JPS58178559A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS58178559A
JPS58178559A JP6147182A JP6147182A JPS58178559A JP S58178559 A JPS58178559 A JP S58178559A JP 6147182 A JP6147182 A JP 6147182A JP 6147182 A JP6147182 A JP 6147182A JP S58178559 A JPS58178559 A JP S58178559A
Authority
JP
Japan
Prior art keywords
island
source
drain
film
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6147182A
Other languages
Japanese (ja)
Inventor
Haruhide Fuse
玄秀 布施
Shigenobu Akiyama
秋山 重信
Koichi Kugimiya
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6147182A priority Critical patent/JPS58178559A/en
Publication of JPS58178559A publication Critical patent/JPS58178559A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823406Combination of charge coupled devices, i.e. CCD, or BBD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a semiconductor device of high speed operation by forming an amorphous or polycrystalline Si island on an insulator, emitting an energy beam, and forming source and drain by a low temperature treatment in the island. CONSTITUTION:Polysilicon is superposed on an SiO2 film 22 on an Si substrate 21, B is implanted, and a P type island 23 is formed by a selective oxidation method. The substrate is heated to 350 deg.C, the overall surface is scanned by an Ar laser beam 24 to form a single crystal P type Si island 25, wet oxidized to etch the SiO2 around the island, and a gate oxidized film 26 is formed. Then, polysilicon 27 is superposed by a CVD method, are implanted with As ions 28, heat treated, and N type source and drain 29, 30 are formed in the island 25. The film 27 is selectively removed, and a gate electrode 31, and a polycrystalline layers 32, 33 to be a part or electrode of the source and drain are formed. In this manner, a high performance FET can be obtained by the heat treatment of low temperature and short time by the utilization of polycrystal capable of high speed diffusion and the formation of the source and drain from the side face of the island, and the operating speed becomes approx. twice of the conventional one. The substrate may be sapphire.

Description

【発明の詳細な説明】 本発明は絶縁膜上に島状に形成された非晶質あるいは多
結晶シリコン(Si)等の半導体膜にエネルギービーム
を照射後、そこにzvfO8等の電界効果素子を形成す
る揚台あるいは絶縁膜上に形成した単結晶Si中にMO
8素子を形成する揚台の素子構造と製造方法に関するも
のである。SOI累子(Si  On  In5ula
tor)  は、畜生容赦の小さな関連素子形成として
期待されている。どれには、結晶1住絶縁丞恨上に単結
晶S!金成長させるS OS (5ilicon on
 5anhaire)また非晶實絶杼膜−Fに結晶1生
の尚い膜を形成する方法がある。
Detailed Description of the Invention The present invention involves irradiating an energy beam onto a semiconductor film such as amorphous or polycrystalline silicon (Si) formed in an island shape on an insulating film, and then attaching a field effect element such as zvfO8 thereto. MO in the single-crystal Si formed on the platform to be formed or on the insulating film.
The present invention relates to the element structure and manufacturing method of a platform that forms eight elements. SOI Seiko (Si On In5ula)
tor) is expected to form a relatively small related element. Which one is crystal 1, insulated, and single crystal S! SOS that makes gold grow (5ilicon on
5anhair) There is also a method of forming a film with no crystalline structure on the amorphous film-F.

これらの場合高τ品の熱処理を刀目えることは不!JR
物の拡故が生じ、形成される索子の微細化の点で不利で
ある。この為1ooOCを超える熱処理を/J11える
ことは極めて好ましくない。
In these cases, it is not recommended to heat treat high τ products! JR
This is disadvantageous in terms of spreading of the object and miniaturization of the cords formed. For this reason, it is extremely undesirable to increase the heat treatment exceeding 1ooOC by /J11.

そこで、後イの場合(Sion非晶筑1nsulato
r)エネルギビーム(レーザや′重子ビーム)を用いて
表面ノーのみを溶かす方法が行なわれる。この−合には
、絶縁l膜上全面に多結晶膜を形成した状1四でビーム
照射を行なって結晶化させる方法が用いられるが、結晶
粒の成長は礒結晶からの粒成長の為一様な巨大結晶粒を
形成することができない。
Therefore, in the case of the second case (Sion amorphous chiku1nsulato
r) A method is used in which only the surface layer is melted using an energy beam (laser or deuteron beam). In this case, a method is used in which a polycrystalline film is formed on the entire surface of the insulating l film and then crystallized by beam irradiation. It is not possible to form large crystal grains.

