JPS6311458Y2 - - Google Patents
Info
- Publication number
- JPS6311458Y2 JPS6311458Y2 JP1981155056U JP15505681U JPS6311458Y2 JP S6311458 Y2 JPS6311458 Y2 JP S6311458Y2 JP 1981155056 U JP1981155056 U JP 1981155056U JP 15505681 U JP15505681 U JP 15505681U JP S6311458 Y2 JPS6311458 Y2 JP S6311458Y2
- Authority
- JP
- Japan
- Prior art keywords
- static pressure
- air
- oil level
- supply pipe
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000446 fuel Substances 0.000 claims description 22
- 230000003068 static effect Effects 0.000 claims description 21
- 238000002485 combustion reaction Methods 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 10
- 230000001105 regulatory effect Effects 0.000 claims 1
- 230000008016 vaporization Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000003350 kerosene Substances 0.000 description 5
- 238000009834 vaporization Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 235000009781 Myrtillocactus geometrizans Nutrition 0.000 description 1
- 240000009125 Myrtillocactus geometrizans Species 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Regulation And Control Of Combustion (AREA)
Description
【考案の詳細な説明】
この考案は液体燃料の気化ガスと、空気とを予
混合し、燃焼させるようにした予混合燃焼装置に
関するものである。[Detailed Description of the Invention] This invention relates to a premix combustion device that premixes vaporized gas of liquid fuel and air and combusts the mixture.
灯油を燃料とした場合の従来例を第1図を基に
説明する。図中1は燃焼用空気の供給孔、2は灯
油の供給管であり、先端は針形状に形成されてい
る。3は空気供給孔1に生じる静圧を定油面器4
に加圧する加圧器であり、6はアルミニウム等の
熱伝導率の良好な材料よりなる気化室5を囲む壁
で上部に絞り孔7、整流板8、及び炎孔板9を有
している。11は火炎10の火炎検知用のイオン
電極であり、検知回路12より燃焼検知を行な
う。14はセラミツクヒーター13の電極であ
り、15はアルミナ等で構成された電気絶縁板で
ある。また、16は火炎点火用の放電電極、17
は放電高圧トランスであり、18は燃料流量設定
用のオリフイスである。 A conventional example in which kerosene is used as fuel will be explained based on FIG. In the figure, 1 is a combustion air supply hole, 2 is a kerosene supply pipe, and the tip thereof is formed into a needle shape. 3 is an oil level regulator 4 that controls the static pressure generated in the air supply hole 1.
6 is a wall surrounding the vaporizing chamber 5 made of a material with good thermal conductivity such as aluminum, and has a throttle hole 7, a rectifying plate 8, and a flame hole plate 9 in the upper part. Reference numeral 11 denotes an ion electrode for detecting the flame 10, and a detection circuit 12 performs combustion detection. 14 is an electrode of the ceramic heater 13, and 15 is an electrically insulating plate made of alumina or the like. Further, 16 is a discharge electrode for flame ignition, 17
1 is a discharge high voltage transformer, and 18 is an orifice for setting the fuel flow rate.
