JPS58182024A - High load and high tdr combustion device - Google Patents

High load and high tdr combustion device

Info

Publication number
JPS58182024A
JPS58182024A JP6429482A JP6429482A JPS58182024A JP S58182024 A JPS58182024 A JP S58182024A JP 6429482 A JP6429482 A JP 6429482A JP 6429482 A JP6429482 A JP 6429482A JP S58182024 A JPS58182024 A JP S58182024A
Authority
JP
Japan
Prior art keywords
flame
air
combustion
flame hole
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6429482A
Other languages
Japanese (ja)
Inventor
Masahiro Indo
引頭 正博
Fumitaka Kikutani
文孝 菊谷
Nobuyuki Kanehara
金原 信行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6429482A priority Critical patent/JPS58182024A/en
Publication of JPS58182024A publication Critical patent/JPS58182024A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

PURPOSE:To enlarge a stable combustion zone in the combustion device which is adapted to perform a high load combustion by supplying air forcedly to a flame so as to minimize the length of the flame by providing an air supply part having air holes in the peripheral wall in the flame forming direction of a flame hole and also a means for varying the opening area of the flame hole. CONSTITUTION:An air supply part 11 having a number of air holes 10 is provided on the righthand and lefthand of a flame hole 9, and a flame hole opening area varying plate 13 is provided within the slit of the flame hole 9 slidably therethrough. In this instance, the plate 13 is dimensioned so as to define some space on the righthand and lefthand thereof within the slit. In the operation, as the combustion rate changes from the maximum to the minimum, the flame hole opening area varying plate 13 is ascended orderly within the flame hole by a motor 16, thereby changing the flame from a jellyfish-shaped secondary flame to a double-topped secondary flame. Thus, by maintaining the mixed gas injection velocity at a substantially constant level, such a combustion is obtained that the combustion speed, distribution speed of unreacted gas and air injection speed are all substantially balanced.

Description

【発明の詳細な説明】 本発明は、給湯機や暖房機などの燃焼機の中で、ファン
等を用いて強制的に空気を火炎に供給して短炎化し、高
負荷燃焼を実現し、燃焼装置の小型化を図るとともに、
使い勝手のうえから、撚り411+4」−の変化中を従
来の偽から殉以下に広けるとともにその時の安定燃焼域
を広げ、かっ空燃比制御のしやすい燃焼装置に関するも
のである8 従来のこの種の高負荷燃焼装置として第1図に示すもの
がある。炎孔1のガス、空気の混合ガスの噴出方向の火
炎形成方向の周囲面に、空気孔2を有する空気供給板3
を設けている。炎孔1は燃料供給[14に、燃料供給管
5で結ばれている。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses a fan or the like to forcefully supply air to a flame in a combustion machine such as a water heater or space heater to shorten the flame and achieve high-load combustion. In addition to downsizing the combustion equipment,
From the standpoint of ease of use, this article is about a combustion device that widens the range of twist 411+4''- from the conventional false to below zero, widens the stable combustion range at that time, and makes it easier to control the air-fuel ratio. As a high-load combustion device, there is one shown in FIG. An air supply plate 3 having air holes 2 on the peripheral surface in the flame formation direction in the jetting direction of the mixed gas of gas and air from the flame holes 1.
has been established. The flame hole 1 is connected to a fuel supply [14] by a fuel supply pipe 5.

−力学気孔2は、空気供給口6に、空気室了を介して連
通している、8は点火プラグである。この構成において
、燃料供給管5から矢印の如く供給された空気およびガ
スの混合気が炎孔1から噴出されると同時に、空気供給
]二16よりファン等で強制的に送られた空気が矢印の
々[1<、空気孔2より混合気に当るよう匠角度を持っ
て噴出さ才11、点火プラグ8にて着火され火炎を構成
するが、火炎は炎孔またけでなく、空気孔2から噴出さ
れる空気と混合気が拡散し、空気孔2の空気流線にそっ
て火炎が形成される/ζめ、空気孔2と炎孔1で四重れ
る領域で燃焼するだめ高負荷燃1ハシ1が実現で・きる
。第5図に一例を示すように、安定燃焼域はA。
- The mechanical vent 2 communicates with the air supply port 6 via an air chamber, 8 is a spark plug. In this configuration, a mixture of air and gas supplied from the fuel supply pipe 5 as shown by the arrow is ejected from the flame hole 1, and at the same time, air forcibly sent by a fan or the like from the air supply pipe 216 as shown by the arrow Nono [1<, the air is ejected from the air hole 2 at an angle so that it hits the air-fuel mixture 11, and is ignited by the spark plug 8 to form a flame, but the flame does not cross the flame hole, but from the air hole 2. The air and air mixture ejected from the air vents diffuse and a flame is formed along the air flow lines of the air vents 2. 1 Hashi 1 can be realized. As shown in an example in Fig. 5, the stable combustion region is A.