そこで、素子形成に必要な部分の多結晶シリコノのみを
島状に残した状態でビーム照射してこのシリコンの溶融
及び結晶成長をさせることが行なわれている。この場合
に島の大きさが、数1t m x敬+/1mの卸j長い
島、特に数μmの威小な幅である場合には、完全な単結
晶シリコンが得られることがAppL 、 P h7B
、 34 (12)831 (1979)中にJ 、F
 、Gibbons等によって報告さnている。どのよ
うに島形状が小さい程、完全単結晶VこなるjlJl性
能鍋く、良買なMOSトランジスタをノー成り能となる
。しかし、島面績が小さくなると、この部分にMOS)
ランジスタを作成することが困難となる。すなわち五v
iO5)ランジスタの揚台にはソース・ドレーン・ゲー
トを形成しなくてはならない為に、幅数/j mの島−
上にすべてをつくることはIfl]禎のにで困難になる
という欠点があり、良好な索子形成に問題がある。
Therefore, it is practiced to melt and grow crystals by beam irradiation while leaving only the portions of polycrystalline silicon necessary for element formation in the form of islands. In this case, if the size of the island is a long island of several ton m x 1 m, and especially a small width of several μm, it is possible to obtain perfect single-crystal silicon. h7B
, 34 (12) 831 (1979), J.F.
, reported by Gibbons et al. However, the smaller the island shape, the better the performance of a completely single-crystal V, making it impossible to make a reasonably priced MOS transistor. However, if the surface area becomes smaller, there will be MOS in this part)
It becomes difficult to create transistors. i.e. 5v
iO5) Because the source, drain, and gate must be formed on the transistor platform, an island with a width of number/j m is required.
It has the disadvantage that it is difficult to make everything on the top of the tube due to the formation of the strands, and there is a problem in good cord formation.

さらにもう1つの問題としてSOI 、SO8構造の素
子形成をイテなった場合には、その素子速度を向上させ
る為には、ソースドレインに深い拡散を生じさせねばな
らない。このことを弔1図を用いて説明を行なう。
Yet another problem is that if it is not possible to form a device with an SOI or SO8 structure, deep diffusion must be created in the source and drain in order to improve the device speed. This will be explained using Figure 1.

1は絶縁基板、−2は基板1上の酸化膜、3は基板1上
のンリコン島頭載、4,5はMOSトランジスタのソー
ス、ドレイン頭載、6はゲート酸化膜、7はゲート′屯
極、8,9.10は軍1蛎配線−11は入面酸化膜であ
る。m1図aの構造では、ソース、ドレイン頭載4,6
が島領域3よりも浅く形成されており、ソース、ドレイ
ンと島′頭載との接合面積が太き(SOI構造の特徴で
ある1%連なトランジスタが形成できない。
1 is an insulating substrate, -2 is an oxide film on the substrate 1, 3 is a silicon capacitor on the substrate 1, 4 and 5 are MOS transistor source and drain caps, 6 is a gate oxide film, and 7 is a gate base. The poles, 8, 9, and 10 are the 1st layer wires, and the 11 is the entrance oxide film. In the structure shown in m1 diagram a, the source and drain heads are mounted 4 and 6.
is formed shallower than the island region 3, and the junction area between the source, drain and the island head is large (a 1% continuous transistor, which is a feature of the SOI structure, cannot be formed).

したがって、第1図すのように基板1に達するように島
“頭載3にソース、ドレイン頭載4,6を形成すること
が必要となる。このため島領域3の厚さを0.5μmと
しても10oOC以上の熱処理が必要となるが、微細な
素子を多く有する昼否度なICではこのような高l晶の
熱処理は好ましくなくまた基板1も耐熱1生の良好なも
のしか用いることができない。
Therefore, it is necessary to form the source and drain heads 4 and 6 on the island "head 3" so as to reach the substrate 1 as shown in FIG. In this case, heat treatment of 10oOC or more is required, but such heat treatment of high l crystals is not preferable for ICs that have many minute elements and are used during daylight hours.Also, only substrates with good heat resistance of 1 grade should be used for the substrate 1. Can not.

