JPH0435646B2 - - Google Patents

Info

Publication number
JPH0435646B2
JPH0435646B2 JP60190132A JP19013285A JPH0435646B2 JP H0435646 B2 JPH0435646 B2 JP H0435646B2 JP 60190132 A JP60190132 A JP 60190132A JP 19013285 A JP19013285 A JP 19013285A JP H0435646 B2 JPH0435646 B2 JP H0435646B2
Authority
JP
Japan
Prior art keywords
combustion
air
fuel
fuel ratio
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60190132A
Other languages
Japanese (ja)
Other versions
JPS6249122A (en
Inventor
Yasutsugu Matsui
Hideki Komori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60190132A priority Critical patent/JPS6249122A/en
Publication of JPS6249122A publication Critical patent/JPS6249122A/en
Publication of JPH0435646B2 publication Critical patent/JPH0435646B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/12Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using ionisation-sensitive elements, i.e. flame rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2235/00Valves, nozzles or pumps
    • F23N2235/30Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2239/00Fuels
    • F23N2239/06Liquid fuels

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は灯油等の液体燃料の気化ガスと空気
とを予め混合させるようにした予混合形の液体燃
料燃焼装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a premix type liquid fuel combustion device in which vaporized gas of liquid fuel such as kerosene and air are mixed in advance.

〔従来の技術〕[Conventional technology]

従来よりポンプ等で供給した灯油等の液体燃料
の気化ガスと、空気とを予混合させるようにし、
その後において青炎燃焼させる予混合形液体燃料
燃焼装置が開発されてきた。この種のバーナには
ガス燃料と同じようにブンゼン炎を形成され、煤
を追放し一酸化炭素等の有害成分が少ないという
特徴を持つため最近暖房機等において広く用いら
れるようになつてきた。
Conventionally, the vaporized gas of liquid fuel such as kerosene supplied by a pump etc. is premixed with air,
Subsequently, premixed liquid fuel combustion devices with blue flame combustion have been developed. This type of burner has the characteristics of forming a Bunsen flame in the same way as gas fuel, expelling soot, and containing few harmful components such as carbon monoxide, so it has recently become widely used in heaters and the like.

ところでポンプによる燃料油供給を送風機によ
る燃焼用空気の供給と独立して行われるため、塵
づまり等による風路内の圧力損失の変化や、ポン
プによる燃料油供給量の経時変化に対処するため
火炎中のイオン電流を検出し、イオン電流値が極
大値をとるよう、ポンプ駆動回路や送風機回転数
にフイードバツク制御を行なつている。
By the way, since the supply of fuel oil by the pump is performed independently from the supply of combustion air by the blower, the flame rays need to be adjusted in order to cope with changes in pressure loss in the air passage due to dust clogging, etc., and changes over time in the amount of fuel oil supplied by the pump. The ion current inside the pump is detected, and feedback control is performed on the pump drive circuit and fan rotation speed so that the ion current value reaches its maximum value.

第1図は上記した一般的な液体燃料燃焼装置に
おけるバーナ構成を示す説明図であり、図におい
て1は燃焼用空気供給孔で送風機(図示せず)に
より供給された燃焼用空気を高速で噴出させるよ
うになつている。2は灯油等の液体燃料供給管で
あり、先端は細針状になつており、燃料タンク4
よりポンプ3を介して供給される量油を微粒化し
て、混合室5内に供給する役目をする。そしてこ
の混合室5はアルミ等の熱伝導率の良好な材料よ
りなり、予熱ヒータ7を鋳込んだ気化壁6で囲ま
れ、上部に絞り板8、整流板9および炎口板10
を有している。11は火炎12を検出するイオン
電極であり、制御回路装置13と共に燃焼炎の検
知を行なう。なお、この制御回路装置13はポン
プ3の駆動装置を兼ねている。
FIG. 1 is an explanatory diagram showing the burner configuration in the above-mentioned general liquid fuel combustion device. In the figure, 1 is a combustion air supply hole that blows out combustion air supplied by a blower (not shown) at high speed. I'm starting to let them do it. 2 is a liquid fuel supply pipe such as kerosene, the tip of which is shaped like a fine needle, and is connected to the fuel tank 4.
It serves to atomize the oil supplied via the pump 3 and supply it into the mixing chamber 5. The mixing chamber 5 is made of a material with good thermal conductivity, such as aluminum, and is surrounded by a vaporization wall 6 into which a preheater 7 is cast, and has an aperture plate 8, a rectifying plate 9, and a flame port plate 10 at the top.
have. Reference numeral 11 denotes an ion electrode that detects the flame 12, and together with the control circuit device 13, detects the combustion flame. Note that this control circuit device 13 also serves as a drive device for the pump 3.