Bの曲線で四重れるハツチング領域で、今イの点で高負
荷燃焼を実現しているとすると、燃焼)達の減少に伴い
曲線Cに示すように混合ガスの流速が減少し燃焼量を減
少させると共に、空気孔2の空気流速も減少さぜ々がら
安定燃焼域内を移動さぜることによりTurn Dow
n Ratio (T D R)を、とることになる。
If high-load combustion is achieved at point A in the quadrupled hatched region of curve B, the flow rate of the mixed gas decreases as shown in curve C as the combustion rate decreases, and the amount of combustion decreases. At the same time, the air flow velocity in the air hole 2 is also decreased, and the air flow rate is gradually moved within the stable combustion area.
n Ratio (TDR).

しかし実際には空気を供給するファンのばらつき(電圧
変動、量産ばらつき等)および混合気の燃料のばらつき
があるだめ曲線Cにそって四重れた点線のような変化と
なり、曲線人あるいはBとの交点口あるいはノ・がTD
R限界であり、混合ガス流速1〜0.4寸で置〜か変化
できない即ちTDR”15であることを示している。炎
孔1および空気孔2が一定であるため、燃焼量の減少に
伴い炎孔1からの混合ガス流速が減少し、それにつれて
空気流速も減少さぜる必要がある。これは曲線Aは黄火
を発生し火炎が伸びて燃焼ガス■流側の熱交換器等の冷
壁に当りCOが凍結した1捷排出されるためCo/CO
2が多くなる線で一燃焼に必要な最低の空気量が混合ガ
スの流速が減少するに従い空気流速も減少していくこと
を示す。一方向線Bは火炎が吹き飛び一火炎面が乱れ未
反応のGoが排出される/こめCo/CO2が多くなる
線を示し−これもCO発生しない燃焼炎を形成する最大
の空気量が混合ガスの流速が減少するに従い空気流速も
減少していくことを示す。第5図は混合ガスの空燃比を
一定にした場合であり、混合ガスの空燃比を変化させる
と曲線人、Bも変化することは勿論である。従って第5
図で混合ガス流速を減少させることが、燃焼計の減少即
ちTDRを示すことになる。
However, in reality, due to variations in the fans that supply air (voltage fluctuations, mass production variations, etc.) and variations in the fuel mixture, the result is a change that resembles a quadruple dotted line along curve C. The intersection entrance or ノ is TD
This indicates that the mixed gas flow rate cannot be changed between 1 and 0.4 inches, that is, the TDR is 15.Since flame hole 1 and air hole 2 are constant, the amount of combustion is reduced. As a result, the flow rate of the mixed gas from flame hole 1 decreases, and the air flow rate must also decrease accordingly.This is because curve A generates yellow flame and the flame extends, causing the combustion gas to flow into the heat exchanger, etc. on the flow side. Co/CO
The line where 2 increases indicates that the minimum amount of air required for one combustion decreases as the flow rate of the mixed gas decreases. One-way line B shows the line where the flame blows out, the flame front is disturbed, unreacted Go is emitted, and the amount of Co/CO2 increases - again, the maximum amount of air that forms a combustion flame that does not generate CO is the mixed gas. This shows that as the flow velocity decreases, the air flow velocity also decreases. FIG. 5 shows the case where the air-fuel ratio of the mixed gas is kept constant, and it goes without saying that the curve curve B also changes when the air-fuel ratio of the mixed gas is changed. Therefore, the fifth
Decreasing the mixed gas flow rate in the diagram will indicate a reduction in the burnup meter, or TDR.