本発明は絶縁体上に半4体島頭載を形成したのち、この
島領域にエネルギービームを照射してアニールを行ない
、さらに島領域中に高速な索子V(好適なソース、ドレ
イン構造を低幌熱処理にて形成できる半導体装置の構造
およびその製造方法を提1共するものである。
In the present invention, after forming a semi-quadruple island head on an insulator, this island region is irradiated with an energy beam to perform annealing, and a high-speed probe V (with a suitable source and drain structure) is further formed in the island region. This paper presents the structure of a semiconductor device that can be formed by low-temperature heat treatment and its manufacturing method.

以下、本発明の実施例を第2図の工+′11図VCそっ
て説明をイ1なう。1ず第2図dは、基改21に、11
1m程度の酸化膜よりなる絶縁族22を形成し減ノーF
 CV  D  (chemical  vanour
  denosi tion )法により多結晶Sl(
シリコン)膜を0.5571m堆槓した後、10 ” 
a t oms/ ctrlのボロンを導入し選択酸化
法により、5 l1m幅、長さ40μmのP型の多結晶
St島頌頭載3を形成し、この上から連続発振Arレー
ザビ〜ム24を全面に照射しa、膜質の教書さnた望ま
しくは単結晶化されたシリコンのP型島頭載26を形成
する。この条件は、基板全体を350Cに加熱しておい
て、36μm程tLに絞ったビーム24を100 g 
/ 1の速度と10μmの5topで基板21上全…]
 を走査した。
Hereinafter, embodiments of the present invention will be explained along the lines of FIGS. 1. Figure 2 d is based on revision 21, 11
Forming an insulating group 22 made of an oxide film with a thickness of about 1 m to reduce no.
CVD (chemical vanour)
Polycrystalline Sl(
After depositing 0.5571m of silicon) film, 10”
A P-type polycrystalline St island dowel head 3 with a width of 5 l1m and a length of 40 μm is formed by introducing boron of atoms/ctrl and using a selective oxidation method, and a continuous wave Ar laser beam 24 is applied over the entire surface. irradiation to form a film-like material, preferably a P-type island 26 of monocrystalline silicon. Under these conditions, the entire substrate is heated to 350C, and the beam 24 focused to tL of about 36 μm is heated to 100 g.
/ All over the substrate 21 at a speed of 1 and 5 tops of 10 μm...]
was scanned.

その後にゲート用の酸化膜(S 102 )を500A
の厚さにたとえばウェットd化法860Cで形成し、島
領域の周囲の5iQ2+4を写貞貢刻法によりば去し、
島領域上にゲート酸化膜26を形成する0 しかるのち、多結晶Sil模27を減圧CVL)法によ
り4500人堆千責した。その膜27にイオ°ン汀入法
によりAsイオン28を100にθVの加速エネルギで
もって4 X 1015tons/cm導入して900
 C,30m i nの熱処理を加えた。この結果島領
域26の側面部の多結晶Si膜27から島領域26内に
不純物が拡散され、n型のソース、トレイン領域29.
30を形成するC8この工程にカ・いて、多結晶Si膜
27中の不柵物拡散係数が大きくかつ島領域25の側面
全域に接している多結晶Si膜27よりn型不純物が拡
散するとともに、拡散は極めて浅くてよいため、島領域
25内に低温かつ短時間の熱処理で高速化に遇した構造
のノース、ドレイン領域29.30を形成することがで
きる。なお、熱処理温度としてはたとえばp (IJン
)を用いれば約7ooc程吸の低温でもよい。
After that, an oxide film (S102) for the gate was applied at 500A.
For example, 5iQ2+4 around the island area is formed by the wet d-curing method 860C to a thickness of
After forming a gate oxide film 26 on the island region, a polycrystalline silicon pattern 27 was deposited by 4,500 people using a low pressure CVL method. As ions 28 were introduced into the film 27 at a rate of 4 x 1015 tons/cm using an ion bombardment method with an acceleration energy of 100 to θV.
A heat treatment of 30 min was applied. As a result, impurities are diffused into the island region 26 from the polycrystalline Si film 27 on the side surfaces of the island region 26, and the n-type source and train regions 29.
During this process, n-type impurities are diffused from the polycrystalline Si film 27 which has a large impurity diffusion coefficient and is in contact with the entire side surface of the island region 25. Since the diffusion only needs to be extremely shallow, the north and drain regions 29 and 30 having a structure suitable for high speed can be formed in the island region 25 by heat treatment at a low temperature and in a short time. It should be noted that the heat treatment temperature may be as low as about 70°C if p (IJn) is used, for example.