次に動作について説明する。予めセラミツクヒ
ーター13に通電し気化室壁6が所定の温度に昇
温した後、送風機(図示せず)により燃焼用空気
が供給孔1より気化室5内に供給される。同時に
加圧管3を通じて供給孔1内の静圧が定油面器4
に加圧され静圧とオリフイス18の径の大きさに
対応した量の燃料が燃料供給管2より供給され
る。この供給された灯油は空気供給孔1より噴出
する空気流により微粒化され、予熱した気化壁6
上で瞬時に気化し燃焼用空気と混合する。この予
混合気は絞り孔7を通過中に更に混合し、整流板
8で流速分布を均一にされた後、炎孔板9上で点
火装置16,17により放電着火され、安定な火
炎10を形成する。着火後は気化壁6は火炎10
により加熱されるので、ヒーター入力は不要とな
る。一方、検知回路12はイオン電極11より流
れるイオン電流の整流波形を観測して常に火炎を
監視し、万一消炎した場合には図示していない制
御器により安全に燃焼を停止させる。このように
構成されている従来の装置は、送風機(図示省
略)の電圧等を変えることにより送風量を調節す
れば、空気供給孔1内の静圧が変化し、燃料供給
量が自律的に調節される。したがつて、簡単な操
作により入力調節が可能であるとともに、常に所
定の空燃比が維持されるため安定した青炎燃焼が
実現される。すなわち、排ガス中のススや一酸化
炭素(CO)等の有害排気物も極めて少ないとい
う特長を有している。しかし、この従来の燃焼装
置では、燃焼用空気の温度が低下すれば、着火し
にくくなる、火炎が不安定になる等の問題があつ
た。すなわち、第2図に示した供給空気量Q、燃
料量q及び空気比μ(供給空気量/理論空気量)
の温度依存特性図のように、20℃で最適空気比μ
(〜0.8程度)に設定しても、低温では送風量Qが
増大し、逆に燃料量qが減少するため、空気比μ
が上昇し、着火しにくくなつたり、火炎が形成さ
れても、火炎が不安定となる。 Next, the operation will be explained. After electricity is supplied to the ceramic heater 13 in advance to raise the temperature of the vaporization chamber wall 6 to a predetermined temperature, combustion air is supplied into the vaporization chamber 5 through the supply hole 1 by a blower (not shown). At the same time, the static pressure in the supply hole 1 is maintained through the pressure pipe 3 by the constant oil level device 4.
An amount of fuel corresponding to the static pressure and the diameter of the orifice 18 is supplied from the fuel supply pipe 2. The supplied kerosene is atomized by the air flow ejected from the air supply hole 1, and the preheated vaporization wall 6
It vaporizes instantaneously at the top and mixes with the combustion air. This premixture is further mixed while passing through the throttle hole 7, and after the flow velocity distribution is made uniform by the straightening plate 8, it is ignited by discharge on the flame hole plate 9 by the ignition devices 16 and 17, and a stable flame 10 is generated. Form. After ignition, the vaporization wall 6 becomes a flame 10
Since it is heated by , no heater input is required. On the other hand, the detection circuit 12 constantly monitors the flame by observing the rectified waveform of the ion current flowing from the ion electrode 11, and if the flame goes out, a controller (not shown) safely stops the combustion. In the conventional device configured in this way, if the air flow rate is adjusted by changing the voltage of the blower (not shown), the static pressure inside the air supply hole 1 changes, and the fuel supply amount can be adjusted autonomously. adjusted. Therefore, the input can be adjusted with a simple operation, and a predetermined air-fuel ratio is always maintained, so stable blue flame combustion is realized. In other words, it has the advantage that the amount of harmful exhaust gases such as soot and carbon monoxide (CO) in the exhaust gas is extremely low. However, in this conventional combustion device, there were problems such as when the temperature of the combustion air decreased, it became difficult to ignite and the flame became unstable. That is, the amount of supplied air Q, the amount of fuel q, and the air ratio μ (supplied air amount/theoretical air amount) shown in FIG.
As shown in the temperature dependence characteristic diagram, the optimum air ratio μ at 20℃
(about 0.8), the air flow rate Q increases at low temperatures and conversely the fuel amount q decreases, so the air ratio μ
increases, making it difficult to ignite, and even if a flame is formed, the flame becomes unstable.
この考案は、上記問題点の解消を目的としてな
されたもので、空気供給管と定油面器とを連通し
送風静圧を定油面器に導入する加圧管通路を開閉
弁(電磁弁)及びオリフイスを介して大気と連通
可能な構成に構成し、気温に応じて定油面器に加
える静圧を調節し、低温時に燃料量qを増大さ
せ、もつて空気比μの上昇を押えるようにしたも
のである。 This idea was made with the aim of solving the above problems, and it uses an on-off valve (electromagnetic valve) for the pressurizing pipe passage that connects the air supply pipe and the oil level regulator and introduces the static pressure of the air into the oil level regulator. It is configured so that it can communicate with the atmosphere through an orifice, adjusts the static pressure applied to the oil level regulator according to the temperature, increases the fuel amount q at low temperatures, and suppresses the increase in the air ratio μ. This is what I did.
