JPS58178602A - Comb line type band-pass filter - Google Patents

Comb line type band-pass filter

Info

Publication number
JPS58178602A
JPS58178602A JP6131582A JP6131582A JPS58178602A JP S58178602 A JPS58178602 A JP S58178602A JP 6131582 A JP6131582 A JP 6131582A JP 6131582 A JP6131582 A JP 6131582A JP S58178602 A JPS58178602 A JP S58178602A
Authority
JP
Japan
Prior art keywords
resonant
elements
resonance
coupling
pass filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6131582A
Other languages
Japanese (ja)
Inventor
Hiroshi Hatanaka
博 畠中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENGIYOU KOSAKU KK
Nihon Dengyo Kosaku Co Ltd
Original Assignee
NIPPON DENGIYOU KOSAKU KK
Nihon Dengyo Kosaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENGIYOU KOSAKU KK, Nihon Dengyo Kosaku Co Ltd filed Critical NIPPON DENGIYOU KOSAKU KK
Priority to JP6131582A priority Critical patent/JPS58178602A/en
Publication of JPS58178602A publication Critical patent/JPS58178602A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • H01P1/2056Comb filters or interdigital filters with metallised resonator holes in a dielectric block

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To eliminate the need for fitting electrode to form electrostatic capacity in the inside of a housing by providing the titled comb line type band-pass filter with plural resonance elements consisting of rod-like conductors having axial length especially related to resonance wavelength. CONSTITUTION:In the comb line type band-pass filter, the axial length of the resonance elements 41-46 are selected at 1/4 resonance wavelength lambda and the terminal of the opposite side to the earth side of each resonance element is kept at the opened state or the nearly opened state. The adjacent resonance elements are mutually coupled through nagnetic fields generated around the respective resonance elements by resonance current flowing into the resonance elements 41-46. The band-pass filter with the prescribed transmission characteristics is constituted by setting up the magnetic field coupling factor between respective resonance elements to a prescribed value.

Description

【発明の詳細な説明】 本発明は、マイクロ波用コムライン形帯域通過ろ波器に
関するものである。以下帯域通過ろ波器をBPF と略
g己する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combline bandpass filter for microwaves. Hereinafter, the bandpass filter will be abbreviated as BPF.

第1図は、従来のマイクロ波用コムライン形BPFの一
例を示す断面図で、1は筐体、2は入出力同軸端子、3
は入出力結合棒、4は共振棒、5は負荷コンデンサを形
成する電極で、このBPFにおいては共振棒4の軸長を
共振波長のhに選び、その先端に取付けた電極5と筐体
1間の静電容量によって共振棒4の電気長を共振波長の
4ならしめて共振及び隣接共振棒との電界結合を可能な
らしめでいる。然るに電極5と筐体1間に所要の静電容
量をもたせるときは、電極5と筐体1間の間隙が狭くな
って耐圧特性が劣化し、又、周囲温度の変化による電極
5と筐体1間の間隙の大きざの変化がその間における静
電容量を大幅(こ変化ざせるため安定良好な電気的特性
が得られない等の欠点を有するため例えば送信用大電力
BPFには不適である。
FIG. 1 is a cross-sectional view showing an example of a conventional microwave combline type BPF, where 1 is a housing, 2 is an input/output coaxial terminal, and 3 is a sectional view showing an example of a conventional microwave combline type BPF.
is an input/output coupling rod, 4 is a resonant rod, and 5 is an electrode forming a load capacitor. In this BPF, the axial length of the resonant rod 4 is selected to be the resonant wavelength h, and the electrode 5 attached to the tip and the housing 1 The electrical length of the resonant rod 4 is made equal to the resonant wavelength of 4 due to the capacitance between the resonant rods, thereby enabling resonance and electric field coupling with adjacent resonant rods. However, when providing the required capacitance between the electrode 5 and the housing 1, the gap between the electrode 5 and the housing 1 becomes narrower, degrading the withstand voltage characteristics, and the electrode 5 and the housing become weaker due to changes in ambient temperature. Since a change in the size of the gap between the two leads to a large change in the capacitance between them, it is unsuitable for high-power BPFs for transmission, for example, because it has disadvantages such as not being able to obtain stable electrical characteristics. .

本発明は簡潔な構成で、耐圧特性に優れ、周囲、R度の
変化の影響を受けることなく安定良好な電気的特性を有
し、大電力用等に好適なマイクロ波用コムライン形BP
Fを実現することを目的とするる。
The present invention has a simple configuration, excellent withstand voltage characteristics, stable electrical characteristics without being affected by changes in surroundings or R degree, and is suitable for microwave combline type BPs suitable for high power applications, etc.
The purpose is to realize F.