次に動作について説明する。予めヒータ7によ
り気化壁6が所定の温度になるように昇温した後
送風機(図示せず)により燃焼用空気が供給孔1
より混合室5内に供給される。同時にポンプ3を
介して所定量の燃料油が供給管2より供給され
る。供給燃料油は供給管2を通過する際に微粒化
されしかも上記の供給孔1より噴出する空気流に
よりさらに微粒化が促進され、予熱した気化壁6
上で瞬時に気化し燃焼用空気と混合する。
Next, the operation will be explained. After the vaporization wall 6 is heated to a predetermined temperature by the heater 7 in advance, combustion air is supplied to the supply hole 1 by a blower (not shown).
is supplied into the mixing chamber 5. At the same time, a predetermined amount of fuel oil is supplied from the supply pipe 2 via the pump 3. The supplied fuel oil is atomized when passing through the supply pipe 2, and the atomization is further promoted by the air flow jetted from the above-mentioned supply hole 1, and the preheated vaporization wall 6
It vaporizes instantaneously at the top and mixes with the combustion air.

その後この予混合気は絞り板8を通過中にさら
に混合し、整流板9で流速分布を均一にされた後
炎口板10上で点火装置(図示せず)により着火
され、安定な火炎12をその上に形成し、着火後
は気化壁6に火炎12から熱回収が行われるので
ヒータ入力は不要となる。またイオン電極11に
よりイオン電流Ifの整流波形を観測し、常に火炎
12を監視し、万一消炎した場合には上記制御回
路装置13により安全に燃焼を停止する。
Thereafter, this premixture is further mixed while passing through the diaphragm plate 8, and after the flow velocity distribution is made uniform by the rectifier plate 9, it is ignited by an ignition device (not shown) on the flame port plate 10, resulting in a stable flame 12. is formed thereon, and after ignition, heat is recovered from the flame 12 to the vaporization wall 6, so no heater input is required. Further, the rectified waveform of the ion current If is observed by the ion electrode 11, and the flame 12 is constantly monitored, and if the flame 12 should go out, the control circuit device 13 safely stops the combustion.

