JPS58180580A - Heat storage material - Google Patents

Heat storage material

Info

Publication number
JPS58180580A
JPS58180580A JP6494782A JP6494782A JPS58180580A JP S58180580 A JPS58180580 A JP S58180580A JP 6494782 A JP6494782 A JP 6494782A JP 6494782 A JP6494782 A JP 6494782A JP S58180580 A JPS58180580 A JP S58180580A
Authority
JP
Japan
Prior art keywords
heat storage
storage material
latent heat
activated carbon
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6494782A
Other languages
Japanese (ja)
Other versions
JPH0151516B2 (en
Inventor
Hiroyuki Watanabe
裕之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nippon Oil Seal Industry Co Ltd
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Seal Industry Co Ltd, Nok Corp filed Critical Nippon Oil Seal Industry Co Ltd
Priority to JP6494782A priority Critical patent/JPS58180580A/en
Publication of JPS58180580A publication Critical patent/JPS58180580A/en
Publication of JPH0151516B2 publication Critical patent/JPH0151516B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide a latent heat storage material which is prevented from supercooling in freezing, prepared by adding at least one nucleator selected from among activated carbon, Na2B4O7, Na3AlF6 and Sr(OH)2.8H2O, to NiNO3. 6H2O. CONSTITUTION:The heat storage material consists of NiNO3.6H2O and at least one nucleator selected from among activated carbon, Na2B4O7, Na3AlF6 and Sr(OH)2.8H2O. NiNO3.6H2O has a fusing point of about 54 deg.C and a latent heat capacity of 31Cal/deg and is suitable as heat storage material for room heating and hot water supply at 50-60 deg.C, but it has a demerit in that the difference between the fusing temperature and the freezing starting temperature (DELTATsc) is too large. The addition of the nucleator reduces DELTATsc to about a half to one- third.

Description

【発明の詳細な説明】 本発明は、蓄熱材に関する。更に詳しくは、凝固時の過
冷却を防止した潜熱型の蓄熱材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat storage material. More specifically, the present invention relates to a latent heat type heat storage material that prevents supercooling during solidification.

蓄熱材としては、従来から水や砕石が用いられてきてい
る。これらは、物質の比熱を利用した顕熱型の蓄熱作用
を示し、これを蓄熱密度からみるとl tut/d e
 g以下となり、小さいものである。このため、これら
の蓄熱材を用いる限り、蓄熱器はかなり大きくする必要
があり、また放熱に伴って、蓄熱した湿度レベルは徐々
に低下するので、安定した熱エネルギーを得ることは困
難である。
Water and crushed stone have traditionally been used as heat storage materials. These exhibit a sensible heat storage action that utilizes the specific heat of the substance, and when viewed from the heat storage density, l tut/d e
g or less, which is small. Therefore, as long as these heat storage materials are used, the heat storage device needs to be quite large, and as the heat is released, the humidity level of the stored heat gradually decreases, making it difficult to obtain stable thermal energy.

これに対し、近年物質の融解、凝固を応用した潜熱型の
蓄熱の研究が、盛んに行われるようになってきている。
In recent years, on the other hand, research on latent heat storage using the melting and solidification of materials has been actively conducted.

潜熱型の蓄熱は、材料の相変化、特に融解、凝固におけ
る熱の吸収、放出を利用したもので、蓄熱密度が数10
cm/dθgと高く、シかも一定湿度の熱エネルギーが
得られ、また蓄熱器をよりコンパクトにできるという利
点がある。
Latent heat storage utilizes the phase change of materials, especially the absorption and release of heat during melting and solidification, and has a heat storage density of several 10
It has the advantage of being able to obtain thermal energy with a high cm/dθg and constant humidity, and that the heat storage device can be made more compact.

蓄熱材料としては、種々様々のものが用いられているが
、暖房、給湯などの加熱目的の場合には、その種類がか
なり限られる。特に、温度レベルが50〜60℃を対象
とした場合には、現在考えられる蓄熱材料としては、有
機物および無機水和塩に限定される。
A wide variety of heat storage materials are used, but the types are quite limited when used for heating purposes such as space heating and hot water supply. In particular, when the temperature level is 50 to 60°C, currently considered heat storage materials are limited to organic substances and inorganic hydrated salts.

