JPS58182089A - Accumulated heat utilization system - Google Patents

Accumulated heat utilization system

Info

Publication number
JPS58182089A
JPS58182089A JP57064815A JP6481582A JPS58182089A JP S58182089 A JPS58182089 A JP S58182089A JP 57064815 A JP57064815 A JP 57064815A JP 6481582 A JP6481582 A JP 6481582A JP S58182089 A JPS58182089 A JP S58182089A
Authority
JP
Japan
Prior art keywords
heat
storage tank
hydrogen storage
hydrogen
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57064815A
Other languages
Japanese (ja)
Other versions
JPS6135478B2 (en
Inventor
Kenji Nasako
名迫 賢二
Ikuro Yonezu
育郎 米津
Naojiro Honda
本田 直二郎
Takashi Sakai
貴史 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57064815A priority Critical patent/JPS58182089A/en
Publication of JPS58182089A publication Critical patent/JPS58182089A/en
Publication of JPS6135478B2 publication Critical patent/JPS6135478B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To accelerate the heat transfer speed from low quality heat source by a structure wherein a plurality of hydrogen storage tank are installed with respect to one heat accumulator packed with metal hydride. CONSTITUTION:When collected solar heat quantity is not enough to actuate a heat energy load part 19, the heat transfer medium heated at a solar heat collector 18 is heat-exchanged by a heat exchanger 21 and the transferred heat is circulated in a heat transfer medium circulating piping 25. On the other hand, the heat transfer medium of the low quality heat source 12 is shifted through heat exchangers 15 and 7 to hydrogen storage tanks 2a, 2b, 2c and 2d so as to give the heat of said heat transfer medium to metal hydride M2H in order to resolve it for quickly releasing hydrogen. The released hydrogen is sent to the heat accumulator 1 so as to take part in the reaction M1+ H M1H+DELTAH. As a result, the heat quantity of DELTAH is produced and combined through a heat exchanger 17 with the heat energy collected in the solar heat collector 18 into the heat transfer medium in the circulating piping 25 and, after that, shifted through a heat exchanger 23 to heat transfer medium circulating in a heat transfer medium circulating piping 26 in order to actuate the heat energy load part 19. In addition, in case of the period of impossible solar heat collection such as during the night or the like, the enough heat for actuating the heat energy load part 19 is stored in a short term heat accumulator 20.

Description

【発明の詳細な説明】 ひとつの蓄熱槽に対して金属水素化物を充填した複数個
の水素貯蔵槽を設置することによって低質熱源からの伝
熱速度を高めた蓄熱利用システムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat storage utilization system that increases the rate of heat transfer from a low-quality heat source by installing a plurality of hydrogen storage tanks filled with metal hydride in one heat storage tank.

ある種の金属や合金は液体水素と同等あるいはそれ以上
の密度で水素貯蔵が可能であり、新しい水素の貯蔵材と
して注目されている。また金属水素化物は単に水素を貯
蔵するという特性を有するばかりでなく、水素という化
学エネルギーを熱あるいは機械エネルギーに変換するた
めのエネルギー変換材料としての機能を有し、熱の貯蔵
、輸送。
Certain metals and alloys are capable of storing hydrogen at densities equal to or higher than that of liquid hydrogen, and are attracting attention as new hydrogen storage materials. In addition, metal hydrides not only have the property of storing hydrogen, but also function as energy conversion materials that convert the chemical energy of hydrogen into heat or mechanical energy, allowing them to store and transport heat.

ヒートポンプ、太陽熱利用の冷暖房給湯システム。A heating, cooling, and hot water system that uses heat pumps and solar heat.

熱機関、コンプレッサー、ポンプなどの媒体として期待
されている。ここで熱の貯蔵に関しては、化学エネルギ
ーと熱エネルギーの交換機能を利用する訳であるが、従
来の顕熱型や潜熱型蓄熱材料は単位重量当りの蓄熱量が
40〜70cal/g(温度差約60℃時)程度である
のに対し、金属水素化物(Mg2Ni )でけ250c
al/g  (顕熱を除く)と計算され、蓄熱材料とし
て大いに期待されている。
It is expected to be used as a medium in heat engines, compressors, pumps, etc. Regarding heat storage, the exchange function of chemical energy and thermal energy is used, but conventional sensible heat type and latent heat type heat storage materials have a heat storage amount of 40 to 70 cal/g (temperature difference). 60°C), whereas metal hydride (Mg2Ni)
al/g (excluding sensible heat), and is highly anticipated as a heat storage material.