第2図は、本発明の一実施例を示す断面図(第3図のB
−B断面図)、第3図は、第1図のA−A断面図で、両
図において、1は電磁シールド用筐体、21及び22は
入出力同軸端子、31及び32は入出力結合素子で、例
えばストリップラインより成る。
FIG. 2 is a sectional view (B in FIG. 3) showing one embodiment of the present invention.
-B sectional view), Fig. 3 is an AA sectional view of Fig. 1, and in both figures, 1 is an electromagnetic shielding case, 21 and 22 are input/output coaxial terminals, and 31 and 32 are input/output couplings. An element, for example, a strip line.

ストリップラインを用いて結合を行う代りにタップ結合
、ループ結合又はリボン状導体と共it子間の容量を利
用する結合等によって入出力結合を行うように構成して
もよい。41ないし4しは棒状導体より成る共振素子で
、共振波長大に比しヤ筐体1の幅(第3図のH)及び共
振素子4Iないし4I、の直径が比較的小(例えば0.
1人ないし0.2人)なる場合には共振素子41ないし
4bの軸長を共振波長大の4に選び、筐体1の幅H及び
共振素子41ないし4bの直径が共振波要人に比し比較
的大なる場合には共振素子41ないし4らの軸長を共振
波長大のはよQt、適当に短かくして、各共振素子の接
地側と反対側の端部を電気的に開放又は開放に近い状態
に保っである。
Instead of coupling using a strip line, the input/output coupling may be performed by tap coupling, loop coupling, coupling using capacitance between a ribbon-shaped conductor and an iterator, or the like. 41 to 4 are resonant elements made of rod-shaped conductors, and the width of the housing 1 (H in FIG. 3) and the diameter of the resonant elements 41 to 4I are relatively small (for example, 0.005 mm) compared to the large resonant wavelength.
1 to 0.2 persons), the axial length of the resonant elements 41 to 4b is selected to be 4, which is the larger of the resonant wavelength, and the width H of the housing 1 and the diameter of the resonant elements 41 to 4b are compared to the resonant wave length. If it is relatively large, the axial length of the resonant elements 41 or 4 is appropriately shortened to the same Qt as the resonant wavelength, and the end of each resonant element opposite to the ground side is electrically opened or opened. It is kept close to.

このように構成した本発明コムライン形BPF’におい
ては、共振素子41ないし4らに流れる共振電流によっ
て各共振素子の周りに生じた磁界により隣接共振素子相
互が磁界結合され、各共振素子間の磁界結合係数を後述
するように定めることにより、マキシマリフラント形の
伝送特性を有するBPI”又は通過域がチェビシェフ形
の伝送特性を有するBPF’等を構成することが出来る
In the comb-line type BPF' of the present invention configured as described above, adjacent resonant elements are magnetically coupled to each other by the magnetic field generated around each resonant element by the resonant current flowing through the resonant elements 41 to 4, and the magnetic field between each resonant element is By determining the magnetic field coupling coefficient as described below, it is possible to configure a BPI" having a maximal flank type transmission characteristic or a BPF' whose passband has a Chebyshev type transmission characteristic.

互に隣接する共振素子間の磁界結合係数、即ち共振素子
41と42間の結合係数M+、2% 4.;lと43開
の結合係数MQ3 、・・・・・・4sと4し開の結合
係数M5.乙をLh:磁界損失量で、 C:互に隣接する共振素子の中心軸間隔第4図は、筐体
1の幅Hで基準化した共振素子4本の結合係数MK、バ
十I(縦軸)との関係を示す曲線図で、へ曲線は共振波
要人に比してHが比較的大なる場合、8曲線は共振波長
大に比しでHが比較的小なる場合である。
Magnetic field coupling coefficient between mutually adjacent resonant elements, that is, coupling coefficient M+ between resonant elements 41 and 42, 2% 4. ; Coupling coefficient MQ3 between 1 and 43; Coupling coefficient M5 between 4s and 4. B is Lh: the amount of magnetic field loss, and C: the distance between the center axes of mutually adjacent resonant elements. This is a curve diagram showing the relationship with the resonant wavelength (axis), where the curve 8 represents a case where H is relatively large compared to the resonance wavelength, and the curve 8 represents a case where H is relatively small compared to the resonance wavelength.