この考案による一実施例の概念図を第3図に示
し、その動作について説明する。図において3′
は供給孔1内の送風静圧を定油面器4内の液面に
加圧するための加圧管で、空気供給管に一端を接
続した加圧管3aの他端を分岐し、その一方の加
圧管3cは前記定油面器4と連通し、他方加圧管
3bは管開閉弁(電磁弁)19及び、オリフイス
20を介して大気と連通可能になるよう構成され
ている。21は、雰囲気温度(室温)を検知し、
管開閉弁19を、開状態もしくは閉状態に制御す
る制御器で、オリフイス20と電磁弁19と、制
御器21とで定油面器4の液面に加えられる静圧
の調節装置30を構成する。次にその動作につい
て説明する。予熱開始後、定油面器4に静圧が加
圧される迄の過程は、第1図従来例と同様に行な
われるが、この考案の例では、雰囲気温度がある
所定温度以下になれば、定油面器4に加圧される
静圧の大きさを増加させる。すなわち、管開閉弁
19が開状態(ON)の時の定油面器4に加圧さ
れる静圧の大きさを、オリフイス20の開孔径を
適当に選択することにより、空気比μが最適値
(μ〜0.8)になるよう設定しておき、雰囲気温度
(室温)が設定温度以下の時、管開閉弁19が閉
状態(OFF)になるようにすれば、閉状態の際、
オリフイス20からの空気の逃げが断れるので定
油面器に加わる静圧が増加し、それに応じて灯油
供給量の増加が図れ、低温時においてμが過度に
高くなるのを防ぐことができる。 A conceptual diagram of an embodiment according to this invention is shown in FIG. 3, and its operation will be explained. 3' in the figure
is a pressure pipe for pressurizing the air static pressure in the supply hole 1 to the liquid level in the oil level regulator 4. One end of the pressure pipe 3a is connected to the air supply pipe, and the other end of the pressure pipe 3a is branched. The pressure pipe 3c communicates with the oil level regulator 4, and the pressure pipe 3b communicates with the atmosphere via a pipe opening/closing valve (electromagnetic valve) 19 and an orifice 20. 21 detects the ambient temperature (room temperature);
A controller that controls the pipe opening/closing valve 19 to an open state or a closed state, and the orifice 20, the solenoid valve 19, and the controller 21 constitute a static pressure adjustment device 30 applied to the liquid level of the oil level regulator 4. do. Next, its operation will be explained. After the start of preheating, the process until static pressure is applied to the leveling device 4 is carried out in the same way as in the conventional example shown in FIG. , the magnitude of the static pressure applied to the oil level regulator 4 is increased. In other words, by appropriately selecting the opening diameter of the orifice 20 and the magnitude of the static pressure applied to the oil level regulator 4 when the pipe on-off valve 19 is in the open state (ON), the air ratio μ can be optimized. value (μ ~ 0.8), and if the pipe on-off valve 19 is set to the closed state (OFF) when the ambient temperature (room temperature) is below the set temperature,
Since the escape of air from the orifice 20 is blocked, the static pressure applied to the oil level regulator increases, the amount of kerosene supplied can be increased accordingly, and μ can be prevented from becoming excessively high at low temperatures.
第4図にこの実施例による、供給空気量Q、燃
料量q及び空気比μの室温依存特性を示す。尚第
4図は、管開閉弁のON−OFF制御の設定温度を
−10℃とした場合について示した。この特性図か
ら判るように、この考案によれば、低温時に空気
比の補正が行なえるので、着火性が良好で、火炎
が安定した、安全な燃焼機を得ることができる。 FIG. 4 shows the room temperature dependence characteristics of the supplied air amount Q, the fuel amount q, and the air ratio μ according to this embodiment. In addition, FIG. 4 shows the case where the set temperature for ON-OFF control of the pipe opening/closing valve is -10°C. As can be seen from this characteristic diagram, according to this invention, since the air ratio can be corrected at low temperatures, a safe combustor with good ignitability and stable flame can be obtained.