有機物の潜熱型蓄熱材料としては、代表的にはパラフィ
ンが挙げられる。このような有機物は、)^食性や毒性
が殆んどなく、材料の安全性も保証されている。また、
融解、凝固のサイクルにも11通性がある。しかるに、
潜熱量は、10〜3Qatl/degと比較的小さく、
更に材料自体の熱伝導率も小さいため、蓄熱材料として
用いる上では問題がある。
A typical example of the organic latent heat type heat storage material is paraffin. Such organic substances are hardly edible or toxic, and the safety of the materials is guaranteed. Also,
There are also 11 cycles of melting and solidification. However,
The amount of latent heat is relatively small at 10 to 3 Qatl/deg.
Furthermore, since the thermal conductivity of the material itself is low, there is a problem in using it as a heat storage material.

一方、無機水和塩は、一般に自熱量も30〜60m/d
egと比較的大きく、熱伝導率も有機物に比べて大きな
ものであり、従って蓄熱材料として有望視されている。
On the other hand, inorganic hydrated salts generally have a self-heat amount of 30 to 60 m/d.
It has a relatively large eg and a high thermal conductivity compared to organic materials, so it is considered promising as a heat storage material.

しかるに、無機水和塩は、凝固時の過冷却が大きく、目
的とする温度レベルの熱エネルギーが有効に得られない
という欠点があり、これは潜熱型蓄熱材の利点を本質的
に損わせるものであるので、是非共避けなければならな
い問題となる。
However, inorganic hydrated salts have the disadvantage that they undergo significant supercooling during solidification and cannot effectively obtain thermal energy at the desired temperature level, which essentially undermines the advantages of latent heat storage materials. This is a problem that must be avoided at all costs.

こうした蓄熱材料の過冷却を防止するために、蓄熱材料
に発核剤を核材料として添加することが検討されている
(例えば、特開昭55−120,686号公報、同51
−126,980号公報、同51−70.193号公報
およびJ、 appl、 Ohem、 Biotech
%no1.第28巻第761〜764頁、 1978な
ど)。そして、蓄熱材料と発核剤との関係については、
結晶構造が互いに類似しているものが有効であるとか、
あるいは互いに格子間距離が類似しているものが有効で
あるとか、その原因については檀々の説があるが、一般
的には両者間の構造的な関係については不明である。従
って、それらの有効な組合せを見出すためには、多くの
試行が必要となってくる。
In order to prevent such supercooling of the heat storage material, it is being considered to add a nucleating agent to the heat storage material as a nucleating material (for example, JP-A-55-120,686;
-126,980 publication, 51-70.193 publication and J, appl, Ohem, Biotech
%no1. 28, pp. 761-764, 1978, etc.). Regarding the relationship between the heat storage material and the nucleating agent,
It is said that those whose crystal structures are similar to each other are effective,
Alternatively, there are many theories as to the cause of this, such as those with similar interlattice distances being effective, but the structural relationship between the two is generally unknown. Therefore, many trials are required to find an effective combination.

杢発明者は、50〜60℃での暖房、給湯などの加熱を
目的とした蓄熱材料として、融解湿度が約54℃でしか
も自熱量が31 cal/ a e gであるという好
ましい特性を有する反面、過冷却の程度(ΔTsc :
16 deg )が大きいという欠点のある硝mニッケ
ル・b水和物N1(No、)2・6H20について、そ
れの過冷却ILV91止させる発核剤を求めて檎々検討
の結果、ここに4棹類の化合物またはそれらの混合物が
かかる目的に対して有効であることを見出した。
The inventor of the heather has found that the material has favorable properties such as a melting humidity of approximately 54°C and a self-heat amount of 31 cal/a e g as a heat storage material for heating purposes such as space heating and hot water supply at 50 to 60°C. , degree of supercooling (ΔTsc:
As a result of extensive research in search of a nucleating agent that would stop the supercooling of ILV91 for the nitrate nickel b hydrate N1(No,)2.6H20, which has the drawback of having a large We have found that compounds of the same class or mixtures thereof are effective for such purposes.