次に負荷Q或は中心周、皮数及び伝送信号の3デシベル
低下周波数帯域幅と各共振素子に関連する幾何係数等に
よって表わされる各隣接共振素子間の結合係数M′に、
に+Iは、 M′に、に、・=(春・k!テ’ Ma   ・・・・
・・(3)2 上式においてgx及びgKやlは幾何係数で、2に−1 gに==2Bln□π     ・・・・・・(4)n l    B10 QL    fe QL:負荷Q Bす:伝送信号の3デシベル低下周波数帯域幅 fo:中心周波数 共振素子41に関連する幾荷係数gK=g+  t(4
)式のkに1 を代入して求め、(4)式のkに2を代
入して共振素子42に関連する幾何係数g1ヤ、=g、
を求めると共にQL又はB、s3及びf、を設定するこ
とにより (3)式から共振素子41と4.間の結合係
数M’に、に+l:li!’+、2を求めることが出来
、以下同様にして(4)式のkに5を代入して共振素子
45に関連する幾何係数gK=g; を求め、(4)式
のkに6を代入して共振素子4本に関連する幾何係数L
+++=gI、を求めると共にQL又はBW3及びfo
を設定することにより(3)式から共振素子45と46
間の結合係数M’に、に++” M’!;、bを求める
ことが出来る。
Next, the coupling coefficient M' between each adjacent resonant element expressed by the load Q or center circumference, the number of skins, the 3 dB lower frequency bandwidth of the transmitted signal, the geometric coefficient related to each resonant element, etc.
ni+I is M', ni,...=(Spring・k!te' Ma...
...(3)2 In the above formula, gx, gK and l are geometric coefficients, 2 to -1 g ==2Bln□π ......(4) n l B10 QL fe QL: Load Q B : 3 dB reduction in transmission signal frequency bandwidth fo: Center frequency coefficient related to resonant element 41 gK=g+t(4
) is obtained by substituting 1 for k in equation (4), and 2 is substituting for k in equation (4) to obtain the geometric coefficient g1 ya related to the resonant element 42, = g,
By determining QL or B, s3, and f, the resonant element 41 and 4. The coupling coefficient M' between +l:li! '+, 2 can be obtained, and in the same manner, 5 is substituted for k in equation (4) to obtain the geometric coefficient gK=g; related to the resonant element 45; By substituting the geometric coefficient L related to the four resonant elements
+++=gI, and QL or BW3 and fo
By setting the resonant elements 45 and 46 from equation (3),
It is possible to obtain the coupling coefficient M' between ++''M'!; and b.

次に共振波要人を設定し、筐体1の幅Hを定めると共に
共振素子41と42の中心軸間隔01定めること(こよ
り (1)式から共振素子4Iと42間の結合係数Mに
に一1=”Ml−を求めることが出来、以下同様にして
共振素子45と4&の中心軸開隔Cを定めることにより
(1)式から共振素子4sと4し間の結合係数Mに2に
++ ” M5jを求めることが出来、共振素子帽ない
し4bの各中心軸間隔Cを誠督して(1)式で表わされ
る各段の結合係数M6.□1の大きざを(3)式で表わ
される各段の結合係数M’に、に++の大きさに一致せ
しめることによりマキシマリフラット形n性のBPFを
構成することが出来、その伝送特性は次式で表ねされる
Next, set the resonance wave key, determine the width H of the casing 1, and determine the center axis distance 01 between the resonant elements 41 and 42 (from this, from equation (1), the coupling coefficient M between the resonant elements 4I and 42 1 = "Ml-" can be obtained, and by similarly determining the central axis spacing C between the resonant elements 45 and 4&, the coupling coefficient M between the resonant elements 4s and 4& can be set to 2 from equation (1). ++ ” M5j can be obtained, and the size of the coupling coefficient M6. A maximally flat n-type BPF can be constructed by making the coupling coefficient M' of each stage correspond to the magnitude of ++, and its transmission characteristics are expressed by the following equation.

L (、iB) =lOムg、(1+x3″)・・・・
・・(5)Δf:中心周波数f・からの伝送信号の離調
周波数 幾何係数を後記の(6)及び(7)式から求め、前記と
同様の手法を用いることにより、通過域がチェビシェフ
形特性、減衰域がワクナ形特性のBPFを構成すること
が出来る。
L (, iB) = lOmg, (1+x3″)...
...(5) Δf: Find the detuning frequency geometric coefficient of the transmission signal from the center frequency f from equations (6) and (7) below, and use the same method as above to make the passband Chebyshev shape. It is possible to configure a BPF whose characteristics and attenuation range are Wakuna-type characteristics.