この金属水素化物を利用した蓄熱システムは現在開発段
階にあるが、その中で金属水素化物は水素との吸着・解
離反応が十分迅速であるにも拘らず熱伝導が著しく小さ
いなめに蓄熱・放熱をすみやかに行わせることが困難で
ある。
A heat storage system using metal hydrides is currently in the development stage, but metal hydrides have a sufficiently rapid adsorption and dissociation reaction with hydrogen, but have extremely low heat conduction, so they are difficult to store and dissipate heat. It is difficult to get this done promptly.

特に蓄熱容量が大きくなり1システムが大きくなるに従
い伝熱速度は重大な問題となりシステムの大型化を図る
際にはそのまま形状を大きくするという訳にはいかない
In particular, as the heat storage capacity increases and one system becomes larger, the heat transfer rate becomes a serious problem, and when increasing the size of the system, it is not possible to simply increase the size.

この発明は、上記の金属水素化物の熱伝導性が低いとい
う問題点を解決するためになされたもので、金属水素化
物が充填された水素貯蔵槽の複数個、これらの水素貯蔵
槽圧共通の第1熱交換器および分校状に延びそれぞれ開
閉弁を介して各水素貯蔵槽に至る分校導管群よυなる水
素貯蔵システム部と、水素貯蔵槽中の金属水素化物より
同一温度における水素平衡解離圧が低い金属水素化物が
充填され第2交換器が接設されたひとつの蓄熱槽と、こ
の蓄熱槽と分校導管群の幹部とを主開閉弁を介して連結
する主導管と、第2熱交換器を介して連結された集熱利
用システム部と、第1熱交換器を介して連結された冷却
システム部および低質熱供給システム部とを備え、主開
閉弁および各開閉弁を適宜作動させると共に、集熱量余
剰時に冷却システム部を、集熱量不足時に低質熱供給シ
ステム部をそれぞれ作動させることによって、蓄熱利用
を図るよう構成されてなる蓄熱利用システムを提供する
ものである。
This invention was made to solve the above-mentioned problem of low thermal conductivity of metal hydrides. A hydrogen storage system section consisting of a first heat exchanger and a group of branch conduits extending in a branch shape and reaching each hydrogen storage tank via on-off valves, and a hydrogen equilibrium dissociation pressure at the same temperature from the metal hydride in the hydrogen storage tank. A heat storage tank filled with a metal hydride with a low temperature and connected to a second exchanger, a main pipe that connects this heat storage tank and the trunk of the branch pipe group via a main opening/closing valve, and a second heat exchanger. It is equipped with a heat collection utilization system section connected through a heat exchanger, a cooling system section and a low-quality heat supply system section connected through a first heat exchanger, and operates the main on-off valve and each on-off valve as appropriate. The present invention provides a heat storage utilization system configured to utilize heat storage by operating a cooling system section when there is a surplus of heat collection and a low-quality heat supply system section when there is a shortage of heat collection.

この発明のシステムは一槽の蓄熱槽に対して水素貯蔵槽
を複数個に分割して設置して低質の熱源からの伝熱速度
を高めたものである。またこの発明のシステムは、再生
熱の必要量に応じて水素貯蔵槽の運転台数を変化させた
υ、水素貯蔵槽の修理や取替えも運転を停止せずに行え
ることなどの利点がある。
In the system of this invention, a single heat storage tank is divided into a plurality of hydrogen storage tanks to increase the rate of heat transfer from a low-quality heat source. Furthermore, the system of the present invention has the advantage that the number of hydrogen storage tanks in operation can be changed according to the required amount of regenerated heat, and that the hydrogen storage tanks can be repaired or replaced without stopping operation.

