JPS58177444A - Heat treatment of ni-cr alloy - Google Patents

Heat treatment of ni-cr alloy

Info

Publication number
JPS58177444A
JPS58177444A JP5963782A JP5963782A JPS58177444A JP S58177444 A JPS58177444 A JP S58177444A JP 5963782 A JP5963782 A JP 5963782A JP 5963782 A JP5963782 A JP 5963782A JP S58177444 A JPS58177444 A JP S58177444A
Authority
JP
Japan
Prior art keywords
alloy
stress corrosion
corrosion cracking
heat treatment
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5963782A
Other languages
Japanese (ja)
Other versions
JPH0372705B2 (en
Inventor
Takao Minami
孝男 南
Hiroo Nagano
長野 博夫
Yasutaka Okada
康孝 岡田
Kazuo Yamanaka
和夫 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5963782A priority Critical patent/JPS58177444A/en
Publication of JPS58177444A publication Critical patent/JPS58177444A/en
Publication of JPH0372705B2 publication Critical patent/JPH0372705B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the stress corrosion cracking resistance of an Ni-Cr alloy having a specified composition, by regulating the C and N contents of the alloy and by prescribing conditions during final annealing and conditions during isothermal heat treatment to be carried out after the annealing. CONSTITUTION:An Ni-Cr alloy consisting of 0.015-0.050% C, <=1.0% Si, <=1.0% Mn, <=0.030% P, <=0.030% S, 25-35% Cr, <=0.020% N, 0.01-1.0% Ti, 6.0-10.0% Fe and the balance Ni with inevitable impurities or further contg. 0.01-1.0% Al is annealed under conditions within the range bounded by points A, B, C, D in the upper figure. The annealed alloy is held at 600-850 deg.C for 0.5-100hr under conditions within the range bounded by points E, F, G, H in the lower figure. By the treatment, Cr carbide is precipitated in the grains, and the precipitation of Cr carbide on the grain boundaries is reduced to prevent the deterioration of the stress corrosion cracking resistance.

Description

【発明の詳細な説明】 本発明は、Ni−Cr合金、特に25〜35懐Crを含
むNi基合金の耐応力腐食割れ性を改善するための熱処
理法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat treatment method for improving the stress corrosion cracking resistance of Ni-Cr alloys, particularly Ni-based alloys containing 25 to 35 Cr.

Crを含有するNi基合金は、元来、耐応力腐食割れ性
にすぐれた材料である。それ故、化学グランドで使用さ
れる熱交換器用チューブあるいは加圧木型原子炉の蒸気
発生器管のように、極度に応力腐食割れを嫌う部品#I
CはA11oy 600(759GNi。
Ni-based alloys containing Cr are originally materials with excellent stress corrosion cracking resistance. Therefore, parts #I are extremely susceptible to stress corrosion cracking, such as heat exchanger tubes used in chemical grounds or steam generator tubes in pressurized wooden nuclear reactors.
C is A11oy 600 (759GNi.

1551Cr 、8%Fe)郷高CrのN1基合金が使
用されている。ところが上記A1107600であって
も原子炉の蒸気発生器管に使用する場合、使用条件如何
では応力腐食割れを生じる場合がある。
1551Cr, 8%Fe) Godaka Cr N1-based alloy is used. However, even with the above-mentioned A1107600, when used in a steam generator tube of a nuclear reactor, stress corrosion cracking may occur under certain usage conditions.

この応力腐食割れはおよそ引張応力の存在%使用する環
境条件に由来する要因、および材料自体の要因の3′g
!素が揃ったときに発生するのであり、そのl要素でも
完全に#去すれば、この割れは防止できるものである。
This stress corrosion cracking is caused by approximately 3'g of the presence of tensile stress, a factor derived from the environmental conditions used, and a factor of the material itself.
! This cracking occurs when the elements are aligned, and this cracking can be prevented if even the l element is completely removed.

しかし1例えば上記の蒸気発生器に使用する場合には表
面研摩および−は加■残留応力、また原子炉運転時の熱
応力等による弓1張応力は不可避なものである。さらに
、使用環境に起因する要因についても、使用する水につ
いて非常に厳格な水質管理を行っているが、それにもか
かわらずそのような要因を完全には排除し難い。
However, when used in the above-mentioned steam generator, for example, surface polishing and residual stress, as well as tension stress due to thermal stress during nuclear reactor operation, etc., are unavoidable. Furthermore, regarding factors caused by the usage environment, although extremely strict water quality control is carried out on the water used, it is nevertheless difficult to completely eliminate such factors.