従って従来の第1図の構成のものでは、TDRをとる場
合、混合ガスの流速の減少即ち燃料の供給量を減少させ
る燃料制御弁とファンの回転数制御等空気量を変化させ
る空気量制御装置を連動させると共に、炎孔1と空気孔
2へ送る空気量の分配制御装置を必要とする。しかも燃
料制御弁、空気量制御装置、空気量の分配制御装置のば
らつき、それらの制御回路のばらつきを総合すると、曲
線Cにそって囲まれた点線のような変化となるだめTD
R範囲が狭くなる欠点を有している。寸だ−1−記燃料
制御弁、空気量制御装置、空気量の分配制御装置の3つ
の制御装置と、それらの制御回路を必要とし複雑である
と共に、それぞれの精度向上を図らないとTDR範囲が
広がらない欠点も有し5、− でいる。
Therefore, in the case of the conventional configuration shown in FIG. 1, when TDR is used, a fuel control valve that reduces the flow velocity of the mixed gas, that is, the amount of fuel supplied, and an air amount control device that changes the air amount, such as a fan rotation speed control. In addition to interlocking the two, a distribution control device for controlling the amount of air sent to the flame hole 1 and the air hole 2 is required. Furthermore, if we take into account the variations in the fuel control valve, the air flow control device, the air flow distribution control device, and the variation in their control circuits, we will end up with a change like the dotted line surrounded by curve C.
This has the disadvantage that the R range is narrow. It requires three control devices: a fuel control valve, an air amount control device, and an air amount distribution control device, and their control circuits are complicated, and the TDR range will be limited unless efforts are made to improve the accuracy of each. It also has the disadvantage that it does not spread.

本発明は−1−記の欠点を除去するもので減少させ制御
装置の簡素化と、各種ばらつきの精度向−1この必要性
もなく、燃焼の安定領域を広げる高質荷高TDR燃焼装
置を目的とするものである。
The present invention eliminates and reduces the drawbacks listed in -1-, simplifies the control device, and improves the precision of various variations. This is the purpose.

この目的を達成するだめに本発明は、空気を強制的に火
炎に供給して畑炎化し高負荷燃焼を図るものにおいて、
炎孔の火炎形成方向の周囲壁に空気孔を有する空気供給
部を設け、前記炎孔の開孔面積を可変する装置を設けた
ものである。
In order to achieve this object, the present invention provides a method for forcibly supplying air to a flame to turn it into a field flame and achieve high-load combustion.
An air supply section having air holes is provided on the peripheral wall of the flame hole in the flame formation direction, and a device for varying the opening area of the flame hole is provided.

この構成により燃焼量の減少にともない前記炎孔の開孔
面積を減少させることにより、炎孔からの混合気の噴出
速度を、はぼ一定にし空気流速の変動量が大きくても安
定燃焼させ、TDRによる空気量制御が不要となり、制
御精度もあtり必要としなくなることとなる。
With this configuration, by reducing the opening area of the flame hole as the combustion amount decreases, the jetting speed of the air-fuel mixture from the flame hole is kept almost constant, and stable combustion is achieved even when the fluctuation amount of the air flow rate is large. Air amount control by TDR becomes unnecessary, and the control accuracy is also improved.