集熱利用システム部として、ひとつの太陽熱集熱利用シ
ステムを用いた場合のこの発明の蓄熱利用システムの概
略系統図を第1図に示した。
FIG. 1 shows a schematic system diagram of the heat storage utilization system of the present invention when one solar heat collection utilization system is used as the heat collection utilization system section.

(1)は金属水素化物を充填した蓄熱槽であシ、(2a
)、  (2b)、 (2a)、 (2d)は金属水素
化物を充填した複数個の水素貯蔵槽であり、これら水素
貯蔵槽は開閉弁(4a、4b、4c、4d)付き導管(
3a、3b、3c。
(1) is a heat storage tank filled with metal hydride, (2a
), (2b), (2a), and (2d) are a plurality of hydrogen storage tanks filled with metal hydrides, and these hydrogen storage tanks are connected to conduits (4a, 4b, 4c, 4d) with on-off valves (4a, 4b, 4c, 4d).
3a, 3b, 3c.

3d)で並列に連結され、これらの水素貯蔵槽群は主開
閉弁(6)付き主導管(5)で蓄熱槽(1)K連結され
ている。
3d), and these hydrogen storage tank groups are connected to the heat storage tank (1)K by a main pipe (5) with a main on-off valve (6).

また水素貯蔵槽(2a、2b、2c、2d)には共通の
第1熱交換器(7)が接設され、これを介して、冷却水
注入管ααと冷却水排水管αDとからなる冷却水供給シ
ステムが設置され、さらに低質熱源(2)、導管(13
,14)、熱交換器α5)およびポンプ(16e、16
f)とからなる低質熱供給システムが設置されている。
In addition, a common first heat exchanger (7) is connected to the hydrogen storage tanks (2a, 2b, 2c, 2d), and through this a cooling water injection pipe αα and a cooling water drain pipe αD are connected. A water supply system has been installed, as well as low quality heat sources (2) and conduits (13).
, 14), heat exchanger α5) and pump (16e, 16
A low quality heat supply system consisting of f) is installed.

一方蓄熱槽(1)にはこれ釦接設された第2熱交換器0
′7)を介して太陽熱集熱利用システムが設置されてい
る。0団は太陽熱コレクター、09)は冷暖房給湯など
の熱エネルギー負荷部、(4)は水などを熱媒体に用イ
ft短期蓄熱器、N6m、16b、16c、16d )
  は熱媒循環用ポンプ、(21,22,23)は熱交
換器および(24,25,26)は熱媒導管である。
On the other hand, the heat storage tank (1) has a second heat exchanger 0 connected to this button.
'7) A solar heat collection system has been installed. Group 0 is a solar heat collector, 09) is a thermal energy load unit such as air conditioning, heating, and hot water supply, (4) is a short-term heat storage device that uses water as a heat medium, N6m, 16b, 16c, 16d)
is a heat medium circulation pump, (21, 22, 23) is a heat exchanger, and (24, 25, 26) is a heat medium conduit.

この蓄熱利用システムは熱エネルギーの需要の少ない時
期に太陽熱集熱による余剰熱エネルギーを長期にわたっ
て貯え、エネルギー需要の大きい時期(例えば冷暖房を
必要とする時期)に熱エネρギーを再生して四−ドレベ
リングを行うものでおり、蓄熱槽(1)KはCaNi5
水素化物のような水素め平衡解離圧力の低い金属水素化
物を充填し、水素貯蔵槽(2a、 2b、 2c、 2
d)にはLaNi s水素化物のような、同一温度にお
ける水素平衡解離圧が上記蓄熱槽(1)に充填されたも
のより高い金属水素化物が充填される。また低質熱源と
しては一般VC50℃近傍の工場排水などが用いられ、
冷却システムでは20℃近傍の水が用いられる。
This heat storage utilization system stores surplus thermal energy from solar heat collection over a long period of time during periods when demand for thermal energy is low, and regenerates thermal energy during periods when energy demand is high (for example, when air conditioning is required). It performs leveling, and the heat storage tank (1) K is CaNi5
Hydrogen storage tanks (2a, 2b, 2c, 2
d) is filled with a metal hydride, such as LaNi s hydride, which has a higher hydrogen equilibrium dissociation pressure at the same temperature than that filled in the heat storage tank (1). In addition, as a low-quality heat source, factory wastewater with a general VC of around 50°C is used.
The cooling system uses water at around 20°C.