従って、応力腐食割れの防止は、材料の特性自体を改善
し応力腐食割れ感受性を下げることが最善の方法である
Therefore, the best way to prevent stress corrosion cracking is to improve the material properties themselves and reduce the susceptibility to stress corrosion cracking.

ところがCrを25〜35−も含有する高Ni合金では
Cの固溶量が極度に小さいため精錬過1でC含有量を可
能なかぎり低下させても、101!!11施工などの工
程でCr炭化物が主として結晶粒界に析出するため、結
晶粒界におけるCrの欠乏層が形成されてその部分の耐
食性が劣化する。
However, in high-Ni alloys containing 25 to 35 - of Cr, the solid solution amount of C is extremely small, so even if the C content is reduced as much as possible by over-refining, 101! ! Since Cr carbides mainly precipitate at grain boundaries during processes such as No. 11 construction, a Cr-deficient layer is formed at the grain boundaries and the corrosion resistance of that portion deteriorates.

例えば、前述した蒸気発生器のような製品では、通常9
00〜1150℃での最終焼鈍を行うので、その冷却時
あるいは溶接施工時またtit使用時(300−450
℃)K結晶粒界KCr炭化物の析出がみられCr欠乏層
が形成されて耐応力腐食このようKこの粒界型応力腐食
割れの原因がCr欠乏層の形成にあるので、Cr炭化物
の析出を防止することによって、あるいけ一旦形成され
たCr欠乏層を回復させることによって応力腐食割れを
防止できる。
For example, products such as the steam generator mentioned above usually have a
Final annealing is performed at a temperature of 00 to 1150°C, so when cooling, welding, or using tit
°C) Precipitation of KCr carbides at grain boundaries is observed, and a Cr-depleted layer is formed to resist stress corrosion.The cause of this grain-boundary type stress corrosion cracking is the formation of a Cr-depleted layer, so the precipitation of Cr carbides is prevented. By preventing stress corrosion cracking, stress corrosion cracking can be prevented by recovering the Cr-depleted layer once formed.

したがって、このCrp化物の析出防止には冷却速度を
速くする方法がまず考えられるが、ニー的に達成し得る
冷却速度でCr炭化物の析出を完全に防止することは因
難である。また、すでに析出し友Or炭化物を所定温度
で長時間加熱することKよシCr欠乏層へその周辺から
CrO拡散を図りCr欠乏層を修復する方法は応力腐食
割れ感受性を下げるのに有効であるが、加熱処理發の冷
却時に再びCr欠乏層を形成せしめることがある。
Therefore, the first method to prevent the precipitation of Cr carbides is to increase the cooling rate, but it is difficult to completely prevent the precipitation of Cr carbides at a cooling rate that can be achieved in a knee-jerk manner. In addition, a method of repairing the Cr-depleted layer by heating already precipitated Or carbides at a predetermined temperature for a long time to diffuse CrO from the surrounding area into the Cr-depleted layer is effective in reducing stress corrosion cracking susceptibility. However, a Cr-depleted layer may be formed again during cooling after heat treatment.

ここに、##!焼鈍伊あるい社それK11l<恒温処s
iIの冷却時にCr炭化物が粒界に析出してCr欠乏層
が形成され耐応力腐食割れ性が劣化するととに着目し、
本発明者らが種々検討したところ、25〜3511Cr
という高CrのNt基合金にあっでも、C含有量とi#
終焼鈍温度との関係が適正でないため最終焼鈍彼の冷却
時あるいはそc1後行なわれるCr炭化物析出を目的と
した熱部Wwkの冷却時に再びCr欠乏層が形成されて
しまい、応力腐食割れ感受性が上がるとの知見を得、さ
らに実験を重ねたところ合金中のC含有量ならびKN含
有1と最終焼鈍温度を規制することKよって、最終焼鈍
を行なげ、次いで上記のCr炭化物析出を目的とした熱
処理てCr欠乏層の修復を行うことにより、冷却時に再
びCr欠乏層が形成されるのを防止できることを見い出
して本発明を完成し良。
Here,##! Annealing Iorisha Sore K11l < constant temperature treatment s
Focusing on the fact that Cr carbides precipitate at grain boundaries during cooling of iI, forming a Cr-depleted layer and deteriorating stress corrosion cracking resistance,
As a result of various studies conducted by the present inventors, 25-3511Cr
Even if there is a high Cr Nt-based alloy, the C content and i#
Because the relationship with the final annealing temperature is not appropriate, a Cr-depleted layer is formed again during the cooling of the final annealing or during cooling of the hot part Wwk for the purpose of Cr carbide precipitation, which is performed after the final annealing, and the susceptibility to stress corrosion cracking increases. After further experiments, we determined that the final annealing temperature was controlled by the C content in the alloy, the KN content 1, and the final annealing temperature. The present invention was completed by discovering that by repairing the Cr-depleted layer through heat treatment, it is possible to prevent the Cr-depleted layer from forming again during cooling.

