JPS5847902A - Combustor - Google Patents

Combustor

Info

Publication number
JPS5847902A
JPS5847902A JP14761481A JP14761481A JPS5847902A JP S5847902 A JPS5847902 A JP S5847902A JP 14761481 A JP14761481 A JP 14761481A JP 14761481 A JP14761481 A JP 14761481A JP S5847902 A JPS5847902 A JP S5847902A
Authority
JP
Japan
Prior art keywords
combustion
air
burner head
fuel
fuel mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14761481A
Other languages
Japanese (ja)
Inventor
Masaru Ito
伊東 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14761481A priority Critical patent/JPS5847902A/en
Publication of JPS5847902A publication Critical patent/JPS5847902A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/16Radiant burners using permeable blocks

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Evaporation-Type Combustion Burners (AREA)

Abstract

PURPOSE:To obtain stabilized combustion having neither blowing off nor back fire even to a variation of air quantity, by making a space ratio of ventilation of a burner head at the lower stream of a fuel-air mixture flow larger than that at the upper stream of the fuel-air mixture flow. CONSTITUTION:A burner head 13 is constituted with a premeable foaming metal, and density of the foaming metal is varied with the upper stream and the lower stream so that a passing area of a fuel-air mixture inside the burner head 13 at the lower stream is made larger than that at the upper stream. With this, stabilized combustion having neither blowing off nor back fire even to a variation of air quantity is obtained and plane combustion whose variable range is large and radiation is stabilized is carried out.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、燃料と燃焼用空気との混合気を燃焼させる燃
梼装置、特に平面上で燃焼を行なわせて輻射を得る燃焼
装置の改良に関する。 従来の平面燃焼を行なう燃焼装置の一例を第1図に示し
説明する。ヒータ1によって加熱される気化室2の一側
壁には、ファン3と連通して空気供給管4が開
The present invention relates to a combustion apparatus for burning a mixture of fuel and combustion air, and particularly to an improvement in a combustion apparatus for obtaining radiation by performing combustion on a plane. An example of a conventional combustion device that performs planar combustion is shown in FIG. 1 and will be described. An air supply pipe 4 is opened on one side wall of the vaporization chamber 2 heated by the heater 1 and communicates with the fan 3.