以下本発明の一実施例を第2図の斜視断面図を用いて説
明する。炎孔9の左右に多数の空気孔1゜を有する空気
供給部11を設け、Ait記炎孔9のFカに4”へ合室
12を構成し、混合室12内に、前記6.1、 炎孔9のスリ、ト孔内を摺動する炎孔面積可変板13を
、スリット孔の左右に空隙を作る大きさに設け、前記混
合室12の周囲に空気供給室14を空気孔10と連通ず
るように箱体15で構成し、この箱体15の外側に、前
記炎孔面積可変板12を炎孔9内を上下−に作動させる
モーター16を設けて構成している。第3図で示すよう
に炎孔面積可変板13はモーター16と摺動シャフト1
7で連通され、OIJソング8で混合気室13と空気室
14で空気と混合ガスの混合を避けている8尚、前記炎
孔面積可変板13は熱的膨張の少ない金属あるいはセラ
ミックとしている。第3図。
An embodiment of the present invention will be described below using the perspective sectional view of FIG. An air supply section 11 having a large number of air holes 1° is provided on the left and right sides of the flame hole 9, and a joining chamber 12 is formed at the F side of the flame hole 9 to 4". , the flame hole area variable plate 13 that slides inside the slit hole of the flame hole 9 is provided in a size that creates a gap on the left and right sides of the slit hole, and an air supply chamber 14 is provided around the mixing chamber 12 between the air hole 10 A motor 16 is provided on the outside of the box 15 to operate the variable flame hole area plate 12 up and down inside the flame hole 9. As shown in the figure, the variable flame hole area plate 13 is connected to the motor 16 and the sliding shaft 1.
7, and the OIJ song 8 prevents mixing of air and mixed gas in the mixture chamber 13 and air chamber 14. 8The flame hole area variable plate 13 is made of metal or ceramic with low thermal expansion. Figure 3.

第4図で作用を説明する。第3図は燃焼量が最大の場合
で、炎孔9に対して炎孔面積可変板13はモーター16
により下方に下げられ、炎孔9のスリット1]全域にお
いて点線で示すような混合気の速度分布を示し、火炎は
一点鎖線で示す一次炎と未反応ガスの拡散により矢印で
示す空気流れ分布に従ってクラゲ状の二次火炎が形成さ
れる。第4図はTDRをとり、燃焼量が最小の場合を示
し、炎孔面積可変板13は、図示の如くモーター16に
よりスリット炎孔9内を上方に押しあげ、炎孔9のスリ
ットは図示の如く両端の間隙部のスリット部が主炎孔部
となる。スリットの長手方向だけで々く短い方向にも炎
孔面積可変板13の摺動する間隙もあるが、主炎孔は図
示の炎孔長手方向の両端の間隙部のみとなり、この場合
の混合ガスの流速分布は点線で示すように主炎孔に従っ
て炎孔の両端に飛び出だ形となる。この場合の火炎は一
点少1j線で示す一次炎と未反応ガスの拡散により矢印
で示す空気流れに従って二つの山を持った二次火炎が形
成される。この場合燃焼量が少ないため空気孔10の一
段目の空気孔のみ有効に燃焼に富力し他の空気孔は、余
剰の空気として供給される。
The operation will be explained with reference to FIG. Figure 3 shows the case where the combustion amount is maximum, and the flame hole area variable plate 13 is the motor 16 with respect to the flame hole 9.
The air-fuel mixture is lowered downward by the slit 1 of the flame hole 9 and exhibits a velocity distribution as shown by the dotted line throughout the entire area, and the flame follows the airflow distribution shown by the arrow due to the primary flame shown by the dashed line and the diffusion of unreacted gas. A jellyfish-like secondary flame is formed. FIG. 4 takes TDR and shows the case where the combustion amount is minimum, and the flame hole area variable plate 13 is pushed up inside the slit flame hole 9 by the motor 16 as shown in the figure, and the slit of the flame hole 9 is moved upward as shown in the figure. The slits in the gaps at both ends become the main flame holes. Although there is a gap in which the flame hole area variable plate 13 slides not only in the longitudinal direction of the slit but also in the much shorter direction, the main flame hole is only the gap at both ends of the flame hole in the longitudinal direction shown in the figure, and in this case, the mixed gas The flow velocity distribution follows the main flame hole and protrudes from both ends of the flame hole, as shown by the dotted line. In this case, the flame is a primary flame shown by a dotted line 1j, and a secondary flame with two peaks is formed by diffusion of unreacted gas, following the air flow shown by arrows. In this case, since the amount of combustion is small, only the air holes in the first stage of the air holes 10 are effective for combustion, and the other air holes are supplied as surplus air.

