクタ領域と、前記
コレクタ領域表面から形成さnた他方導電型ベース領域
と、前記ベース領域内に形成さnた一方導電型エミッタ
領域とを備え、前記エミッタ、ベース、コレクタ領域に
より縦型トランジスタが構成さすることを特徴とする半
導体集積回路装置。 (2)一方導電型の半導体基板上に形成さn互いに分離
さnた他方導電型の第1.第2.第3の領域と、前記第
1.第2の領域表面からそnぞn同時形成さnだ一方導
電型の低濃度第4ν第6の領域と、前記第4の領域表面
から形成さ扛た他方導電型の第6の領域と、前記第62
第6゜第3の領域表面からそnぞn同時形成さ扛た一方
導電型の第7.第8.第9の領域と、前記第6、第9の
領域表面からそ扛ぞn同時形成さrた他方導電型の第1
0.第11の領域とを備え、前記第4.第6を第7の領
域で縦型トランジスタを、前記第5.第8の領域で抵抗
を、前記第3、第9を第11の領域で横型トランジスタ
を構成したことを特徴とする半導体集積回路装置。 (′4 第1の領域と半導体基板界面に他方導電型の第
12の領域が形成さnており、前記第1の領域表面から
前記第12の領域に達する如く他方導電型の第13の領
域が形成さnていることを特徴とする特許請求の範囲第
2項に記載の半導体集積回路装置。 (4)第6の領域と第13の領域とが接続されているこ
とを特徴とする特許請求の範囲第3項に記載の半導体集
積回路装置。 (6)一方導電型の半導体基板上に形成さn互いに分離
さ扛た他方導電型の第1.第2.゛第3.第4の領域と
、前記第1.第2の領域表面からそnぞn同時形成さ扛
た一方導電型の低濃度第6゜第6の領域と、前記第3の
領域表面から前記第6、第6の領域と同時形成さn一方
導電型の低濃度第7.第8の領域と、前記第6の領域表
面から形成さnた他方導電型の第i域と、前記第9.第
6.第7.第8.第4の領域表面がらそnぞn同時形成
・さnた一方導電型の第10゜第11.第12.第″F
−3.第14の領域と、前記第9.第8.第14の領域
表面からそnぞれ同時形成さnた他方導電型の第16.
第16゜第17の領域とを備え、前記第1.第2.第3
゜第4の領域内にそnぞn縦型トランジスタ、抵抗、注
入論理回路、横型トランジスタが構成さnることを特徴
とする半導体集積回路装置。 (6)第12.第13の領域が対向位置において第3の
領域に突出形成さnていることを特徴とする特許請求の
範囲第6項に記載の半導体集積回路装置。 C7)  第8の領域には第9の領域と同時形成さnた
他方導電型の第18の領域があり、前記第18の領域内
に第16の領域が形成さ扛ていることを特徴とする特許
請求の範囲第6項又は第6項に記載の半導体集積回路装
置。 (尿下俊白)
[Scope of Claims] (1) A semiconductor layer of the other conductivity type formed on a semiconductor substrate of one conductivity type, and embedding of a cylinder 1 of the other conductivity type formed at the interface between the semiconductor substrate and the semiconductor layer. a high concentration second buried region of one conductivity type formed on the first buried region; and one conductive region formed on the semiconductor layer surface to reach the second buried region. a low concentration type collector region, a base region of the other conductivity type formed from the surface of the collector region, and an emitter region of the one conductivity type formed within the base region; 1. A semiconductor integrated circuit device comprising a type transistor. (2) first semiconductor substrates of one conductivity type formed on a semiconductor substrate of the other conductivity type and separated from each other; Second. a third area; and the first area. a low concentration 4v sixth region of one conductivity type formed simultaneously from the surface of the second region, and a sixth region of the other conductivity type formed from the surface of the fourth region; Said 62nd
The 7th conductivity type is simultaneously formed from the surface of the 6th and 3rd regions. 8th. a ninth region and a first conductivity type of the other conductivity formed simultaneously from the surfaces of the sixth and ninth regions;
0. an eleventh region; The sixth and seventh regions are vertical transistors; A semiconductor integrated circuit device characterized in that an eighth region constitutes a resistor, and the third, ninth and eleventh regions constitute a lateral transistor. ('4) A twelfth region of the other conductivity type is formed at the interface between the first region and the semiconductor substrate, and a thirteenth region of the other conductivity type extends from the surface of the first region to the twelfth region. (4) A patent characterized in that the sixth region and the thirteenth region are connected. Semiconductor integrated circuit device according to claim 3. (6) First, second, third and fourth semiconductor substrates of one conductivity type formed on a semiconductor substrate of the other conductivity type and separated from each other. A low concentration 6th region of one conductivity type formed simultaneously from the surface of the first and second regions; a sixth region of a low concentration of one conductivity type; a low concentration seventh and eighth region of one conductivity type formed simultaneously with the region, an i-th region of the other conductivity type formed from the surface of the sixth region, and the ninth, sixth and eighth regions formed from the surface of the sixth region. 7. 8th. The surface of the 4th region is simultaneously formed with conductivity type 10°, 11th, 12th, "F".
-3. the 14th area; and the 9th area. 8th. A 16th region of the other conductivity type was simultaneously formed from the surface of the 14th region.
a 16th and a 17th area; Second. Third
゜A semiconductor integrated circuit device characterized in that a vertical transistor, a resistor, an injection logic circuit, and a horizontal transistor are respectively configured in a fourth region. (6) 12th. 7. The semiconductor integrated circuit device according to claim 6, wherein the thirteenth region protrudes from the third region at an opposing position. C7) The eighth region has an 18th region of the other conductivity type formed simultaneously with the 9th region, and the 16th region is formed within the 18th region. A semiconductor integrated circuit device according to claim 6 or 6. (Urine Shita Shunpaku)
JP57065925A 1982-04-19 1982-04-19 Semiconductor integrated circuit device Granted JPS58182260A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57065925A JPS58182260A (en) 1982-04-19 1982-04-19 Semiconductor integrated circuit device
DE8383103726T DE3361832D1 (en) 1982-04-19 1983-04-18 Semiconductor ic and method of making the same
EP83103726A EP0093304B1 (en) 1982-04-19 1983-04-18 Semiconductor ic and method of making the same
US07/124,423 US4826780A (en) 1982-04-19 1987-11-23 Method of making bipolar transistors
US07/295,380 US5066602A (en) 1982-04-19 1989-01-10 Method of making semiconductor ic including polar transistors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57065925A JPS58182260A (en) 1982-04-19 1982-04-19 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS58182260A true JPS58182260A (en) 1983-10-25
JPH0561775B2 JPH0561775B2 (en) 1993-09-07