次にこの太陽熱蓄熱利用システムの作動につい太陽熱コ
レクター01はって加熱された熱媒体はポンプ(16&
)によって熱媒体循環管路(2aを循環して熱交換器(
22)を介して熱媒循環管路12G)中ポンプ(16c
)で循環されている熱媒に熱交換し、この熱媒によって
熱エネルギー負荷部09を作動させる。
Next, regarding the operation of this solar heat storage utilization system, the heat medium heated by the solar heat collector 01 is pumped (16 &
) circulates through the heat medium circulation pipe (2a) and connects the heat exchanger (
22) through the pump (16c) in the heat medium circulation line 12G).
), and the thermal energy load section 09 is operated by this heat medium.

なおこの場合熱交換器(23は作動させない。一方余剰
熱量は熱交換器(21)を介して、熱媒循環管路い)中
をポンプ(16b)によって循環されている熱媒に熱交
換される。次いでこの余剰熱量は熱交換器Q71を介し
て蓄熱槽(1)K移動する。この熱エネルギーによって
蓄熱槽(1)内の金属水素化物M、Hが分解し発生した
水素は、主開閉弁(6)を開き、余剰熱の量によって適
宜開閉弁(4a 、 4b 、 4c 、 4d )を
開いて水素貯蔵槽(2a、2b、2c、2d) ヘ水素
導管(5,3a、3b。
In this case, the heat exchanger (23) is not operated. On the other hand, the surplus heat is exchanged via the heat exchanger (21) with the heat medium being circulated by the pump (16b) in the heat medium circulation pipe. Ru. Next, this surplus heat is transferred to the heat storage tank (1) K via the heat exchanger Q71. The hydrogen generated by the decomposition of the metal hydrides M and H in the heat storage tank (1) by this thermal energy opens the main on-off valve (6), and the on-off valves (4a, 4b, 4c, 4d) are activated as appropriate depending on the amount of excess heat. ) to the hydrogen storage tanks (2a, 2b, 2c, 2d) and the hydrogen conduits (5, 3a, 3b).

3c 、 3d )を通じて送られる。3c, 3d).

一方MIHの分解によって発生した水素は水素貯庫槽(
2g、 2b、 2c、 2d)内の金属M、  と反
応してMzHを生成し反応熱を放出する(但し、蓄熱槽
(1)内のMlの水素化反応による熱の放出速度より遅
い)。この反応熱は、冷却水をその注入管叫より熱(換
器(7)に注入し排水管0υより排水することKよ5て
吸収され、水素貯蔵槽(2a、2b、2c、2d)に水
素が貯蔵されると共に余剰熱が蓄熱される。
On the other hand, hydrogen generated by decomposition of MIH is stored in a hydrogen storage tank (
2g, 2b, 2c, 2d) to generate MzH and release reaction heat (however, the rate of heat release is slower than the heat release rate due to the hydrogenation reaction of Ml in the heat storage tank (1)). This reaction heat is absorbed by the cooling water through its injection pipe (by injecting it into the exchanger (7) and draining it through the drain pipe 0υ), and is transferred to the hydrogen storage tank (2a, 2b, 2c, 2d). Hydrogen is stored and excess heat is stored.

このようにこのシステムでは水素貯蔵槽を複数個設けで
あるので、高い伝熱速度が得られ余剰熱の量によって水
素貯蔵槽の稼動台数を選択することができる。また水素
貯蔵槽の修理、取り替えもシステムを稼動させたま−で
行うことができる。
In this way, since this system is provided with a plurality of hydrogen storage tanks, a high heat transfer rate can be obtained, and the number of operating hydrogen storage tanks can be selected depending on the amount of surplus heat. Additionally, the hydrogen storage tank can be repaired or replaced while the system is in operation.