ところで上記火炎12によるイオン電流値If
一例を第2図に示すようにその代表的な入力が
3000ないし1000Kcal/hrではほぼμ=0.8〜0.9で
ピークを持つ分布をしている。着火検出後に制御
回路装置13によりポンプ駆動周波数を調節して
Ifが最大になるよう燃料油の供給量が決められ
る。この時の制御を第4図のフロチヤートに示
す。即ち、着火してから数十秒後のイオン電流If
を制御回路13に記憶させ、比較値If0とする。
燃料ポンプ駆動周波数(以下単に燃料ポンプ周波
数という)をわずかΔfだけ増加させ、その時の
イオン電流値IfとIf0と比較し(k=If−If0)、差
kが所定値eより大きい場合はその時のイオン電
流値Ifを新しい比較値If0として、更にΔfだけ燃
料ポンプ周波数を増加させる。以下この動作を繰
返し、イオン電流の最高値近傍になると差kが所
定値eより小さくなるので、この時の燃料ポンプ
周波数による燃料供給量がIfが最大となる燃料供
給量として決定される。燃料ポンプ周波数のΔf
の増加によりIf0よりIfが小、即ち差kが−eより
小さくなると差kの絶対値が所定値eより小さく
なるまでΔfの減少を繰返す。また送風機電圧や
風路中のダンパー装置等により送風量を変化させ
Ifを検出しそのヒータ値に燃料油の供給量を合わ
せることにより、安定した燃焼量の調節が行える
ようにしている。
By the way, the ion current value I f due to the flame 12 mentioned above has a typical input as shown in Fig. 2.
At 3000 to 1000 Kcal/hr, the distribution has a peak at approximately μ=0.8 to 0.9. After the ignition is detected, the pump drive frequency is adjusted by the control circuit device 13.
The amount of fuel oil supplied is determined so that I f is maximized. The control at this time is shown in the flowchart of FIG. In other words, the ion current If several tens of seconds after ignition
is stored in the control circuit 13 and set as a comparison value If 0 .
Increase the fuel pump drive frequency (hereinafter simply referred to as fuel pump frequency) by a small amount Δf, compare the ion current value If at that time with If 0 (k = If - If 0 ), and if the difference k is larger than the predetermined value e, The ion current value If at that time is set as a new comparison value If 0 , and the fuel pump frequency is further increased by Δf. Thereafter, this operation is repeated, and when the ion current approaches the maximum value, the difference k becomes smaller than the predetermined value e, so the fuel supply amount according to the fuel pump frequency at this time is determined as the fuel supply amount at which If becomes the maximum. Δf of fuel pump frequency
When If becomes smaller than If 0 due to an increase in If, that is, the difference k becomes smaller than -e, the decrease of Δf is repeated until the absolute value of the difference k becomes smaller than the predetermined value e. In addition, the amount of air blown can be changed depending on the blower voltage, damper device in the air path, etc.
By detecting I f and matching the fuel oil supply amount to the heater value, stable combustion amount adjustment is possible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の液体燃料燃焼装置におけるバーナ構成は
以上のように構成されているので、常にイオン電
流のピーク値に対応する空燃比μで燃焼しなけれ
ばならず、空燃比μを任意の値に選ぶことができ
なかつた。
Since the burner configuration in a conventional liquid fuel combustion device is configured as described above, combustion must always be performed at an air-fuel ratio μ corresponding to the peak value of the ion current, and the air-fuel ratio μ cannot be selected to an arbitrary value. I couldn't do it.

すなわち具体的にはブンゼン炎の安定性を増す
にはμ=0.7、窒素酸化物(NOX)の低減にはμ
=1.3〜1.5に設定することが有効であるが、従来
の手段ではかれが現実できなかつた。
Specifically, μ = 0.7 to increase Bunsen flame stability, and μ = 0.7 to reduce nitrogen oxides (NOX).
It is effective to set the value to 1.3 to 1.5, but this could not be achieved using conventional means.

この発明は上記の問題点を解消するためになさ
れたもので、任意の値にμを設定できる液体燃料
燃焼装置を得ることを目的としている。
This invention was made to solve the above problems, and aims to provide a liquid fuel combustion device in which μ can be set to an arbitrary value.

〔問題点を解決するための手段〕[Means for solving problems]

すなわにこの発明に係る燃焼装置では、従来装
置と同様にイオン電流値Ifを検出し、一旦このIf
がピークを示す空燃比μに燃焼状態を設定した
後、制御回路装置により所定μになるよう燃料供
給量を調整しようとするものである。
In other words, in the combustion device according to the present invention, the ion current value I f is detected in the same way as the conventional device, and once this I f
After the combustion state is set to an air-fuel ratio μ at which the peak value μ is reached, the control circuit device attempts to adjust the amount of fuel supplied to a predetermined μ.