尚、上記実施例では加圧管通路と大気の連通
を、開閉弁(電磁弁)によつて“通−断”する場
合について述べたが、第5図に示すようにバイメ
タル22の先端に弁体23を設け、テーパー形に
構成した開放孔24の断面積を室温の高低に応じ
て増減させて液面に加えられる静圧を減増させる
ようにすれば常温から−20℃程度まで連続して、
フイードバツク圧(加圧静圧)を微調節できるた
め室温に依らず常にほぼ一定した空気比を得るこ
とができる。 In the above embodiment, a case was described in which communication between the pressurizing pipe passage and the atmosphere was "opened and disconnected" by an on-off valve (electromagnetic valve), but as shown in FIG. 23, and the cross-sectional area of the tapered open hole 24 is increased or decreased in accordance with the height of the room temperature, thereby increasing or decreasing the static pressure applied to the liquid surface. ,
Since the feedback pressure (pressurized static pressure) can be finely adjusted, a substantially constant air ratio can always be obtained regardless of the room temperature.
さらに第6図に示すように、弁体23の駆動手
段として、昇温すれば体積膨張するサーモワツク
スをベローズに封入せるサーモエレメント25を
用いても、室温によらず常にほぼ一定した空気比
を得ることが可能である。 Furthermore, as shown in FIG. 6, even if a thermoelement 25, in which a bellows is filled with thermowax that expands in volume when the temperature rises, is used as a driving means for the valve body 23, an almost constant air ratio can always be obtained regardless of the room temperature. Is possible.
この考案は燃焼用空気供給管と、この供給管の
吹出口に開口し定油面器から液体燃料が供給され
る燃料供給管と、上記定油面器内の液面に上記空
気供給管内の静圧を導く加圧管とを備え、上記液
体燃料を気化させて予混合したのち燃焼させるよ
うに構成されたものにおいて、上記定油面器内に
加えられる静圧を上記燃焼用空気温度の高、低に
応じて減少、増大させる静圧調節装置を備えたこ
とを特徴とするもので、気温が低下した時でも空
燃比の上昇を押えることができるので、着火及び
火炎の安定化が図れる効果がある。 This invention consists of a combustion air supply pipe, a fuel supply pipe that opens at the outlet of this supply pipe and is supplied with liquid fuel from an oil level regulator, and a fuel supply pipe that is connected to the liquid level in the oil level regulator in the air supply pipe. A pressurizing pipe that introduces static pressure is configured to vaporize and premix the liquid fuel and then combust it. It is characterized by being equipped with a static pressure adjustment device that decreases and increases it depending on the low temperature, and can suppress the increase in air-fuel ratio even when the temperature drops, so it has the effect of stabilizing ignition and flame. There is.
第1図は従来の予混合燃焼装置の断面図、第2
図は従来の燃焼装置の供給空気量、燃料量及び空
気比の室温依存性を示す特性図、第3図はこの考
案の実施例の断面図、第4図はこの実施例の供給
空気量、燃料量及び空気比の室温依存性を示す特
性図、第5図及び第6図はそれぞれこの考案の他
の実施例の要部の断面図である。
図において、1は燃焼用空気の供給孔、2は灯
油の供給管、3,3a,3b,3cは加圧管、4
は定油面計、5は気化室、6は壁、7は絞り孔、
8は整流板、9は炎孔板、11はイオン電極、1
2は検知回路、13はセラミツクヒータ、1は放
電電極、17は放電高圧トランス、18は燃料流
量設定用オリフイス、19は管開閉弁、20はオ
リフイス、21は制御器、22はバイメタル、2
5はサーモワツクス、23は弁体、24は開放
孔、25はサーモエレメント、30は静圧調節装
置である。なお図中同一符号はそれぞれ同一又は
相当部分を示す。
Figure 1 is a cross-sectional view of a conventional premix combustion device;
The figure is a characteristic diagram showing the dependence of the supplied air amount, fuel amount, and air ratio on room temperature in a conventional combustion device, Figure 3 is a cross-sectional view of an embodiment of this invention, and Figure 4 is the supplied air quantity of this embodiment, Characteristic diagrams showing the dependence of fuel amount and air ratio on room temperature, and FIGS. 5 and 6 are sectional views of essential parts of other embodiments of this invention, respectively. In the figure, 1 is a combustion air supply hole, 2 is a kerosene supply pipe, 3, 3a, 3b, 3c are pressurization pipes, 4
is a constant oil level gauge, 5 is a vaporization chamber, 6 is a wall, 7 is a throttle hole,
8 is a rectifier plate, 9 is a flame hole plate, 11 is an ion electrode, 1
2 is a detection circuit, 13 is a ceramic heater, 1 is a discharge electrode, 17 is a discharge high-voltage transformer, 18 is an orifice for setting a fuel flow rate, 19 is a pipe opening/closing valve, 20 is an orifice, 21 is a controller, 22 is a bimetallic device, 2