次に、Si%27を選択的に除去し、グー1m極31.
ンース、ドレインの一部又は′−憧となる多結晶領域3
2.33を形成する(第2jdd)。
Next, Si%27 is selectively removed, and the goo 1m pole 31.
polycrystalline region 3 that becomes part of the source, drain, or
2.33 is formed (2nd jdd).

前述したように、以上の第2図の方法VCよれは目II
述したごとく、単結晶Siに比べ1〜2桁程度拡故係数
が大きく高速拡散が可能な多結晶S1の利ハJならびに
島領域1副面からのソース、ドレイン領域により、低温
、短時間の熱処理で高性能なMOS)ランジスタを容易
に形成することができる。このようにして形成されたM
o2)う/ジスタの連層はSO8七同襟通常の申結晶を
用いたMOS)ランジスタの2倍となる。
As mentioned above, the method VC shown in FIG.
As mentioned above, the advantage of polycrystalline S1 is that it has a diffusion coefficient of one to two orders of magnitude larger than that of single-crystalline Si, allowing for high-speed diffusion, and the source and drain regions formed from the secondary surface of island region 1 allow for low-temperature, short-time diffusion. High-performance MOS) transistors can be easily formed by heat treatment. M thus formed
o2) The continuous layer of U/JISTA is twice that of SO8 MOS transistor using ordinary crystal.

なお、ゲート酸化膜26の形成前あるいは後にVt(1
−値′紙圧)制御用の不純物イオン注入を行っても良い
Note that Vt(1
-value'paper pressure) control impurity ions may be implanted.

また、本発明においては、基板21を単結晶Siを用い
てもよいとともに、基板21.ポ化ノ膜22の代わりに
サファイア基板を用いた場合、低温熱処理が可能なため
、サファイア基叡からのAtのドーピングやノース、ド
レインの横方向不純物拡散を抑えることができる。
Further, in the present invention, single crystal Si may be used for the substrate 21, and the substrate 21. When a sapphire substrate is used instead of the oxidized film 22, low-temperature heat treatment is possible, so that doping of At from the sapphire substrate and lateral impurity diffusion in the north and drain regions can be suppressed.

以上のように本発明は高速、高性能な電界効果トランジ
スタ等の形成に大きく寄与するものである。
As described above, the present invention greatly contributes to the formation of high-speed, high-performance field effect transistors, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、bはSOI構垣系子の従来の析面図、第2図
a −dは本発明の一実施例にかかる五シ08ICの製
造工程所面図である。 21・・・基板、22・・・・・・絶縁膜、23・・・
・多結晶Si島領域、24・・・・、A rし〜ザビー
ム、26・・・・・島領域、26・・・・・・ゲート1
波化j漠、27・・・・・・多結晶Si膜、29,30
・・・・・ノース。 トレイン領域、32,33+1@1・ ノース、ドレイ
ノ市−9゜ 代理人の氏名 弁理上 中 尾 敏 男 はか1名第1
FIGS. 1a and 1b are conventional analytical views of an SOI structure, and FIGS. 2a to 2d are views showing the manufacturing process of a 5-shi08 IC according to an embodiment of the present invention. 21... Substrate, 22... Insulating film, 23...
・Polycrystalline Si island region, 24..., Arshi ~ the beam, 26... Island region, 26... Gate 1
Wave formation, 27... Polycrystalline Si film, 29, 30
...North. Train area, 32, 33 + 1 @ 1 North, Drano City - 9゜ Agent's name For patent attorney Toshio Nakao Haka 1 person 1
figure

Claims (1)