但し、 S二通過域内における許容電圧定在波比ュ    、に
π 13K =γ+81n7 この場合には共振素子4−に関連する幾何係数g1は(
6)式のkに1を代入し、共振素子4コlこ関連する幾
何係数g、は(7)式のに+こ2を代入してそれぞれ求
め、以下共振素子43なし\し4−二関連する幾何係数
g3ないしgLも同様C二(7)式のklこ3ないし6
を代入して求める。尚、(6)式1よg+を求める場合
にのみ用いる。
However, the allowable voltage standing wave ratio in the S2 passband is π 13K = γ + 81n7 In this case, the geometric coefficient g1 related to the resonant element 4- is (
6) Substitute 1 for k in the equation, and find the geometric coefficient g associated with the 4 resonant elements by substituting 2 in the equation (7). Similarly, the related geometric coefficients g3 to gL are also expressed by kl of equation (7).
Find by substituting. Note that (6) is used only when calculating g+ according to equation 1.

次に通過域がチェビシェフ形特性、減衰域b(ワグナ形
持1生のBPFの伝送特性は、通過域内の言午容電圧定
在波比S及び次数nを与えることにより7欠式で表ねで
れる。
Next, the transmission characteristics of a BPF with a passband having Chebyshev type characteristics and an attenuation area b (Wagner type) can be expressed as a 7-missing equation by giving the word voltage standing wave ratio S in the passband and the order n. I can come out.

・・・・(8) Tn(X)  :チェビシエフの多項式X:基準化周波
数で、 B紅:許容通過帯域幅 x<l  の場合、 T;I(X) =coe (n co8−’x )x>
I  の場合、 TJx) =co8h’(n caBh−’x )伝送
信号の3デシベル但下の基準化周波数においては、(7
)式において、 が成立する必要があり、 かも伝送信号の3デシペJl、<低下の基準化周波数x
3を求め得るから、 By+3= Bwr aX3 から伝送信号の3デシベル但下周波数幅BIV3を求め
、 から負荷Q (QL) を求め、これらの値と (6)
式及び(7)式から求めた幾何係数gに及びgKやIと
を(3)式に代入して各共振素子間の結合係数M’に、
に、1を求めると共に、共振波長大及び筐体1の幅Hを
設定して各共振素子の中心軸間隔Cを適当に選んで(1
)式のMに、K+1を(3)式のM′にに中1に一致せ
しめることにより通過域がチェビシェフ形特性、減衰極
がワグナ形特性のBPPを構成することが出来る。
...(8) Tn(X): Chebysyev's polynomial x>
For I, TJx) = co8h'(n caBh-'x) At a normalized frequency of 3 dB below the transmission signal, (7
), it is necessary to hold that 3 decipe Jl of the transmission signal < the reduced normalized frequency x
3 can be found, so from By + 3 = Bwr aX3, find the 3 dB lower frequency width BIV3 of the transmission signal, find the load Q (QL) from , and use these values and (6)
By substituting the geometric coefficient g obtained from the equation and equation (7), gK, and I into equation (3), the coupling coefficient M' between each resonant element is obtained.
1, set the resonant wavelength size and the width H of the housing 1, and appropriately select the center axis spacing C of each resonant element (1
) By making K+1 coincide with M' in equation (3) to within 1, it is possible to construct a BPP whose passband has a Chebyshev type characteristic and whose attenuation pole has a Wagner type characteristic.

このBPFにおいて例えば共振素子2コと2り開を間接
結合することにより通過域がチェビシェフ形特性で減衰
域に減衰極を有するBPFを構成することが出来る。
In this BPF, for example, by indirectly coupling two resonant elements and two openings, it is possible to construct a BPF having a Chebyshev type characteristic in the passband and an attenuation pole in the attenuation range.

第3図に点線を以て示した6は同軸線路又はストリンプ
ライン等より成る間接結合#lIi回路% 71及びろ
は共振素子4コ及び45と間接結合線路6との結合素子
で、ループ又は共振素子42及び4≦との間に静電容量
を形成する電極等より成る。
6 shown with a dotted line in FIG. 3 is an indirect coupling #lIi circuit consisting of a coaxial line or a strip line, etc. 71 and 71 are coupling elements of the resonant elements 4 and 45 and the indirect coupling line 6, which is a loop or a resonant element. 42 and 4≦.