【゛】す
るとともに、給油ポンプ6に接続される給油管6が臨ま
せである。一方、気化室2の1一部間口部7には混合気
通路8の一端が接続さ扛、他の一端には多数の穴9が開
けられたセラミック製バーナヘッド10が固定されると
ともに、バーナヘッド10の下流側端面11に近接して
点火器12が設けられている。補記従来例構成において
、ヒータ1に通電されて気化室2が加、熱され所定温度
に達すると、ファン3から燃焼用空気が空気供給管4を
介して気化室2内に供給されるとともに、給油管6を介
して燃料ポンプロにより液体燃料が供給され本。気化室
2内に供給された液体燃料は、加熱された気化室内壁に
接触して気化し、燃焼用空気と混合して混合気となって
気化室2のL部間口部7から混合気通路8内へ流出する
。 混合気1mm路内内流入した混合気は均一に混合されな
がらバーナー・ノド10に開けられた多数の穴9から流
出し、点火器12にエリ点火され°燃焼を行ない、バー
ナヘッド1.0の下流側端面11を加熱して輻射をとる
ものである。しかしながら、従来例におけるバーナヘッ
ド10ij第2−五図に示すように穴9が平行に開けら
れており、炎の薄き上り(リフト)や逆火(バック)が
起こり易く、安定燃焼領域が狭いという欠点を有してい
た。その理由は下流側端面11を加熱して輻射金得るた
めに、下流側端面11に接近して燃焼火炎を形成させる
必要があり、そのため穴9から噴出する混合気流速は遅
く、その状態で良好な燃焼を行なうように燃焼負荷・空
燃比等を調整していた。それに対し、何らかの理由で混
合気中の燃焼用空気が増加すると、穴9から噴出する混
合気の流速が増加するた・め混合気の燃焼速度と釣り合
う位置まで下流側端面11から遠ざかって火炎面が形成
される。すると火炎による下流側端面11の加熱量が少
なくなり、下流側端面11の温度およびそれにより加熱
される穴9から噴出する混合ネ、温度が低下する。一般
゛に可燃性混合気は温度が低下すると燃焼速度も低下す
るが、そのため穴9から噴出する混合気は燃焼しにくく
なり吹き飛び(リフート)を起こしてし1う。また逆に
混合気中の空気量が減小した場合には、前述の吹き飛び
の場合と逆に火炎面が下流側端面11に接近しすぎて形
成されることになり、下流側端面11が強く加熱されて
温度が上昇してしまう。そのため穴9より噴出する混合
気の燃焼速度が増大し、ついには穴9から噴出する混合
気の噴出速度に勝って下流側端面11から穴9内に火炎
が入ってしまう。穴9は内径一定の穴であるため穴9内
では混合気流速は一定で、一度穴9内に入った火炎の燃
焼速度は穴9内の混合気流速よりも速いために火炎は穴
e内を上流側に進行して逆火(バック)してしまう。ま
た、燃焼量を減小させようとすると、それに併なって燃
焼用空気量も減小させる必要があることから、上述の逆
火の場合と同様に火炎面が下流側端面11に接近してし
まい逆火を起こし易い。つまり、従来例における平面燃
焼を行なうバーナヘッドでは、下流側端面11(燃焼面
)に接近しながら、ある距離金へだてで火炎面を形成さ
せる構成であるため、空気量変動や燃焼量変動により吹
き飛び(リフト)や逆火(バック)を生じ易く、安定燃
焼領域が狭い欠点を持っていた。 本発明は上記従来例の欠点に対して、安定燃焼領域を拡
大して空気量変動に対して安定して燃焼を行なわしめる
とともに、燃焼量可変幅の拡大°を目的としたもので、
バーナヘッド9内での混合気流速を下流側よりも上流側
を速くすることにより逆火を防止するとともに、燃焼火
炎をバーナヘッドe内に形成せしめることにより上記目
的を達成するものである。 つぎに本発明の一実施例を第3図に示し説明する。図中
第1図と同番号は同部材を示し、説明を省略す息。バー
ナヘッド13は通気性のある発泡金属で構成され“ると
ともに、バーナヘッド13中での混合気の通過面積を上
流側は小さく下流側は大きくなるように発泡金属の密度
(発泡度)を上流側と下流側で変えである。そのため、
゛バーナヘッド13内での混合気流速は上流側は速く、
下流側は遅くなり、燃焼速度の異なる混合気に対しても
バーナヘッド内の適当な部分で安定した燃焼を行なわし
めることができる。 上記構成において、気化室2から供給される混合気は発
泡金属により形成されたバーナヘッド13の全面から均
一に噴出し、点火器12により点火され燃焼を行なうが
、燃焼はバーナヘッド13内の適当な位置すなわち混合
気流速と燃焼速度とが釣り合う位置において行なわれる
ように燃焼負荷・空燃比等を調整しである。そして、こ
の燃焼熱に工9バーナヘッド13は加熱され輻射を行な
う。 この時、何らかの理由で混合気中の空気量が増えて、混
合気流速が増加した場合でも、バーナヘッド13内での
混合気流速は上流側で速く下流側で遅いために、空気量
が増加する前に燃焼していた位置における混合気流速は
、空気蓋が増えた場合にはエリ下流側の位置で発生する
ことにガる0そして、その位置で混合気流速と燃焼速度
が釣り合って燃焼することになり、その部分でバーナヘ
ッド131加熱するため吹き飛び(リフト)ヲ起こさせ
ない。また発泡体中での燃焼であるため連続した火炎が
形成され、そのため部分的なリフトも起こすことがなく
、安定・した燃焼を行ない、安定した輻射を得ることが
できる。一方、増に混合気中の空気量が減小した場合に
は、前述の吹き飛び(リフト)の場合と逆にバーナヘッ
ド13中を上流側に燃焼位置が移動して、混合気流速と
燃焼遠度が釣り合うことになり、逆火を起こさずに安定
して燃焼を行なうことができる。また、燃焼量を減小さ
せるために混゛合気量を減小させる場合においても、前
述の混合気中の空気量が減小した場合と同様にバーナヘ
ッド13中での燃焼位置が下流側から上流側に移動する
だけであり逆火することがない。、また常に燃焼装置が
バーナヘッド13内にある丸め、バーナヘッド13の加
熱が安定して行なわれ、安定した輻射を得ることができ
る。 1明実施例ではバーナヘッド13に一泡金属を用いてい
るが、これ以外に発泡セラミックや通気性のある焼結金
属を用いてもよく、ま九′第今mlに示すように発泡密
度の異なる発泡金属板14を複数組合わせても同様の効
果が得られる。 以上の説明p為ら明らをなように、本発明においてはバ
ーナヘッド内において混合気流の下流側よりも上流側の
混合気通過面積を小さくして、常にバーナヘッド内で燃
焼が行なわれるよう構成したため、空気量変動に対して
も吹き飛′びや逆火のない安定した燃焼が得られると及
もに、燃i量の可変幅が大きく安定した輻射を得る平面
燃焼を、4’%う燃焼装置を得ることができる。
At the same time, the oil supply pipe 6 connected to the oil supply pump 6 is exposed. On the other hand, one end of the air-fuel mixture passage 8 is connected to the opening 7 of the vaporization chamber 2, and a ceramic burner head 10 with a large number of holes 9 is fixed to the other end. An igniter 12 is provided adjacent to the downstream end surface 11 of the head 10. Supplementary note: In the conventional configuration, when the heater 1 is energized to heat the vaporization chamber 2 and reach a predetermined temperature, combustion air is supplied from the fan 3 into the vaporization chamber 2 via the air supply pipe 4, and Liquid fuel is supplied through the fuel supply pipe 6 by a fuel pump. The liquid fuel supplied into the vaporization chamber 2 comes into contact with the heated wall of the vaporization chamber and vaporizes, mixes with combustion air to form an air-fuel mixture, and flows from the L section opening 7 of the vaporization chamber 2 to the air-fuel mixture passage. It flows into 8. The air-fuel mixture that has flowed into the air-fuel mixture passage with a thickness of 1 mm flows out from the numerous holes 9 made in the burner nod 10 while being mixed uniformly, and is ignited by the igniter 12 to perform combustion and burner head 1.0. The downstream end face 11 is heated to remove radiation. However, as shown in Fig. 2-5 in the burner head 10ij in the conventional example, the holes 9 are opened in parallel, which tends to cause thin