従って、最大燃焼量から最小燃焼量になるに従いモータ
ー16により炎孔面積可変板13を順次炎孔内を上昇さ
せることにより、火炎はクラゲ状二次火炎から二つの山
を持った二次火炎と変化する。炎孔面積n丁変板13の
先端を山形にしているのは炎孔9で火炎を形成し温度の
影響を最少燃焼時でも山形の先端部のみしか受けないよ
うにしているためで・ある。
Therefore, by sequentially raising the flame hole area variable plate 13 through the flame hole by the motor 16 as the combustion amount changes from the maximum combustion amount to the minimum combustion amount, the flame changes from a jellyfish-shaped secondary flame to a secondary flame with two peaks. Change. The reason why the tip of the plate 13 with a variable flame hole area of n holes is made into a chevron shape is to form a flame in the flame hole 9 so that even during combustion, only the tip of the chevron is affected by the temperature.

このように燃焼量を減少するに従って山形の炎孔面積可
変板13をスリット状の炎孔9内を上昇させ炎孔面積を
減少させて、混合ガスの噴出速度をほぼ一定にすること
により、燃焼速度、未反応ガスの拡散速度と空気の噴出
速度をほぼバランスさせて燃焼させることができるため
、第5図で示すように、混合ガス流速の一定の線りで示
すような燃焼範囲の制御で良いことに々す、混合ガス流
速および空気流速のばらつきを含めで線りにそって点線
で示しだ枠での制御で良い。即ち図示の如く、混合ガス
流速を1 m/sはぼ一定で制御できるため空気流速は
図示の如く曲線Aとの交点二から曲線Bとの交点ボ捷で
、即ち2〜5 m/s iでのばらつきが許されるため
、寸だ安定燃焼域の広いところで使用するだめ空気側の
風量の:t制御は非常にラフで良く、場合によっては空
気側の8j1」御は不要となる。曲線A、Bの混合ガス
流速に対する空気流速の比は一定であり従来も同様であ
り、2.59、− 倍であるが、従来は曲線Cにそう変化が必要でありTD
Rを図示の如くに5にするだけで空気流速は1〜2゜6
m/sにおさえねばなら庁いし、1してや鴇のTDRを
実現するためには0.2 m/s= 0.5 m/i+
位に制御ぜねばならず0点を2 rr1/Bに設定した
としても風量的には殉〜屁に制御せねば々らないが、本
構成では空気流速は2〜5Iの範囲であれば良いだめ非
常にラフな空気量範囲が許容される効果がある。従って
従来のようにTDR約晃が限界では々<’Ao捷ででも
可能とがる。これは炎孔面積可変板13と炎孔9で形成
される間隙のとり方で小さくしていくことにより可能と
なる。捷だ風量範囲が広いため燃料制御弁と空気量の分
配制御装置の2つの制御装置で良く、従来のように空気
量の制御装置は不要となり、制御回路を加えても空燃比
制御は3部品で良く、しかも燃焼範囲の広い、空気流量
変動が多くても良いところで使用するため制御部品の簡
素化と、精度向」二の必要性のないという効果がある。
In this way, as the combustion amount is reduced, the chevron-shaped flame hole area variable plate 13 is raised inside the slit-shaped flame hole 9 to reduce the flame hole area and keep the jetting speed of the mixed gas almost constant, thereby increasing the combustion rate. Because it is possible to perform combustion while keeping the speed, diffusion rate of unreacted gas, and air injection rate almost balanced, the combustion range can be controlled as shown by the constant line of the mixed gas flow rate, as shown in Figure 5. In most cases, it is sufficient to control the variation in the mixed gas flow rate and air flow rate using the dotted lines along the line. That is, as shown in the figure, since the mixed gas flow rate can be controlled at a constant rate of 1 m/s, the air flow rate changes from the point of intersection with curve A to the point of intersection with curve B, that is, 2 to 5 m/s i. It is not recommended to use it in a wide area with a very stable combustion range because it allows for variations in the air flow rate.The control of the air flow on the air side can be very rough, and in some cases, the control on the air side may not be necessary. The ratio of the air flow velocity to the mixed gas flow velocity in curves A and B is constant and the same as in the conventional case, which is 2.59, - times, but in the conventional case, such a change is necessary in curve C, and TD
By simply setting R to 5 as shown in the diagram, the air flow rate will be 1 to 2°6.
If it has to be kept to m/s, it will be difficult, and in order to achieve the TDR of Toshi, it will be 0.2 m/s = 0.5 m/i +
Even if the 0 point is set to 2rr1/B, the air flow rate must be controlled to a minimum, but with this configuration, the air flow rate only needs to be in the range of 2 to 5 I. However, it has the effect of allowing a very rough air amount range. Therefore, as in the past, the TDR limit is at its limit, and it is possible to achieve only <'Ao. This can be achieved by reducing the gap formed by the flame hole area variable plate 13 and the flame hole 9. Since the air flow range is wide, only two control devices are required: a fuel control valve and an air flow distribution control device, eliminating the need for a conventional air flow control device, and even with the addition of a control circuit, air-fuel ratio control only requires three parts Furthermore, since the combustion range is wide and it can be used in places where large fluctuations in air flow rate are acceptable, it has the effect of simplifying the control parts and eliminating the need for accuracy.