〔作用〕[Effect]

この発明の場合は着火時にはIfがピークになる
よう制御してピークμ燃焼を実現させた後、ポン
プ駆動回路により燃料油を所定の供給量に変化さ
せ、設定μ燃焼を行わせる。そしてIfを監視し変
化した場合は再度ピークμ燃焼させ空燃比を再設
定する。また入力変化はピークμ燃焼に戻して行
い、安定燃焼させつつ入力の調整を行わせてお
り、このようにすることによりバーナ特性の安定
性の向上ならびに任意空燃比が設定できるように
なる。
In the case of this invention, at the time of ignition, I f is controlled to reach a peak to achieve peak μ combustion, and then the pump drive circuit changes the supply amount of fuel oil to a predetermined amount to perform set μ combustion. Then, I f is monitored and if it changes, peak μ combustion is performed again and the air-fuel ratio is reset. Further, input changes are made to return to peak μ combustion, and input is adjusted while stable combustion is being achieved.By doing this, it becomes possible to improve the stability of burner characteristics and to set an arbitrary air-fuel ratio.

〔実施例〕〔Example〕

この発明の場合は、着火およびイオン電流値If
がピーク値になるμでの燃焼を実現するまでの動
作(ピークμ燃焼)は従来例と同一である。この
安定したピークμ燃焼が確認させると、その時の
空燃比μが第2図から明らかなように0.8〜0.9で
あることが判明されているので、ポンプ駆動の制
御回路装置13により、その時の燃料供給量を、
送風量を変えずにピークμ燃焼時に空燃比(0.8
〜0.9)と所望空燃比との割合分変化させる(設
定μ燃焼)。例えば、バーナ性能の安定性が大で
あるμ=0.7を現実させるには、ピークμ燃焼時
の空燃比を0.7/(0.8〜0.9)≒0.9〜0.8倍に、即
ち10〜20%減少させればよく、そのためには送風
量を変えずに燃料供給量を10〜20%増加させれば
よい。この動作は一定時間ごとに、または燃焼量
を調節する度にくり返される。すなわち後者で
は、送風量を変えて燃料量を変える時には再度ピ
ークμ燃焼を行なわせる。即ち、送風量が変化す
ると上述と同様のイオン電流値Ifが常にピーク値
を示すよう燃料供給量の調節が行なわれる。そし
て、送風量の変化がなくなつたことがイオン電流
値Ifの変化が少なくなつたこと等で確認される
と、上記と同様にして設定μ燃焼に移行する。こ
の時の送風量及び燃料油量変化のタイムチヤート
を第3図に示す。
In the case of this invention, the ignition and ion current value I f
The operation until combustion is achieved at μ at which μ reaches its peak value (peak μ combustion) is the same as in the conventional example. When this stable peak μ combustion is confirmed, the air-fuel ratio μ at that time is found to be 0.8 to 0.9 as shown in FIG. supply amount,
The air-fuel ratio (0.8
~0.9) and the desired air-fuel ratio (setting μ combustion). For example, in order to achieve μ = 0.7, which is a highly stable burner performance, the air-fuel ratio during peak μ combustion must be reduced to 0.7/(0.8~0.9)≈0.9~0.8 times, or 10~20%. To do this, all you have to do is increase the fuel supply amount by 10 to 20% without changing the air flow rate. This operation is repeated at regular intervals or every time the combustion amount is adjusted. That is, in the latter case, when changing the air flow rate to change the fuel amount, peak μ combustion is performed again. That is, when the air blowing amount changes, the fuel supply amount is adjusted so that the ion current value If always shows the peak value as described above. Then, when it is confirmed that there is no change in the amount of air blown by the fact that the change in the ion current value If has decreased, etc., the process shifts to the set μ combustion in the same manner as described above. A time chart of changes in the amount of air blown and the amount of fuel oil at this time is shown in Fig. 3.