flame lift and backfire, and the stable combustion area is narrow. It had drawbacks. The reason for this is that in order to heat the downstream end face 11 and obtain radiant metal, it is necessary to form a combustion flame close to the downstream end face 11. Therefore, the flow rate of the air-fuel mixture jetting out from the hole 9 is slow, and it is good in that state. The combustion load, air-fuel ratio, etc. were adjusted to ensure proper combustion. On the other hand, if the combustion air in the mixture increases for some reason, the flow velocity of the mixture ejected from the hole 9 increases, so that the flame surface moves away from the downstream end face 11 until it reaches a position that balances the combustion velocity of the mixture. is formed. Then, the amount of heating of the downstream end surface 11 by the flame decreases, and the temperature of the downstream end surface 11 and the temperature of the mixture ejected from the hole 9 heated thereby decrease. In general, when the temperature of a flammable air-fuel mixture decreases, the combustion rate also decreases, and as a result, the air-fuel mixture ejected from the hole 9 becomes difficult to burn, resulting in blow-off (lift). Conversely, if the amount of air in the air-fuel mixture decreases, the flame front will be formed too close to the downstream end face 11, contrary to the above-mentioned blow-off case, and the downstream end face 11 will be strongly It gets heated and the temperature rises. Therefore, the combustion speed of the air-fuel mixture ejected from the hole 9 increases, and eventually the flame enters the hole 9 from the downstream end face 11, exceeding the ejection speed of the air-fuel mixture ejected from the hole 9. Since the hole 9 has a constant inner diameter, the air-fuel mixture flow rate is constant inside the hole 9, and the combustion speed of the flame once it enters the hole 9 is faster than the air-fuel mixture flow rate inside the hole 9, so the flame moves inside the hole e. proceeds upstream and backfires. Furthermore, when trying to reduce the amount of combustion, it is necessary to reduce the amount of combustion air as well, so as in the case of flashback described above, the flame front approaches the downstream end surface 11. It is easy to cause a backfire. In other words, in the conventional burner head that performs flat combustion, the flame front is formed by touching the metal a certain distance while approaching the downstream end face 11 (combustion surface). They tend to cause lift and backfire, and have a narrow stable combustion range. The present invention addresses the drawbacks of the conventional examples described above, and aims to expand the stable combustion region to perform stable combustion against air amount fluctuations, and to expand the combustion amount variable range.
The above object is achieved by making the flow rate of the air-fuel mixture faster on the upstream side than on the downstream side in the burner head 9 to prevent backfire, and also to form a combustion flame in the burner head e. Next, one embodiment of the present invention is shown in FIG. 3 and will be described. The same numbers in the drawings as in FIG. 1 indicate the same members, and their explanations will be omitted. The burner head 13 is made of breathable foamed metal, and the density (foaming degree) of the foamed metal is adjusted upstream so that the area through which the air-fuel mixture passes through the burner head 13 is small on the upstream side and large on the downstream side. The side and downstream side are different. Therefore,
゛The air-fuel mixture flow speed in the burner head 13 is faster on the upstream side;