更に本構成でばTDRをとるに従い空気孔10の−に段
の空気孔はバイパス空気として逃げるため一湯沸器等に
使用すると熱交換効率が安定し、従来のようにTDRを
とると結露水を発生し熱交換器の銅久性が問題になるこ
ともない効果も有している。丑だ炎孔面積可変板13の
先端を山形にすることにより炎孔面積可変板13の熱的
影響を少なくし耐久性の向上と膨張収縮の影響を少なく
している。
Furthermore, with this configuration, as the TDR is taken, the air holes in the - stage of the air holes 10 escape as bypass air, so when used in a water heater, etc., the heat exchange efficiency is stabilized, and when the TDR is taken as in the conventional case, condensed water is removed. It also has the effect that the durability of the heat exchanger does not become a problem. By making the tip of the variable flame hole area plate 13 into a chevron shape, the thermal influence of the variable flame hole area plate 13 is reduced, the durability is improved, and the influence of expansion and contraction is reduced.

実施例では1次炎を形成するブンゼン火炎であるが、拡
散火炎捷で広げて適用できるものである。
In the embodiment, a Bunsen flame is used to form a primary flame, but it can be spread and applied using a diffusion flame.

以」−のように本発明の高質荷高TI)R燃焼装置によ
れば、炎孔の火炎形成方向の周囲壁に空気孔を有する空
気供給部を設け、炎孔の開孔面積を燃焼量の減少させる
ことにより、混合ガスの噴出流速を一定にし、空気流速
変動値が大きく、安定燃焼領域の広いところで燃焼させ
ることかで・きるため、空気量の絶対値のばらつき範囲
が広くなり、制御装置に空気量制御装置が不要となると
どもに、前記制御精度はラフで良いという効果が得られ
ると共に、TDRをとっても安定燃焼範囲の広いところ
で使用できるように混合ガス流速を設定し、11  − 炎孔面積可変で混合ガス流速を一定させるように炎孔面
積可変板を設けることによりTDRは従来の係から殉以
下にできる効果が得られる。
According to the high-quality load height TI)R combustion apparatus of the present invention as described below, an air supply section having air holes is provided on the peripheral wall of the flame hole in the flame formation direction, and the opening area of the flame hole is By reducing the amount, the ejection flow velocity of the mixed gas can be kept constant, the air flow velocity fluctuation value is large, and combustion can be performed in a wide stable combustion region, so the range of variation in the absolute value of the air amount is widened. Since the control device does not require an air amount control device, the control accuracy can be rough, and the mixed gas flow rate is set so that it can be used in a wide range of stable combustion even when TDR is used. By providing a variable flame hole area plate so that the flame hole area is variable and the mixed gas flow rate is constant, an effect can be obtained in which the TDR can be reduced from the conventional mechanism.

図は本発明の一実施例による高貴荷高TDR燃焼装置の
斜視図、第3図は最大燃焼時の火炎状態を示す断面図、
第4図は最小燃焼時の火炎状態を示す断面図、第5図は
安定燃焼域を示す特性図である。
The figure is a perspective view of a high load height TDR combustion device according to an embodiment of the present invention, and FIG. 3 is a sectional view showing the flame state at maximum combustion.
FIG. 4 is a sectional view showing the flame state at the time of minimum combustion, and FIG. 5 is a characteristic diagram showing the stable combustion region.