この方法は特に空燃比が高い場合に有効であ
る。すなわち低NOxをめざしてμ=1.4程度の燃
焼をさせる場合には、上述のようなピークμ燃焼
を行なわせた後、この時の空燃比μを0.85と決め
て空燃比μを65%増加(1.4/0.85)、即ち燃料供
給量を65%減少させて設定μ燃焼に達した時のIf
を一旦制御回路装置13に記憶させる。その後の
定常燃焼中のIfと上記記憶させたIfとを比較し、
変動が生じた場合には再度ピークμ燃焼を行わせ
て空燃比の再設定を行う。
This method is particularly effective when the air-fuel ratio is high. In other words, when aiming for low NOx and performing combustion with μ = approximately 1.4, after performing the peak μ combustion as described above, the air-fuel ratio μ at this time is determined to be 0.85, and the air-fuel ratio μ is increased by 65% ( 1.4/0.85), i.e. I f when the fuel supply amount is reduced by 65% and the set μ combustion is reached.
is temporarily stored in the control circuit device 13. Compare I f during the subsequent steady combustion with the above memorized I f ,
If a fluctuation occurs, peak μ combustion is performed again to reset the air-fuel ratio.

以上のように常にIfを監視して空燃比の変動を
検出することにより、不安定な高空燃比燃焼に対
しても信頼性の向上がはかれる。また燃焼量を変
化させる場合には、前述したように一旦ピークμ
燃焼に戻して安定性の高い燃焼が実現できる空燃
比のもとで、燃焼量の変動動作を行うと一層の信
頼性向上がはかれる。
As described above, by constantly monitoring I f and detecting fluctuations in the air-fuel ratio, reliability can be improved even in unstable high air-fuel ratio combustion. In addition, when changing the combustion amount, as mentioned above, once the peak μ
Reliability can be further improved by varying the amount of combustion at an air-fuel ratio that allows highly stable combustion to be achieved.

以上は炎口板上に安定させたブンゼン火炎に本
発明を適用した場合について述べたが、予混合気
を多孔質体やセラミツクあるいは金属メツシユ等
の表面で燃焼させる場合およびガス燃料や液体燃
料微粒子と空気を混合させながら燃焼させる場合
等にも広く応用することができる。
The above describes the case in which the present invention is applied to a Bunsen flame stabilized on a flame port plate. It can also be widely applied to cases where combustion is performed while mixing air with air.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば例えばイオン電流
値等の単峰性のある信号を火炎から検出し、着火
時にピークμ燃焼を行わせた後、所定の空燃比へ
移行する燃焼を行うようにしたので、着火性、経
時変化への追随性および燃焼量変化等に対する信
頼性の向上をはかりつつ、任意の空燃比での燃焼
ができる燃焼装置が得られるものである。
As described above, according to the present invention, a single-peaked signal such as an ion current value is detected from a flame, and after peak μ combustion is performed at the time of ignition, combustion is performed to shift to a predetermined air-fuel ratio. Therefore, it is possible to obtain a combustion device that can perform combustion at any air-fuel ratio while improving ignitability, ability to follow changes over time, and reliability against changes in combustion amount.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が実施される一般的な液体燃料
燃焼装置におけるバーナの構成を示す説明用断面
図、第2図は第1図に示したバーナ構成における
イオン電流の代表的測定例、第3図は本発明の場
合による送風量・燃料油量の時間変化を示すタイ
ムチヤート、第4図はピークμ燃焼制御を示すフ
ローチヤートである。 なお図中1は空気供給口、2は液体燃料供給
管、5は気化室、10は炎口板、11はイオン電
極、12は火炎、13は制御回路装置を示すもの
である。
FIG. 1 is an explanatory cross-sectional view showing the configuration of a burner in a general liquid fuel combustion apparatus in which the present invention is implemented, and FIG. 2 is a typical measurement example of the ion current in the burner configuration shown in FIG. FIG. 3 is a time chart showing changes over time in the air flow rate and fuel oil amount according to the present invention, and FIG. 4 is a flow chart showing peak μ combustion control. In the figure, 1 is an air supply port, 2 is a liquid fuel supply pipe, 5 is a vaporization chamber, 10 is a flame port plate, 11 is an ion electrode, 12 is a flame, and 13 is a control circuit device.