Family

ID=13301030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57065925A Granted JPS58182260A (en) 1982-04-19 1982-04-19 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS58182260A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259081A (en) * 1985-09-09 1987-03-14 Ricoh Co Ltd Thermal recording material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515973A (en) * 1974-07-04 1976-01-19 Nippon Electric Co
JPS52104076A (en) * 1976-02-27 1977-09-01 Sony Corp Semiconductor unit
JPS53134374A (en) * 1977-04-28 1978-11-22 Sony Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515973A (en) * 1974-07-04 1976-01-19 Nippon Electric Co
JPS52104076A (en) * 1976-02-27 1977-09-01 Sony Corp Semiconductor unit
JPS53134374A (en) * 1977-04-28 1978-11-22 Sony Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259081A (en) * 1985-09-09 1987-03-14 Ricoh Co Ltd Thermal recording material

Also Published As

Publication number Publication date
JPH0561775B2 (en) 1993-09-07

Similar Documents

Publication Publication Date Title
US4826780A (en) Method of making bipolar transistors
US4038680A (en) Semiconductor integrated circuit device
US4652895A (en) Zener structures with connections to buried layer
US4051506A (en) Complementary semiconductor device
JPH07326773A (en) Diode and its preparation
JPH025564A (en) Multicollector vertical p-n-p transistor
JPH0526342B2 (en)
JPS58182260A (en) Semiconductor integrated circuit device
KR930010119B1 (en) Complementary bipolar transistor
JPH0315349B2 (en)
JPS6334627B2 (en)
JPS58212158A (en) Semiconductor integrated circuit device
EP0367293B1 (en) Methods of fabricating semiconductor devices having a bipolar transistor
JPH08236537A (en) High performance high-voltage bipolar transistor not using epitaxial layer
JP2752655B2 (en) Bipolar integrated circuit device
JPS63175463A (en) Manufacture of bipolar mos integrated circuit
JP3150420B2 (en) Bipolar integrated circuit and manufacturing method thereof
JPS58212157A (en) Semiconductor integrated circuit device
SE501218C2 (en) Lateral bipolar variable base width transistor and a method for controlling the base width
JPS6347965A (en) Semiconductor integrated circuit
JP2627289B2 (en) Method for manufacturing semiconductor integrated circuit
JP4681090B2 (en) Manufacturing method of semiconductor device
JP2604793B2 (en) Semiconductor device
JPS60136250A (en) Semiconductor ic device
JPS5946059A (en) Manufacture of semiconductor integrated circuit