共振素子41なt’L45よQなる主回路を伝送する信
号の中、通過域より周波数の高い信号は共振素子4Iな
いし4&より成る各共振回路において電圧電流の位相が
90度進み、各共振回路間に形成される移相回路におい
て位相が270度進むから共振素子42より成る共振回
路における信号の位相と、共振素子4りより成る共振回
路における信号の位相は同相となるが、結合素子71及
びゐをループを以て形成した場合には両ループの極性を
適当ならしめでおけば、結合素子71、ゐ及び線路6よ
り成る間接結合回路を介して共振素子4−より成る共振
回路から共振素子45より成る共振回路へ伝送される信
号の位相は両共振回路間において180度の位相差を生
ずる。したがって結合素子71及びんの各結合度を調整
して間接結合回路を伝送する信号の大きさと主回路を伝
送する信号の大きさを等しくすることによりこの信号の
周波数位置に減衰極を生ぜしめることが出来る。
Among the signals transmitted through the main circuit of the resonant elements 41, t'L45, and Q, the signals whose frequencies are higher than the passband lead the phase of the voltage and current by 90 degrees in each resonant circuit consisting of the resonant elements 4I to 4&, and Since the phase advances by 270 degrees in the phase shift circuit formed between the coupling elements 71 and 4, the phase of the signal in the resonant circuit consisting of the resonant element 42 and the phase of the signal in the resonant circuit consisting of the resonant element 4 are in phase. When A is formed as a loop, if the polarities of both loops are set appropriately, the connection from the resonant circuit consisting of the resonant element 4- to the resonant element 45 via the indirect coupling circuit consisting of the coupling element 71, A and the line 6 is possible. The phase of the signal transmitted to the two resonant circuits produces a phase difference of 180 degrees between the two resonant circuits. Therefore, by adjusting the degree of coupling of the coupling elements 71 and 71 to equalize the magnitude of the signal transmitted through the indirect coupling circuit and the magnitude of the signal transmitted through the main circuit, an attenuation pole is generated at the frequency position of this signal. I can do it.

主回路を伝送する信号の中、通過域より低い周波数の信
号は各共振回路において位相が90度遅れ、各共振回路
間に形成される移相回路においで位相が27070度遅
ので、共振素子4λ及び4sより成る両共振回路におけ
る信号の位相は同相となり、間接結合回路を伝送する信
号の位相は逆相となるので、結合素子7I及びんの各結
合度を適当に調整して主回路及び間接結合回路を伝送す
る両信号の大きさを等しくすることによりこの信号の周
波数位置に減衰極を生ぜしめ得る。
Among the signals transmitted through the main circuit, signals with frequencies lower than the passband have a phase delay of 90 degrees in each resonant circuit, and a phase delay of 27,070 degrees in the phase shift circuit formed between each resonant circuit, so the resonant element 4λ The phases of the signals in both the resonant circuits consisting of the resonant circuits 7I and 4s are in phase, and the phases of the signals transmitted through the indirect coupling circuit are opposite. By making the magnitudes of both signals transmitted through the coupling circuit equal, an attenuation pole can be produced at the frequency position of this signal.

結合素子7I及びんの結合度を但くする七減衰極の周波
数位置が通過域から離れる方へ移動し、逆に結合度を高
くすると減衰極の周波数位置が通過域に近づく方へ移動
する。
The frequency position of the seven attenuation poles that determine the degree of coupling between the coupling elements 7I and 7 moves away from the passband, and conversely, when the degree of coupling is increased, the frequency position of the attenuation pole moves closer to the passband.

このように構成した有極形BPFの伝送特性は次式で表
わされる。
The transmission characteristics of the polarized BPF configured in this way are expressed by the following equation.

本実施例のように次数nが6、即ちnが偶数の場合は、 nが奇数の場合は、 は刊(1−シ丁′ 差 ΔfP:中心周中心周波数許容電圧定在波比を与えるバ
ンドエツジの周波数の差 Rc:実数部をとるの意 ■、:虚数部をとるの意 尚、減衰極の周波数位置が通過域から比較的離れている
場合には、通過域がチェビシェフ形特性、減衰域がワグ
ナ形特性のBPF’とほぼ等しい結合特性となり、減衰
極が通過域に比較的近い周波数位置にある場合には、間
接結合用のループ又は容量の影響等によって理論値と実
験値に差を生ずるのが一般で、前記ff1i及びρ3等
を求めるには適当な補正が必要となる。
When the order n is 6 as in this example, that is, when n is an even number, when n is an odd number, Frequency difference Rc: means to take the real part ■, : means to take the imaginary part If the frequency position of the attenuation pole is relatively far from the passband, the passband has Chebyshev type characteristics, the attenuation range has a coupling characteristic that is almost equal to BPF', which has a Wagner-type characteristic, and if the attenuation pole is located at a frequency position relatively close to the passband, there will be a difference between the theoretical value and the experimental value due to the influence of the indirect coupling loop or capacitance. This generally occurs, and appropriate correction is required to obtain the above-mentioned ff1i, ρ3, etc.