5 is a thermowax, 23 is a valve body, 24 is an open hole, 25 is a thermoelement, and 30 is a static pressure adjusting device. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
口し定油面器から液体燃料が供給される燃料供給
管と、上記定油面器内の液面に上記空気供給管内
の静圧を導く加圧管と、上記定油面器内に加えら
れる静圧を上記燃焼用空気温度の高、低に応じて
減少、増大させる静圧調節装置とを備え、上記液
体燃料を気化させて予混合ガスとしたのち燃焼さ
せるように構成されたものにおいて、上記静圧調
節装置が加圧管に設けた大気への空気逃がし孔
と、該逃がし孔を燃焼用空気が所定温度以上のと
きは開放し、上記所定温度よりも低いときは閉止
する弁とで構成された予混合燃焼装置。 A combustion air supply pipe, a fuel supply pipe that opens at the outlet of this supply pipe and is supplied with liquid fuel from an oil level regulator, and a static pressure in the air supply pipe that is applied to the liquid level in the oil level regulator. and a static pressure adjustment device that reduces or increases the static pressure applied in the oil level regulator in accordance with the high or low temperature of the combustion air, and vaporizes and premixes the liquid fuel. In the device configured to burn the gas after being made into a gas, the static pressure regulating device has an air escape hole to the atmosphere provided in the pressurizing pipe, and opens the escape hole when the combustion air is at a predetermined temperature or higher, A premix combustion device comprising a valve that closes when the temperature is lower than the predetermined temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15505681U JPS5866246U (en) | 1981-10-19 | 1981-10-19 | Premix combustion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15505681U JPS5866246U (en) | 1981-10-19 | 1981-10-19 | Premix combustion device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5866246U JPS5866246U (en) | 1983-05-06 |
JPS6311458Y2 true JPS6311458Y2 (en) | 1988-04-04 |
Family
ID=29947634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15505681U Granted JPS5866246U (en) | 1981-10-19 | 1981-10-19 | Premix combustion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5866246U (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51128731A (en) * | 1975-05-02 | 1976-11-09 | Chugai Ro Kogyo Kaisha Ltd | Controlling method of ratio of air to fuel in combustion chamber |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5685143U (en) * | 1979-11-29 | 1981-07-08 |
-
1981
- 1981-10-19 JP JP15505681U patent/JPS5866246U/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51128731A (en) * | 1975-05-02 | 1976-11-09 | Chugai Ro Kogyo Kaisha Ltd | Controlling method of ratio of air to fuel in combustion chamber |
Also Published As
Publication number | Publication date |
---|---|
JPS5866246U (en) | 1983-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4588372A (en) | Flame ionization control of a partially premixed gas burner with regulated secondary air | |
JPS6311458Y2 (en) | ||
JPS6311459Y2 (en) | ||
JPS6242280Y2 (en) | ||
JPS589069Y2 (en) | liquid fuel combustion equipment | |
JPS5819618A (en) | Liquid fuel burner | |
JPS6246972Y2 (en) | ||
JPS5937534Y2 (en) | liquid fuel combustion equipment | |
JPS5932820Y2 (en) | Vaporizing oil burning appliance | |
JPS584012Y2 (en) | pot type burner | |
JPS57127710A (en) | Combustion quantity controller in vaporizing type burner | |
JPH0345285B2 (en) | ||
JPS6130018Y2 (en) | ||
JPH0424275Y2 (en) | ||
JPS5923932Y2 (en) | burner | |
JPS6326284B2 (en) | ||
JPS5916650Y2 (en) | liquid fuel water heater | |
JPS602425Y2 (en) | liquid fuel combustion equipment | |
JPS6119323Y2 (en) | ||
JPS5986812A (en) | Ultrasonic burner device | |
JPS6242245Y2 (en) | ||
JPS6218812Y2 (en) | ||
JPS6014972B2 (en) | liquid fuel combustion equipment | |
JPH0429203Y2 (en) | ||
JPS636607Y2 (en) |