Claims (1)

【特許請求の範囲】 1 液体燃料供給管と燃焼用空気供給口とを気化
室に開口させ、この気化室を経て炎口板で生成さ
れた火炎での出力信号値を検出するイオン電極を
備えたものにおいて、着火時および入力変化時に
は上記イオン電極での出力信号値が極値を持つよ
う燃焼用空気供給量を変えずに燃料供給量を変え
て空燃比が制御され、かつ定常燃焼時にはこの空
燃比に比例した所望空燃比になるよう燃料供給量
を制御する制御回路装置を設けたことを特徴とす
る液体燃料燃焼装置。 2 定常燃焼時におけるイオン電極での出力信号
値が変化した場合に、再度信号値が極値を持つ空
燃比に制御しなおすようにした特許請求の範囲第
1項記載の液体燃料燃焼装置。
[Claims] 1. A liquid fuel supply pipe and a combustion air supply port are opened into a vaporization chamber, and an ion electrode is provided for detecting an output signal value of a flame generated at a flame port plate after passing through the vaporization chamber. In this system, the air-fuel ratio is controlled by changing the fuel supply amount without changing the combustion air supply amount so that the output signal value at the ion electrode has an extreme value during ignition and input changes, and during steady combustion, this 1. A liquid fuel combustion device comprising a control circuit device for controlling the amount of fuel supplied so as to achieve a desired air-fuel ratio proportional to the air-fuel ratio. 2. The liquid fuel combustion device according to claim 1, wherein when the output signal value at the ion electrode changes during steady combustion, the air-fuel ratio is re-controlled to the point where the signal value has an extreme value.
JP60190132A 1985-08-29 1985-08-29 Liquid fuel combustion device Granted JPS6249122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60190132A JPS6249122A (en) 1985-08-29 1985-08-29 Liquid fuel combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60190132A JPS6249122A (en) 1985-08-29 1985-08-29 Liquid fuel combustion device

Publications (2)

Publication Number Publication Date
JPS6249122A JPS6249122A (en) 1987-03-03
JPH0435646B2 true JPH0435646B2 (en) 1992-06-11

Family

ID=16252923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60190132A Granted JPS6249122A (en) 1985-08-29 1985-08-29 Liquid fuel combustion device

Country Status (1)

Country Link
JP (1) JPS6249122A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107504690A (en) * 2017-07-21 2017-12-22 中山华帝电子科技有限公司 A kind of ignition control method of the gas constant-temp. water heater with wind pressure sensor
CN107490196A (en) * 2017-07-21 2017-12-19 中山华帝电子科技有限公司 A kind of ignition control method of the gas constant-temp. water heater with rotation speed of fan feedback

Also Published As

Publication number Publication date
JPS6249122A (en) 1987-03-03

Similar Documents

Publication Publication Date Title
EP3938707A1 (en) Method to operate a modulating burner
WO1996008643A1 (en) Method for supplying vaporized fuel oil to a gas turbine combustor and system for same
US3765820A (en) Combustion apparatus
JPH0435646B2 (en)
US3885904A (en) System for vaporizing oil
JPH0616291Y2 (en) Combustion device
JPH0424275Y2 (en)
JPH0419324Y2 (en)
JPS6124917A (en) Permixed furl burning apparatus
JPS6311459Y2 (en)
JPS5937534Y2 (en) liquid fuel combustion equipment
KR100190460B1 (en) Control system for a combustion apparatus
JPH0571845B2 (en)
JPS6311458Y2 (en)
JPS63163713A (en) Temp. control method for vaporizer of liquid fuel combustion apparatus
JPH01139915A (en) Control method of slurry burner
JPH051816A (en) Catalystic burner
JPH01225814A (en) Premixture combustion device
JPS60223908A (en) Evaporation of kerosene in kerosene evaporating burner
JPS6332218A (en) Burning control device
JPS5916650Y2 (en) liquid fuel water heater
JPS5731720A (en) Heating method of high temperature heating furnace
JP2843456B2 (en) Liquid fuel combustion device
JPS5923959Y2 (en) liquid fuel combustion equipment
KR20050030464A (en) A calcining rotary kiln for fluid-solid two phase fuel and a controlling method for driving of that

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term