第5図は、本発明の他の実施例を示す断面図(第6図の
B−B断面図)、第6図は、第5図のA−A断面図、第
7図は、第6図のa−C断面図で、各図において、8は
導体より成る仕切壁で、他の符号は第2図及び第3図と
同様である。
FIG. 5 is a sectional view (BB sectional view in FIG. 6) showing another embodiment of the present invention, FIG. 6 is a sectional view taken along AA in FIG. 5, and FIG. In each figure, 8 is a partition wall made of a conductor, and other symbols are the same as in FIGS. 2 and 3.

本実施例においても共振波長大に比して筐体1の幅(第
6図のH)及び共振素子41ないし41.の直径が比較
的小なる場合には共振素子4−ないし4bの軸長を共振
波長への4に選び、1体1の幅H及び共振”素子組ない
し4&の直径が共振波長大に比して比較的大なる場合に
は共振素子4Iないし4bの軸長を共振波長大の4より
も適宜短かくして、各共振素子の接地側と反対側の端部
を電気的に開放又は開放に近い状態に保ち、縦続接続関
係において隣接する共振素子相互が磁界結合し得るよう
に構成しである。又、(4)式又は(6)及び(7)式
から幾何係数を求め、共振波長大、筐体1の幅(第6図
のH)を定め、共振素子4Iないし4bの各中心軸間隔
を調整して(1)式の結合係数MK、に+1を(3)式
のM’に、に+1に一致せしめることにより前実施例同
様の伝送特性を有するBPFを構成し得るが、本実施例
においでは共振索子41ないし4bをコの字形に配設し
であるので前実施例に比して全体を小形に構成すること
が出来る。
In this embodiment as well, the width of the housing 1 (H in FIG. 6) and the resonant elements 41 to 41. If the diameter of the resonant elements 4- to 4b is relatively small, the axial length of the resonant elements 4- to 4b is selected to be 4 to the resonant wavelength, and the width H of each unit 1 and the diameter of the resonant element group to 4- If the wavelength is relatively large, the axial length of the resonant elements 4I to 4b is appropriately made shorter than the resonant wavelength 4, and the end of each resonant element opposite to the ground side is electrically open or nearly open. The configuration is such that adjacent resonant elements can be magnetically coupled to each other in a cascade connection.The geometric coefficient is determined from equation (4) or equations (6) and (7), and the resonant wavelength is determined by Determine the width of the body 1 (H in Figure 6), adjust the center axis spacing of the resonant elements 4I to 4b, and add +1 to the coupling coefficient MK in equation (1) to M' in equation (3). +1, it is possible to construct a BPF having the same transmission characteristics as in the previous embodiment, but in this embodiment, the resonant cables 41 to 4b are arranged in a U-shape, so that the transmission characteristics are different from those in the previous embodiment. The entire structure can be made compact.

本実施例においては例えば第8図に断面図を示すように
、仕切壁8の一部に孔隙を穿ち容量形成電柵9を介して
共振素子4々及び45間を間接結合するか、第9図に断
面図を示すようにループIOを介して共振素子42及び
45間を間接結合することにより五衰極を生ゼしぬ得る
が、共振素子4コ及び4sが仕切壁8を介して隣接しで
いるので前実施例におけるような同軸線路等を用いる必
要なく、仕切壁8の孔隙部に介装した結合素子によって
間接結合を行い得るからこの点からも構成を藺潔ならし
めることが出来る。
In this embodiment, for example, as shown in the cross-sectional view in FIG. As shown in the cross-sectional view in the figure, by indirectly coupling between the resonant elements 42 and 45 via the loop IO, it is possible to prevent the generation of five-attenuation poles. Therefore, there is no need to use a coaxial line or the like as in the previous embodiment, and indirect coupling can be performed by a coupling element inserted in the hole of the partition wall 8, so that the structure can be made simple from this point as well.