この場合、太陽熱コレクターα役で集めた熱エネルギー
を熱エネルギー負荷部0!l)で直接に使用できないの
で、水素貯蔵槽(2a、2b、2c、2d)内にM、H
として貯えられている水素を蓄熱槽(1)K移動させ蓄
!%槽(1)中のMl と反応させて発生させた熱を利
用する。このため太陽熱コレクターα印で加熱された熱
媒体は、ポンプ(16a)によって熱媒体循環路(財)
を循環させ、その熱エネルギーは熱交換器(211によ
って熱交換され、熱媒体循環管路(2)中の熱媒体に移
動されその熱媒体はポンプ(16b)Kよって熱媒体循
環管路(25+を循環する〔この場合熱交換器(2)は
作動しない〕。
In this case, the thermal energy collected by the solar collector α is transferred to the thermal energy load section 0! M and H cannot be used directly in hydrogen storage tanks (2a, 2b, 2c, 2d).
Move the hydrogen stored as a heat storage tank (1)K and store it! The heat generated by the reaction with Ml in the tank (1) is utilized. Therefore, the heat medium heated by the solar heat collector α is transferred to the heat medium circulation path (goods) by the pump (16a).
The heat energy is exchanged by the heat exchanger (211) and transferred to the heat medium in the heat medium circulation pipe (2), and the heat medium is transferred to the heat medium circulation pipe (25+) by the pump (16b) K. [In this case, heat exchanger (2) does not operate].

一方低質熱源02の熱媒体をポンプ(16f)によって
熱媒管路03)を循環させその熱量を熱交換器05)を
介して熱媒体管路側中をポンプ(16e) Kよって循
環されている熱媒体に移動させ、次いでその熱エネルギ
ーを熱交換器(7)を介して水素貯蔵槽(2a。
On the other hand, the heat medium of the low-quality heat source 02 is circulated through the heat medium pipe line 03) by a pump (16f), and the heat is circulated through the heat medium pipe line side by the pump (16e) via the heat exchanger 05). The thermal energy is transferred to the medium and then transferred to the hydrogen storage tank (2a) via a heat exchanger (7).

2b、2c、2d)中に移動させ金属水素化物M、Hに
与え分解させ水素が速やかに放出される。この水素は、
開閉弁(4m、4b、4c、4d)を適宜開き、主開閉
弁(6)熱媒体に移動される。かくしてこの熱エネルギ
ーと上記の太陽熱コレクタ〜Q81で集められた熱エネ
ルギーとを循R管路clsl中の熱媒体中で合し、次い
でこの熱エネルギーは、ポンプ(16e)によって熱媒
体循環管路(2[i)中を循環している熱媒体に熱交換
器(23)を介して移動され熱エネルギー負荷部を作動
させる。
2b, 2c, 2d) and given to the metal hydrides M, H and decomposed, and hydrogen is rapidly released. This hydrogen is
The on-off valves (4m, 4b, 4c, 4d) are opened as appropriate, and the main on-off valve (6) is moved to the heat medium. Thus, this thermal energy and the thermal energy collected by the solar collector ~Q81 described above are combined in the heating medium in the circulation line clsl, and then this thermal energy is transferred by the pump (16e) to the heating medium circulation line ( 2[i) The thermal energy is transferred to the heat medium circulating through the heat exchanger (23) to operate the thermal energy load section.