従って、本発明は潜熱型の蓄熱材に係り、この蓄熱材は
、硝酸ニッケル・6水和物に発核剤として活性層、ホウ
嶋ナトリウム、氷晶石および水酸化ストロンチウム・8
水和物の1種または2櫨以−1を添加してなる。
Therefore, the present invention relates to a latent heat type heat storage material, which includes nickel nitrate hexahydrate, an active layer as a nucleating agent, sodium boroshima, cryolite, and strontium 8 hydroxide.
One or more hydrates are added.

過冷却の程度は、降温時の経過時間に対する材料の温度
変化を示すグラフに表わされるように、(1料の融解温
度Aと凝固開始湿度Bとの差△Tscによって示される
が、硝酸ニッケル・6水和吻ニ対し、これらの発核剤を
添加すること心こより、ΔTacのf1ムを無添加の場
合の約シi ” ki程度に迄減少させることができる
The degree of supercooling is indicated by the difference ΔTsc between the melting temperature A and the solidification start humidity B of the first material, as shown in the graph showing the temperature change of the material with respect to the elapsed time when the temperature is lowered. By adding these nucleating agents to the hexahydrated proboscis, the f1 value of ΔTac can be reduced to approximately 1 ``ki'' compared to the case without the addition.

発國剤として用いられる活往炭、ホウ嘔ナト1」ラムN
 a2 E a O7、水晶石Na、AfF6または水
隙化ストロンチウム・8水和vIJSr(OH)2・8
H20のうち、水晶石については、これがh肖酸リチウ
ムなどのアルカリ金属硝酸塩水和物またはこれを主成分
とする蓄熱材の過冷却防止剤として有効なことが特開昭
51−128.051号公報に記載されているが、同公
開公報には、同時に水酸化ストロンチウム・8水4=<
+4aは全くd冷却防止効果を発揮しないことも記載さ
れている。
Live charcoal used as a stimulant, Ho-o-nato 1' Lamb N
a2 E a O7, quartzite Na, AfF6 or pore-formed strontium octahydrate vIJSr(OH)2.8
Among H20, quartzite is effective as an anti-supercooling agent for alkali metal nitrate hydrates such as lithium nitrate or heat storage materials whose main ingredients are quartzite, as disclosed in JP-A-51-128.051. Although it is described in the publication, the same publication also states that strontium hydroxide 8 water 4=<
It is also stated that +4a does not exhibit any d cooling prevention effect.

本発明で用いられる硝酸ニラ・ゲル・6水和物と同公開
公報記軟の硝酸リチウム・3水和物と(、tlそれぞれ
4L−J性を全く異にするものであり、潜熱型の蓄熱材
の用途はその物性によって決まるものである。事実、本
発明に係る蓄熱材は加熱目的に、またアルカリ金属硝酸
塩水和物蓄熱材は冷却目的に(特開昭51−126,9
80号公報診照)それぞれ」史用されており、これら蓄
熱材料に対応して当然珀俵剤の効果も異なってくるので
ある。
Nitrate chive gel hexahydrate used in the present invention and lithium nitrate trihydrate (, tl) used in the present invention are completely different in 4L-J properties, and are latent heat type heat storage. The use of the material is determined by its physical properties.In fact, the heat storage material according to the present invention is used for heating purposes, and the alkali metal nitrate hydrate heat storage material is used for cooling purposes (Japanese Patent Application Laid-Open No. 126-1989,
No. 80) have been used for a long time, and the effects of the heat storage materials naturally vary depending on these heat storage materials.

次に、実施例について本発明の詳細な説明する。Next, the present invention will be described in detail with reference to examples.

実施例1 硝酸ニッケル・6水和物に対し、それぞれ1東、1%の
発核剤を添加し、それらのΔTscの値を次の方法に従
って測定した。
Example 1 Nucleating agents of 1% and 1% were added to nickel nitrate hexahydrate, respectively, and their ΔTsc values were measured according to the following method.

tI11盾二ンケル・6水和物10 gを容jt 20
1nlの容14内に仕込み、それに粉末状発核剤0.1
 gを渉加し、密栓する。これを、90℃の恒温槽内に
釣1時間放置し、完全に融解させる。次に、融解した試
料混合物を入れた容器を10℃の水中に放置し、J A
攪拌機で攪拌しながら、冷却する。試料混合物は、ある
温度迄過冷却して、固化するに至る。
Contains 10 g of tI11 hexahydrate 20
Pour into a 1nl volume 14 and add powdered nucleating agent 0.1 to it.
Add g and seal tightly. This was left in a constant temperature bath at 90° C. for 1 hour to completely melt. Next, the container containing the molten sample mixture was left in water at 10°C, and JA
Cool while stirring with a stirrer. The sample mixture is supercooled to a certain temperature, leading to solidification.