9・・・・・・炎孔、1Q・・・・・・空気孔、11・
・・・・・空気供給部、13・・・・・炎孔面積可変板
9...Flame hole, 1Q...Air hole, 11.
... Air supply section, 13 ... Flame hole area variable plate.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 f。
Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 f.

第3図 f( 第4図 0 第5図 ’e ”l−%焼tQ 、’CO/C(、、<o、oo
Oハ ベ註銚うlブ郊4rtす〈夕 □
Fig. 3 f ( Fig. 4 0 Fig. 5 'e ''l-% baking tQ , 'CO/C (,, <o, oo
O Habe Note Urubu Suburbs 4rt〈Evening □

Claims (1)

【特許請求の範囲】[Claims] 空気を強制的に火炎に供給して短炎化し、炎孔の火炎形
成方向の周囲壁に、空気孔を有する空気供給部を設け、
前記炎孔の開孔面積を可変する装置を設けて一燃焼量の
減少にともない、前記開化面積が減少する高質荷高TD
R燃焼装置。
Air is forcibly supplied to the flame to shorten the flame, and an air supply section having an air hole is provided on the peripheral wall in the direction of flame formation of the flame hole.
A high-quality load height TD in which a device for varying the opening area of the flame hole is provided so that the opening area decreases as the combustion amount decreases.
R combustion device.
JP6429482A 1982-04-16 1982-04-16 High load and high tdr combustion device Pending JPS58182024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6429482A JPS58182024A (en) 1982-04-16 1982-04-16 High load and high tdr combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6429482A JPS58182024A (en) 1982-04-16 1982-04-16 High load and high tdr combustion device

Publications (1)

Publication Number Publication Date
JPS58182024A true JPS58182024A (en) 1983-10-24

Family

ID=13254069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6429482A Pending JPS58182024A (en) 1982-04-16 1982-04-16 High load and high tdr combustion device

Country Status (1)

Country Link
JP (1) JPS58182024A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354510A (en) * 1986-08-22 1988-03-08 Osaka Gas Co Ltd Gas burner
JPS63109828U (en) * 1986-12-27 1988-07-15
JPH01101027U (en) * 1987-12-23 1989-07-06

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354510A (en) * 1986-08-22 1988-03-08 Osaka Gas Co Ltd Gas burner
JPH0213201B2 (en) * 1986-08-22 1990-04-03 Oosaka Gasu Kk
JPS63109828U (en) * 1986-12-27 1988-07-15
JPH0443698Y2 (en) * 1986-12-27 1992-10-15
JPH01101027U (en) * 1987-12-23 1989-07-06
JPH05656Y2 (en) * 1987-12-23 1993-01-11

Similar Documents

Publication Publication Date Title
US4482313A (en) Gasburner system
JPS58182024A (en) High load and high tdr combustion device
US4511325A (en) System for the reduction of NOx emissions
ES2056756A6 (en) Adjustable premixing gas burner
Gutmark et al. Stabilization of combustion by controlling the turbulent shear flow structure
JPS5634006A (en) Method and device for combustion for low nox
US5438821A (en) Method and appliance for influencing the wake of combustion chamber inserts
JPS525023A (en) Combustion control equipment
JPS58160728A (en) Combustion device with high load and high tdr
KR100395783B1 (en) Premix combustion device of boiler
JPS6316005B2 (en)
JPS5986813A (en) Burner device
Park et al. Flame spread behaviour of blended fuel droplet array
JPS59119108A (en) Burner
JPH01222105A (en) Burner
JPS631493B2 (en)
JPS5455825A (en) Low nox burner that can adjust flame characteristic
JPH06300230A (en) Combustion device
JPH0435646B2 (en)
JP2916958B2 (en) Gas burner
JPH0240407A (en) Burner
JPS5883111A (en) Burner
JPS57155006A (en) Gun type burner
JPS5443330A (en) Combustor
JPS5847902A (en) Combustor