太陽熱コレクター0秒によって加熱された熱媒体はポン
プ(16a)によって熱媒体循環管路(財)を循環して
熱交換器@を介して熱媒循環管路□□□)中ポンププ(
16d)を作動して熱媒循環管路筒中の熱媒を循環させ
て熱エネルギー負荷部a9を稼動させるとともに、夜間
など太陽から集熱できないときに熱エネルギー負荷部0
9)を稼動させるための熱を短期蓄熱器(4)に蓄熱す
る。そして夜間などには、ポンプ−(16C)を停止し
ポンプ(16d)のみ作動させて短期、:へ り讐熱器(20)に蓄熱された熱を送って熱エネルギー
負1.智′1部(1glを作動させる。
The heat medium heated by the solar heat collector for 0 seconds is circulated through the heat medium circulation pipe (goods) by the pump (16a), and is passed through the heat medium circulation pipe (□□□) through the heat exchanger @.
16d) to circulate the heat medium in the heat medium circulation pipe tube and operate the thermal energy load section a9, and also to operate the thermal energy load section 0 when heat cannot be collected from the sun such as at night.
9) is stored in the short-term heat storage device (4). Then, at night, the pump (16C) is stopped and only the pump (16d) is operated for a short period of time, and the stored heat is sent to the heat exchanger (20) to generate negative thermal energy. Ji'1 part (activate 1gl.

す゛このシステムは複数の水素貯蔵槽を有するので、高
い伝熱速度が得られまた必要な再生熱量によって適切な
数の水素貯蔵槽を作動させることができ蓄熱利用システ
ムの(11)太陽熱集熱量が熱エネルギー負荷部を稼動
させるのに不足する場合において、水素貯蔵槽(2a、
2b、2e、2d)中に低質熱源α2の熱を移動させ金
属水素化物M、Hに与えて分解させて水素導管水素(3
a、3b、3c、3d、5)を通じて蓄熱水素化物の温
度が設定温度まで低下したならば開閉弁(4b)を開い
て開閉弁(4a)を閉じて次の水素貯蔵槽(2b)にて
発生し之水素を蓄熱槽(1)に送る。なおこの設定温度
は、水素貯蔵槽から蓄熱槽へ充分な圧力差で水素が移動
しうる温度であって、使用される金属水素化物の種類に
よって異なるが適宜選択される。そしてこの水素貯蔵槽
(2b)中の金属水素化物が上記設定湿度まで低下した
ならば開閉”わ゛うるよう制御された蓄熱利用システム
である。
Since this system has multiple hydrogen storage tanks, a high heat transfer rate can be obtained, and an appropriate number of hydrogen storage tanks can be operated according to the required amount of regenerated heat. In cases where there is insufficient thermal energy to operate the thermal energy load section, the hydrogen storage tank (2a,
2b, 2e, 2d), the heat from the low-quality heat source α2 is transferred to the metal hydrides M and H and decomposed, resulting in hydrogen conduit hydrogen (3
a, 3b, 3c, 3d, 5), when the temperature of the heat storage hydride drops to the set temperature, open the on-off valve (4b), close the on-off valve (4a), and proceed to the next hydrogen storage tank (2b). The generated hydrogen is sent to the heat storage tank (1). Note that this set temperature is a temperature at which hydrogen can be transferred from the hydrogen storage tank to the heat storage tank with a sufficient pressure difference, and is selected as appropriate although it varies depending on the type of metal hydride used. The heat storage utilization system is controlled to open and close when the metal hydride in the hydrogen storage tank (2b) drops to the above-mentioned set humidity.

そして金属水素化物の温度が低下して水素供給を停止し
た水素貯蔵槽内の金属水素化物は水素供給停止中に低質
熱1fIii温度まで加熱され次の水素供給に備えられ
る。
Then, the metal hydride in the hydrogen storage tank where the temperature of the metal hydride falls and the hydrogen supply is stopped is heated to a low-quality heat 1fIii temperature while the hydrogen supply is stopped, and is prepared for the next hydrogen supply.