The temperature on the downstream side is slower, and stable combustion can be performed in an appropriate part of the burner head even for air-fuel mixtures with different combustion velocities. In the above configuration, the air-fuel mixture supplied from the vaporization chamber 2 is uniformly ejected from the entire surface of the burner head 13 formed of foamed metal, and is ignited by the igniter 12 to perform combustion. The combustion load, air-fuel ratio, etc. are adjusted so that the combustion is carried out at a position where the air-fuel mixture flow rate and combustion speed are balanced. Then, the burner head 13 of the engine 9 is heated by this combustion heat and radiates. At this time, even if the amount of air in the mixture increases for some reason and the flow rate of the mixture increases, the flow rate of the mixture in the burner head 13 is faster on the upstream side and slower on the downstream side, so the amount of air increases. If the air cover increases, the air-fuel mixture flow velocity at the position where combustion was occurring before the combustion will occur at a position downstream of the edge.Then, at that position, the air-fuel mixture flow velocity and combustion speed will balance and combustion will occur. Since the burner head 131 is heated at that part, blow-off (lift) does not occur. Furthermore, since the combustion occurs in a foam, a continuous flame is formed, which prevents local lift, resulting in stable combustion and stable radiation. On the other hand, when the amount of air in the air-fuel mixture decreases, the combustion position moves upstream in the burner head 13, contrary to the above-mentioned case of blow-off (lift), and the air-fuel mixture flow rate increases and the combustion distance increases. The temperatures are balanced, allowing stable combustion without backfire. Also, when reducing the amount of air mixture in order to reduce the amount of combustion, the combustion position in the burner head 13 is on the downstream side, as in the case where the amount of air in the air mixture is reduced as described above. It only moves upstream from the source, and there is no backfire. Moreover, since the combustion device is always located inside the burner head 13, the heating of the burner head 13 is performed stably, and stable radiation can be obtained. In the first embodiment, single foam metal is used for the burner head 13, but foamed ceramic or breathable sintered metal may also be used. Similar effects can be obtained by combining a plurality of different foamed metal plates 14. As is clear from the above explanation, in the present invention, the air-fuel mixture passage area on the upstream side of the air-fuel mixture flow is made smaller in the burner head than on the downstream side so that combustion always takes place within the burner head. As a result, stable combustion without blow-off or flashback can be obtained even when the amount of air fluctuates, and flat combustion with a wide variable range of fuel amount and stable radiation can be achieved by 4'%. A combustion device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の燃焼装置の縦断面図、第2図は従来の燃
焼装置のバーナヘッドを示す断面図、第3図は本発明の
一実施例における燃焼装置を示す縦断面図、第4図は他
の実施例のバーナヘッドを示す断、面1図である。 9・・・・パ・穴、10・・・・・・バーナヘッド、1
1・・・・・・下流側端面、13’・・・・・バーナベ
ッド。 。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第4
 511 蘂2図 第 4 図
FIG. 1 is a vertical sectional view of a conventional combustion device, FIG. 2 is a sectional view showing a burner head of the conventional combustion device, FIG. 3 is a vertical sectional view of a combustion device in an embodiment of the present invention, and FIG. The figure is a sectional view showing a burner head of another embodiment. 9...Pa/hole, 10...Burner head, 1
1...Downstream end face, 13'...Burner bed. . Name of agent: Patent attorney Toshio Nakao and 1 other person No. 4
511 Leg 2 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)燃料と燃焼用空気からなる混合気を燃焼する前記
通気性材料の単位体積あたりの空間比率を混合気流の上
流側よりも下流側を大きくした燃焼装置。
(1) A combustion device in which the space ratio per unit volume of the air-permeable material for burning a mixture of fuel and combustion air is larger on the downstream side of the air mixture flow than on the upstream side.
(2)前記通気性材料を発泡または焼結により成型した
金属またはセラミックとした特許請求の範囲第1項記載
の燃焼装置。
(2) The combustion device according to claim 1, wherein the breathable material is a metal or ceramic formed by foaming or sintering.
(3)単位体積あたりの空間比率の異なる通気性材料を
複、数組台せてバーナヘッドを構成した特許請求の範囲
第1項記載の燃焼装置。
(3) The combustion device according to claim 1, wherein the burner head is constructed by mounting a plurality of sets of air permeable materials having different space ratios per unit volume.
JP14761481A 1981-09-17 1981-09-17 Combustor Pending JPS5847902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14761481A JPS5847902A (en) 1981-09-17 1981-09-17 Combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14761481A JPS5847902A (en) 1981-09-17 1981-09-17 Combustor