【特許請求の範囲】 (1)絶縁体上に迷択的に形成されるとともに電界効果
トランジスタのチャンネル頭載となる半導体Mi頒域と
、前記島領域の側部に形成された多結晶半導体よりなる
前記トランジスタのソース、ドレイン領域とを備えたこ
とを特徴とする半導体装置。 (2)  ソース、ドレイン領域の一部が島領域内に形
成されていることを特徴とする特許請求の範囲第1項に
記載の半導体装置。 (3)  多結晶半導体が絶縁体に接していることを特
徴とする特許請求の範囲第1項に記載の半導体装1d。 (4)絶縁体上に非晶質又は多結晶半導体島頭域を選択
的に形成する工程と、前記半導体島鎖板にエネルギービ
一一:を照射して剪6d半導体島萌域の禰質を吹音する
工程と、前記半導体島頑域上に電界効果素子のゲート絶
縁膜を形成する工程と、前記ゲート絶縁膜上、剖記島唄
域tilll tfI珪こ多結晶半導体よりなるゲート
′屯直、ソース、ドレイン重置を形成する工作とを4え
たことを丑徴吉する半導体装置の製造方法。 (6)多結晶半導体膜から島領域1ull l川に不純
物を拡酸し、ソース、ドレイン領域を形成することを特
徴とする#♂F請求の範囲第4唄に記載の半導体装Ir
t、の製造方法。
[Scope of Claims] (1) A semiconductor Mi region which is selectively formed on the insulator and serves as the top of the channel of the field effect transistor, and a polycrystalline semiconductor formed on the sides of the island region. What is claimed is: 1. A semiconductor device comprising source and drain regions of the transistor. (2) The semiconductor device according to claim 1, wherein part of the source and drain regions are formed within an island region. (3) The semiconductor device 1d according to claim 1, wherein the polycrystalline semiconductor is in contact with an insulator. (4) A step of selectively forming an amorphous or polycrystalline semiconductor island head region on an insulator, and irradiating the semiconductor island chain plate with energy beam 11: to cut off the 6d semiconductor island head region. a step of forming a gate insulating film of a field effect element on the semiconductor island region; and a step of forming a gate insulating film of a field effect element on the semiconductor island region; A method for manufacturing a semiconductor device that includes four steps to form direct, source, and drain overlapping structures. (6) Semiconductor device Ir according to #♂F claim 4, characterized in that impurities are spread from the polycrystalline semiconductor film into the island region 1ull to form source and drain regions.
A method for producing t.
JP6147182A 1982-04-12 1982-04-12 Semiconductor device and manufacture thereof Pending JPS58178559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6147182A JPS58178559A (en) 1982-04-12 1982-04-12 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6147182A JPS58178559A (en) 1982-04-12 1982-04-12 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS58178559A true JPS58178559A (en) 1983-10-19

Family

ID=13171997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6147182A Pending JPS58178559A (en) 1982-04-12 1982-04-12 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58178559A (en)

Similar Documents

Publication Publication Date Title
US4933298A (en) Method of making high speed semiconductor device having a silicon-on-insulator structure
US4381201A (en) Method for production of semiconductor devices
JP2003282885A (en) Semiconductor device and its fabricating method
JPH0656882B2 (en) Method for manufacturing stacked MOS device
EP0068094B1 (en) Process for forming a semiconductor device on a silicon ribbon and device thus formed
JPS58176929A (en) Manufacture of semiconductor device
JPH04307972A (en) Method for manufacture of semiconductor device
JPS58178565A (en) Semiconductor device and manufacture thereof
JPS58178559A (en) Semiconductor device and manufacture thereof
JPH0669085B2 (en) Method for manufacturing semiconductor substrate
JPS6342417B2 (en)
JPS60144950A (en) Manufacture of semiconductor device
JPH04373171A (en) Forming method of semiconductor crystal article
JPH05190449A (en) Manufacture of semiconductor film
JP2797200B2 (en) Polycrystalline silicon electrode and method of manufacturing the same
JPH0235710A (en) Forming method for thin film semiconductor layer
JPS58175844A (en) Manufacture of semiconductor device
JPS6159818A (en) Manufacture of semiconductor device
JPS63174308A (en) Manufacture of semiconductor thin film crystal layer
JP2503626B2 (en) Method of manufacturing MOS field effect transistor
JP2694615B2 (en) Method for forming single crystal semiconductor thin film
JPS6043814A (en) Manufacture of semiconductor crystalline film
JP2892436B2 (en) Method for manufacturing semiconductor device
JPS5837952A (en) Semiconductor device and manufacture thereof
JPS61116821A (en) Formation of single crystal thin film