この態様のシステムでは、蓄熱槽(1)に送られる水素
の圧力がは!一定でしかも水素貯蔵槽と蓄熱槽との水素
の圧力差とを充分とることができるゆで、蓄熱槽で単位
時間当り発生する熱量が均一でしかも高湿で得られると
いう優れた利点を有する。
In this system, the pressure of hydrogen sent to the heat storage tank (1) is high! It has the excellent advantage of being able to maintain a constant and sufficient hydrogen pressure difference between the hydrogen storage tank and the heat storage tank, and that the amount of heat generated per unit time in the heat storage tank is uniform and can be obtained at high humidity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施態様の太陽熱蓄熱利用システ
ムの概略系統図である。 11)・−・−蓄熱槽、(2a、2b、2c、2d)−
水素貯蔵槽、(5)・・・・水素主導管、(3”、3b
+3c、3d) ・、、、水素導管、(6)・・・・主
開閉弁、(4a、4b、4c、4d) ”開閉弁、(7
)・・・・第1熱交換器、αη甲・第2熱交換器、(1
0)・・・・冷却水導管、01)・・・・排水導管、(
12+・・・・低質熱源、(13) 、 C4) 、 
(24+ 、いl 、 Iy3+および□□□・・・・
熱媒体導体、15) 、 C11+ 、 (221オ、
1: ヒC23+−・・・熱交換器、(16a、 16
b、 16c、 16d、 16e、 16f 、 1
6g1−ポンプ、08)・・・・太陽熱コレクター、0
9)・・・・熱エネルギー負荷部および(4)・・・・
短期蓄熱器。
FIG. 1 is a schematic diagram of a solar heat storage utilization system according to an embodiment of the present invention. 11) --- Heat storage tank, (2a, 2b, 2c, 2d)-
Hydrogen storage tank, (5)...Hydrogen main pipe, (3", 3b
+3c, 3d) Hydrogen conduit, (6) Main on-off valve, (4a, 4b, 4c, 4d) On-off valve, (7
)...First heat exchanger, αηA, second heat exchanger, (1
0)...Cooling water pipe, 01)...Drainage pipe, (
12+...Low quality heat source, (13), C4),
(24+, Il, Iy3+ and □□□・・・・
Heat medium conductor, 15), C11+, (221o,
1: HiC23+-...Heat exchanger, (16a, 16
b, 16c, 16d, 16e, 16f, 1
6g1-Pump, 08)... Solar collector, 0
9)...Thermal energy load section and (4)...
Short-term heat storage.

Claims (1)

【特許請求の範囲】 1、金属水素化物が充填された水素貯蔵物の複数個、こ
れらの水素貯蔵槽に共通の第1熱交換器および分校状に
延びそれぞれ開閉弁を介して各水素貯蔵槽に至る分校導
管群よりなる水素貯蔵システム部と、水素貯蔵槽中の金
属水素化物より同一温度における水素平衡解離圧が低い
金属水素化物が充填され第2交換器が接設されたひとつ
の蓄熱槽と、この蓄熱槽と分校導管群の幹部とを主開閉
弁を介して連結する主導管と、第2熱交換器を介して連
結された集熱利用システム部と、第1熱交換器を介して
連結された冷却システム部および低質熱供給システム部
とを備え、主開閉弁および各開閉弁を適宜作動させると
共K、集熱量余剰時に冷却システム部を、集熱量不足時
に低質熱供給システム部をそれぞれ作動させること釦よ
って、蓄熱利用を図るよう構成されてなる蓄熱利用シス
テム。 2、集熱量不足時に、分校導管群の各開閉弁のりちひと
つの水素貯蔵槽に対応する開閉弁のみが開き次いでこの
水素貯蔵槽内の金属水素化物の温度が設定温度まで低下
するとその開閉弁が閉じて他のひとつの水素貯蔵槽に対
応する開閉弁のみが開き、この作動を繰り返し各水素貯
蔵槽から順次循環式に水素を蓄熱槽に送りうるよう制御
された特許請求の範囲第1項記載のシステム0 7)
[Scope of Claims] 1. A plurality of hydrogen storage tanks filled with metal hydride, a first heat exchanger common to these hydrogen storage tanks, and a first heat exchanger common to these hydrogen storage tanks, extending in a branch shape and connected to each hydrogen storage tank via an on-off valve, respectively. A hydrogen storage system section consisting of a group of branch pipes leading to the hydrogen storage tank, and a heat storage tank filled with a metal hydride that has a lower hydrogen equilibrium dissociation pressure at the same temperature than the metal hydride in the hydrogen storage tank and connected to a second exchanger. , a main pipe that connects this heat storage tank and the trunk of the branch pipe group via a main on-off valve, a heat collection and utilization system section that is connected via a second heat exchanger, and a main pipe that connects the main pipe of the branch pipe group via a second heat exchanger. The main on-off valve and each on-off valve are operated as appropriate, and the cooling system section is activated when there is an excess of heat collection, and the low-quality heat supply system section is connected when there is an insufficient amount of heat collection. A heat storage utilization system configured to utilize heat storage by activating each button. 2. When the amount of heat collection is insufficient, only the on-off valve corresponding to one hydrogen storage tank of each on-off valve in the branch pipe group opens, and then when the temperature of the metal hydride in this hydrogen storage tank falls to the set temperature, that on-off valve opens. is closed and only the on-off valve corresponding to the other hydrogen storage tank is opened, and this operation is repeated so that hydrogen can be sent from each hydrogen storage tank to the heat storage tank in a sequential manner in a circulating manner. System described 0 7)
JP57064815A 1982-04-20 1982-04-20 Accumulated heat utilization system Granted JPS58182089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57064815A JPS58182089A (en) 1982-04-20 1982-04-20 Accumulated heat utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57064815A JPS58182089A (en) 1982-04-20 1982-04-20 Accumulated heat utilization system