Publications (1)

Publication Number Publication Date
JPS5847902A true JPS5847902A (en) 1983-03-19

Family

ID=15434300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14761481A Pending JPS5847902A (en) 1981-09-17 1981-09-17 Combustor

Country Status (1)

Country Link
JP (1) JPS5847902A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271440A (en) * 1985-09-25 1987-04-02 ニシム電子工業株式会社 Ac no-break power source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4210779Y1 (en) * 1965-01-07 1967-06-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4210779Y1 (en) * 1965-01-07 1967-06-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271440A (en) * 1985-09-25 1987-04-02 ニシム電子工業株式会社 Ac no-break power source

Similar Documents

Publication Publication Date Title
USRE33136E (en) Burner for gas blow torch
JPS5847902A (en) Combustor
JPS6053711A (en) Catalytic combustion apparatus
JPH0512617B2 (en)
JPS58190611A (en) Liquid fuel combustion device
JP3549736B2 (en) Burner
JPS5852444Y2 (en) hot air heater
JPS5852445Y2 (en) hot air heater
JPS6226660Y2 (en)
JPS5888517A (en) Burner
JPS6383515A (en) Burner
JPS5933951Y2 (en) hot air heater
JPH0311213A (en) Combustion equipment
JPH0776606B2 (en) Combustion device
JPS62186106A (en) Low nox burner for liquid fuel
JPH081281B2 (en) Burner
JPS6314007A (en) Burner
JP2671330B2 (en) Burner
JP3414067B2 (en) Combustion equipment
JPH01222105A (en) Burner
JPH03158611A (en) Burner
JPH03158610A (en) Burner
JPH08128607A (en) Premixing type gas burner employing catalyst
JPS5986813A (en) Burner device
JPS5899607A (en) Burner