以上何れの実施例においても6個の共振素子を用いた場
合につき説明したが、共振素子の数は6個に限ることな
く適宜増減して本発明を実施することが出来、又、間接
結合回路(第3図の6、乙及び7コ)及び間接結合素子
(第8図の9及び第9図の10)も共振素子42と4s
間に設ける代りに共振索子41と4b間に設けるか、4
コと45間及び4Iと46間に設けてもよ(、要は縦続
接続関係にある共振索子の中、2個又はその整数倍の個
数の共振素子を隔てた共振素子相互間であれば間接結合
回路又は素子の設置個所及び設置数を適当に選んで本発
明を実施することが出来る。
In each of the above embodiments, six resonant elements are used. However, the number of resonant elements is not limited to six, and the present invention can be implemented by increasing or decreasing the number of resonant elements as appropriate. (6, O and 7 in Figure 3) and indirect coupling elements (9 in Figure 8 and 10 in Figure 9) are also resonant elements 42 and 4s.
Instead of providing it between the resonant cables 41 and 4b, or 4
It may also be provided between C and 45 and between 4I and 46 (in short, if it is between two resonant elements or an integral multiple of the resonant elements in a cascade connection relationship) The present invention can be implemented by appropriately selecting the location and number of indirect coupling circuits or elements.

以上の説明から明らかなように、本発明BPFにおいて
は各共振素子の軸長を共振波長のほばZに選び、接地側
と反対側の端部を電気的に開放して隣接共振素子相互を
磁界結合せしめるように構成しであるので、従来のよう
に筐体との間に静電容量を形成するための電極を共振素
子の先端に取付ける必要がないから各共振素子の開放端
と筐体との間に十分大なる間隙を設けることが可能で、
したがって共振素子の先端と筐体間の耐圧を十分高め得
ると共に周囲温度の変化に関係なく安定良好な電気的特
性が得られ、例えば大電力用BPFとして好適である。
As is clear from the above description, in the BPF of the present invention, the axial length of each resonant element is selected to be close to the resonant wavelength Z, and the end opposite to the ground side is electrically opened to connect adjacent resonant elements to each other. Since it is configured to create magnetic field coupling, there is no need to attach an electrode to the tip of the resonant element to form a capacitance between it and the housing as in the conventional case. It is possible to provide a sufficiently large gap between the
Therefore, the withstand voltage between the tip of the resonant element and the casing can be sufficiently increased, and stable electrical characteristics can be obtained regardless of changes in ambient temperature, making it suitable, for example, as a BPF for high power use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のコムライン形帯域通過ろ波器を示す断
面図、第2図及び第3図は、本発明の一実施例を示す断
面図、第4図は、本発明ろ波器における共振素子間隔と
結合係数の関係を示す図、第5図ないし第9図は、本発
明の他の実施例を示す断面図で、■筐体、2.2I及び
2コニ入出力同軸端子、3:入出力結合棒、31及び3
2:入出力結合素子、4:共振棒、41ないし4F、:
共振素子、5:電極、6:間接結合線路、7I、7a、
9及び10:間接結合素子、8:仕切壁である。 第1図 第2図 第3図 第4図 第5図 1 り 第6図  第7図 第8図  第9図
FIG. 1 is a sectional view showing a conventional combline type bandpass filter, FIGS. 2 and 3 are sectional views showing an embodiment of the present invention, and FIG. 4 is a sectional view showing the filter of the present invention. Figures 5 to 9 are cross-sectional views showing other embodiments of the present invention; 3: Input/output coupling rod, 31 and 3
2: Input/output coupling element, 4: Resonant rod, 41 to 4F:
Resonant element, 5: electrode, 6: indirectly coupled line, 7I, 7a,
9 and 10: indirect coupling element; 8: partition wall. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 1 Figure 6 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】 (+)共振波長のほぼ4の軸長を有する棒状導体より成
る複数個の共振素子を備えたことを特徴とするコムライ
ン形帯域通過ろ波器。 (2)共振波長の1ユぼ4の軸長を有する棒状導体より
成る複数個の共振素子と、前記複数個の共振素子の中、
2個又はその整数倍の個数の共振素子を隔てた共振素子
相互を間接結合する回路又は素子とを備えたことを特徴
とするコムライン形帯域通過ろ波器。 (3)複数個の共振素子が一列に配設ぎれた特許請求の
範囲第1項又は第2項記載のコムライン形帯域通過ろ波
器。 (4)複数個の共振素子がフの字形信号伝送路を形成す
るように配設された特許請求の範囲第1項又は第2項記
載のコムライン形帯域通過ろ波器。
(Claims: (+)) A combline type bandpass filter comprising a plurality of resonant elements each made of a rod-shaped conductor having an axial length of approximately 4 times the resonant wavelength. (2) a plurality of resonant elements made of rod-shaped conductors having an axial length of 1/4 times the resonant wavelength, and among the plurality of resonant elements,
A combline type bandpass filter comprising a circuit or an element that indirectly couples two resonant elements separated by two or an integer multiple of the resonant elements. (3) A combline type bandpass filter according to claim 1 or 2, in which a plurality of resonant elements are arranged in a line. (4) A combline type bandpass filter according to claim 1 or 2, wherein a plurality of resonant elements are arranged to form a fold-back signal transmission path.
JP6131582A 1982-04-13 1982-04-13 Comb line type band-pass filter Pending JPS58178602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6131582A JPS58178602A (en) 1982-04-13 1982-04-13 Comb line type band-pass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6131582A JPS58178602A (en) 1982-04-13 1982-04-13 Comb line type band-pass filter