Publications (2)

Publication Number Publication Date
JPS58182089A true JPS58182089A (en) 1983-10-24
JPS6135478B2 JPS6135478B2 (en) 1986-08-13

Family

ID=13269114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57064815A Granted JPS58182089A (en) 1982-04-20 1982-04-20 Accumulated heat utilization system

Country Status (1)

Country Link
JP (1) JPS58182089A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105989A3 (en) * 2009-09-17 2012-01-19 Wayne Thomas Bliesner Reversible hydride thermal energy storage cell optimize for solar applications

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380372A (en) * 1976-12-27 1978-07-15 Agency Of Ind Science & Technol Method and apparatus for acquiring heat energy by hydrogenation reaction of metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5380372A (en) * 1976-12-27 1978-07-15 Agency Of Ind Science & Technol Method and apparatus for acquiring heat energy by hydrogenation reaction of metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105989A3 (en) * 2009-09-17 2012-01-19 Wayne Thomas Bliesner Reversible hydride thermal energy storage cell optimize for solar applications

Also Published As

Publication number Publication date
JPS6135478B2 (en) 1986-08-13

Similar Documents

Publication Publication Date Title
Nguyen et al. Metal hydride thermal management using phase change material in the context of a standalone solar-hydrogen system
US4262739A (en) System for thermal energy storage, space heating and cooling and power conversion
JPH09264498A (en) Device for storing and utilizing hydrogen
Zamengo et al. Numerical evaluation of a Carnot battery system comprising a chemical heat storage/pump and a Brayton cycle
Borzenko et al. Crisis phenomena in metal hydride hydrogen storage facilities
JP7306623B2 (en) Thermal management method in hydrogen utilization system
JP2020090944A (en) Solar power generation system
WO2020116167A1 (en) Solar thermal power generation system
JPS58182089A (en) Accumulated heat utilization system
JPH0476203A (en) Method and system for making use of energy
CN113776372B (en) Normal-temperature cold accumulation device based on orthosteric hydrogen conversion, cold accumulation method and cold taking method
JPS5935741A (en) Solar cooling/heating system
JPS5890A (en) Structure of heat exchanger utilizing metal hydride
JP2012221723A (en) Fuel cell system
JPH0128304B2 (en)
JPH0227387B2 (en)
JPS63710B2 (en)
JPS6359063B2 (en)
US20210156519A1 (en) Heat circulation hydrogen storing method using solid state hydrogen storage material
CN115046321B (en) Solar energy storage and discharge integrated multi-energy comprehensive utilization system
JP2020132450A (en) Hydrogen supply apparatus and hydrogen supply method
JPS58224281A (en) Chemical heat pump type air-conditioning hot-water supply device
Altinişik et al. Metal hydride heat pumps
JPH02110263A (en) Heat-utilizing system utilizing hydrogen storage alloy and operation thereof
JP2643235B2 (en) Metal hydride heating and cooling equipment