この降温時における温度変化を熱電対で測定し、過冷却
の程度ΔTscを調べた。得られた結果は、■の表1に
示される。
The temperature change during this temperature drop was measured with a thermocouple, and the degree of supercooling ΔTsc was investigated. The results obtained are shown in Table 1 (■).

表1 なし          16 活性炭         8 ホウ酸ナトリウム         8氷晶石    
     9 水削化ストロンチウム・8水和物      5実施例
2 硝酸ニッケル・6水和吻に対し、種々の割合の活性炭を
絵11rl L、実施例1記載の方法に往って、それら
の過冷却の程度△Tscを調べた。得らibだ結果は、
次の表2に示される。
Table 1 None 16 Activated carbon 8 Sodium borate 8 Cryolite
9 Hydrogenated strontium octahydrate 5 Example 2 Various proportions of activated carbon were added to nickel nitrate hexahydrate using the method described in Example 1 to supercool them. The degree ΔTsc was investigated. The result is,
It is shown in Table 2 below.

表2 16 Q、l         11 310 1.08 5.07 006 発1ん削として、ホウ酸ナトリウム、氷晶6または水酸
化ストロンチウム・8水和物を用いた場合にも、これと
同様の傾向がみられた。
Table 2 16 Q, l 11 310 1.08 5.07 006 A similar tendency was observed when sodium borate, ice crystal 6, or strontium hydroxide octahydrate was used as the first abrasion. It was seen.

これらの結果から、過冷却の防止効果が詔められる組合
せでは、発核剤の添加割合が多ければ多いだけその効果
が顕著となることが分る。しかしながら、過剰量の発核
剤の添加は、蓄熱材の潜熱−の低下をもたらすため無意
味となる。例えば、活性炭を10重量第添加した蓄熱材
の潜熱量は、示差走査熱量計(DSO)の測定結果から
28 m/aegの値しか得られない。従って、潜熱量
に関しては、発核剤の添加量が少ない方が好ましいこと
になる。
From these results, it can be seen that in combinations that are effective in preventing supercooling, the greater the proportion of the nucleating agent added, the more pronounced the effect becomes. However, adding an excessive amount of the nucleating agent is meaningless because it lowers the latent heat of the heat storage material. For example, the amount of latent heat of a heat storage material to which 10 parts by weight of activated carbon is added is only 28 m/aeg as measured by a differential scanning calorimeter (DSO). Therefore, with regard to the amount of latent heat, it is preferable that the amount of the nucleating agent added is small.

このように、発核剤の過冷却防止効果とそれを隨加した
蓄熱材の潜熱量とは、発核剤の添加量の増加に対して相
反する効果をもたらすため、蓄熱材を使用する態様によ
り、その添加量が限定されてくる。例えば、上記活性炭
を添加した蓄熱剤にあっては、潜熱量が30 aJt/
a8g以上でかつΔTacかIQ deg以下であるこ
とが求められる使用態様にあっては、活性炭の添加量は
約0.3〜5重量%の範囲が好ましいことになる。
In this way, the supercooling prevention effect of the nucleating agent and the amount of latent heat of the heat storage material to which it is added have contradictory effects as the amount of the nucleating agent added increases, so it is important to consider the mode of using the heat storage material. Therefore, the amount of addition is limited. For example, the heat storage agent containing activated carbon has a latent heat amount of 30 aJt/
In a usage mode where a is 8g or more and ΔTac or IQ deg is required, the amount of activated carbon added is preferably in the range of about 0.3 to 5% by weight.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、降温時の経過時間に対する蓄熱材の一般的な温
度変化を示すグラフである。 ここで、ΔTscは材料の融解温度Aと凝固開始温度B
との差を示している。 代理人 弁理士 吉 1)優 夫 手  続  補  正  a (自発)l参件の表示 昭和57年特許願第64947号 2発明の名称 蓄  熱  材 3補正をする者 事件との関係   特許出願人 名 称 (438)  日本オイルシール工業株式会社
4代 理 人 住 所 東京都港区芝大門1−2−7  阿藤ビル50
1号明細書の発明の詳細な説明の− 6油止の内容 +1)第1負第17行の「1″/  を11 ′/g、
 deg Jに訂正する。 sgJ
The drawing is a graph showing a general temperature change of the heat storage material with respect to the elapsed time when the temperature falls. Here, ΔTsc is the melting temperature A of the material and the solidification start temperature B
It shows the difference between Representative Patent Attorney Yoshi 1) Yufu Proceedings Amendment a (Voluntary) l Indication of references 1982 Patent Application No. 64947 2 Name of invention Heat storage material 3 Person making amendment Relationship with case Patent applicant name Name (438) Japan Oil Seal Industry Co., Ltd. 4th Director Address 50 Ato Building, 1-2-7 Shiba Daimon, Minato-ku, Tokyo
Detailed Description of the Invention in Specification No. 1 - Contents of 6 oil stops + 1) "1"/ in the 1st negative 17th line is 11'/g,
Correct to deg J. sgJ