Publications (1)

Publication Number Publication Date
JPS58178602A true JPS58178602A (en) 1983-10-19

Family

ID=13167593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6131582A Pending JPS58178602A (en) 1982-04-13 1982-04-13 Comb line type band-pass filter

Country Status (1)

Country Link
JP (1) JPS58178602A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291512A (en) * 1993-04-01 1994-10-18 Kokusai Electric Co Ltd Comb line shape band pass filter
WO1996024172A1 (en) * 1995-02-03 1996-08-08 Teledyne Industries, Inc. Cross coupled bandpass filter
US9202660B2 (en) 2013-03-13 2015-12-01 Teledyne Wireless, Llc Asymmetrical slow wave structures to eliminate backward wave oscillations in wideband traveling wave tubes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134548A (en) * 1975-05-19 1976-11-22 Nec Corp Microwave band-pass filter
JPS5372549A (en) * 1976-12-10 1978-06-28 Nec Corp Microwave polarized type band pass filter
JPS5675720A (en) * 1979-11-27 1981-06-23 Nippon Telegr & Teleph Corp <Ntt> Inter digital type band pass filter
JPS5760702A (en) * 1980-09-27 1982-04-12 Nippon Dengiyou Kosaku Kk Interdigital band pass filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134548A (en) * 1975-05-19 1976-11-22 Nec Corp Microwave band-pass filter
JPS5372549A (en) * 1976-12-10 1978-06-28 Nec Corp Microwave polarized type band pass filter
JPS5675720A (en) * 1979-11-27 1981-06-23 Nippon Telegr & Teleph Corp <Ntt> Inter digital type band pass filter
JPS5760702A (en) * 1980-09-27 1982-04-12 Nippon Dengiyou Kosaku Kk Interdigital band pass filter

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291512A (en) * 1993-04-01 1994-10-18 Kokusai Electric Co Ltd Comb line shape band pass filter
WO1996024172A1 (en) * 1995-02-03 1996-08-08 Teledyne Industries, Inc. Cross coupled bandpass filter
US5748058A (en) * 1995-02-03 1998-05-05 Teledyne Industries, Inc. Cross coupled bandpass filter
US9202660B2 (en) 2013-03-13 2015-12-01 Teledyne Wireless, Llc Asymmetrical slow wave structures to eliminate backward wave oscillations in wideband traveling wave tubes

Similar Documents

Publication Publication Date Title
Lee et al. New compact bandpass filter using microstrip/spl lambda//4 resonators with open stub inverter
Kundu et al. Control of attenuation pole frequency of a dual-mode microstrip ring resonator bandpass filter
US5812036A (en) Dielectric filter having intrinsic inter-resonator coupling
JP2003508948A (en) High frequency band filter device with transmission zero point
Zhou et al. Miniature microstrip bandpass filter using resonator-embedded dual-mode resonator based on source-load coupling
CA1067162A (en) Generalized waveguide bandpass filters
JPS6123881B2 (en)
US3936776A (en) Interspersed double winding helical resonator with connections to cavity
Mandal et al. Design of wide-band, sharp-rejection bandpass filters with parallel-coupled lines
Tkadlec et al. Pseudoelliptic combline filter in a circularly shaped tube
US4247837A (en) Multi-conductor ferromagnetic resonant coupling structure
JP3797273B2 (en) Band stop filter and communication device
JPS58178602A (en) Comb line type band-pass filter
GB2283370A (en) Dielectric duplexer
US6809615B2 (en) Band-pass filter and communication apparatus
JPS5821844B2 (en) micro hatadan filter
Puglia A general design procedure for bandpass filters derived from low pass prototype elements: Part II
JPS595701A (en) Comb line type band-pass filter
JPS58170101A (en) Band-pass filter
JP2655133B2 (en) Resonator and filter comprising the same
JPS628601A (en) Comb-line type band pass filter
JPH0237801A (en) Band-pass filter
JPS58178601A (en) Band-pass filter
JP2670963B2 (en) Comline bandpass filter
JPS58215803A (en) Comb-line type band-pass filter