Claims (1)

【特許請求の範囲】 1硝酸ニツナル・6水和物に、発核剤として活性炭、ホ
ウ酸ナトリウム、氷晶石および水酸化ストロンチウム・
8永和物の1種または211以上を添加してなる潜熱型
の蓄熱材。 2、加熱目的に用いられる特許請求の範囲第1項記載の
潜熱型の蓄熱材。
[Claims] Nitnal mononitrate hexahydrate, activated carbon, sodium borate, cryolite, and strontium hydroxide as a nucleating agent.
A latent heat type heat storage material made by adding one type of 8 permanent compounds or 211 or more. 2. A latent heat type heat storage material according to claim 1, which is used for heating purposes.
JP6494782A 1982-04-19 1982-04-19 Heat storage material Granted JPS58180580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6494782A JPS58180580A (en) 1982-04-19 1982-04-19 Heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6494782A JPS58180580A (en) 1982-04-19 1982-04-19 Heat storage material

Publications (2)

Publication Number Publication Date
JPS58180580A true JPS58180580A (en) 1983-10-22
JPH0151516B2 JPH0151516B2 (en) 1989-11-02

Family

ID=13272736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6494782A Granted JPS58180580A (en) 1982-04-19 1982-04-19 Heat storage material

Country Status (1)

Country Link
JP (1) JPS58180580A (en)

Also Published As

Publication number Publication date
JPH0151516B2 (en) 1989-11-02

Similar Documents

Publication Publication Date Title
US4292189A (en) Thermal energy storage composition comprising sodium sulfate decahydrate; sodium carbonate decahydrate; and sodium tetraborate decahydrate
JPS63101473A (en) Heat energy storage composition
JP2529974B2 (en) Reversible Phase Change Composition of Hydrated Calcium Bromide
US4272392A (en) Hydrated Mg(NO3)2 /MgCl2 reversible phase change compositions
US4329242A (en) Hydrated Mg(NO3)2 /MgCl2 reversible phase change compositions
US4272391A (en) Hydrated Mg(NO3)2 reversible phase change compositions
US4273666A (en) Hydrated Mg(NO3)2 reversible phase change compositions
US4283298A (en) Hydrated Mg(NO3)2 /NH4 NO3 reversible phase change compositions
JPS58180580A (en) Heat storage material
JPH0860141A (en) Thermal storage medium
US4406805A (en) Hydrated MgCl2 reversible phase change compositions
KR860000011B1 (en) Reversible phase change compositions
US4271029A (en) Hydrated Mg(NO3)2 reversible phase change compositions
JPS59543B2 (en) heat storage material
GB2595662A (en) Phase change material
JPS59109578A (en) Heat storage material
JPS5941668B2 (en) heat storage material
JPH0680958A (en) Heat storage composition
JP4100590B2 (en) Latent heat storage material composition and heat storage method
JPH0237957B2 (en)
EP0029504B1 (en) Hydrated magnesium nitrate reversible phase change compositions and their preparation
JPS5821942B2 (en) Heat storage agent composition
JPS59170178A (en) Heat storage material
JPS58117277A (en) Thermal energy storage material
JPS6151079A (en) Thermal energy storage material