よって、本発明の要旨とするところは、C:0.015
〜0.050%、St:1,011以下。
Therefore, the gist of the present invention is that C: 0.015
~0.050%, St: 1,011 or less.

Mn : 1−0−以下、  P:0.03(lt以下
Mn: 1-0- or less, P: 0.03 (lt or less).

S : 0.030−以下t Cr :  25〜35
 S tN : 0.020−以下、Ti:0.01〜
1.0暢。
S: 0.030- or less tCr: 25-35
S tN: 0.020- or less, Ti: 0.01-
1.0 fluent.

Fe : 6.0〜10.0 ’lk さらに所望により、ht : 0.01〜1.091゜
残部不可避不純物を含むNiから成るNi−Cr合金を
添付図面のK1図のA (0,01S 、 950 )
 。
Fe: 6.0~10.0'lk Further, if desired, ht: 0.01~1.091° A Ni-Cr alloy consisting of Ni containing unavoidable impurities is added to A (0,01S, 950)
.

B  (0,05、1000)  、  C(0,05
、900)およびD C0,015、850)の各点で
囲まれる範囲内の条件下で焼鈍しさらKm付図面のK2
図のE(0,5,850)、F(100,850)。
B (0,05,1000), C(0,05
, 900) and D C0,015,850).
E (0,5,850) and F (100,850) in the figure.

G(100,600)およびH(1,600)の各点で
W!まれる範囲内の条件下で600〜850℃の温度範
囲KO15〜100時間保持することを特徴とする、耐
応力腐食割れ性を改善するNi −Cr合金の熱処理法
である。
At each point of G(100,600) and H(1,600), W! This is a heat treatment method for a Ni--Cr alloy for improving stress corrosion cracking resistance, which is characterized by holding the temperature in a temperature range of 600 to 850°C for 15 to 100 hours under conditions within a range of 600 to 850°C.

すなわち1本発明にあっては、合金中のC含有量および
N含有量を−」限することKよってまずCr炭化物の形
成を可及的に抑制するとともに、焼鈍条件およびそれに
続く熱処理条件を規?することによって、むしろ粒内K
Cr炭化物を析出させて粒界に析出する炭化物を少なく
し耐応力腐食割れ性の劣化防止を図るのである。
That is, in the present invention, firstly, the formation of Cr carbides is suppressed as much as possible by limiting the C content and N content in the alloy, and the annealing conditions and subsequent heat treatment conditions are also regulated. ? Rather, by doing so, the intragranular K
The purpose is to precipitate Cr carbide to reduce the amount of carbide precipitated at grain boundaries, thereby preventing deterioration of stress corrosion cracking resistance.

本発明において合金の組成範囲を上記のように制限した
理由は次の通りである。
The reason why the composition range of the alloy is limited as described above in the present invention is as follows.

C:C#i耐応力腐食割れ性に有害な元票であるため本
発明にあってはC量を0.015 %〜0.050チに
限定する。o、o i s s未満では本発明によシ最
終焼鈍および、恒温熱処理によって耐応力腐食割れ性を
改善するには十分でない。
C: C#i Since C#i is harmful to stress corrosion cracking resistance, the amount of C is limited to 0.015% to 0.050% in the present invention. If it is less than o, o is s, it is not sufficient to improve stress corrosion cracking resistance by final annealing and constant temperature heat treatment according to the present invention.

Si、Mn:これらはいずれも脱酸元素であシ、ht:
htも脱酸元素であるが、本発明の揚台、これは所望成
分であって添加するときtlO,o1〜Cr:  Cr
#′i耐食性向上に必須の元素であシ、25−未満では
本発明において要求される程度の耐食性が確保されない
。一方、35襲を越えると熱間加工性が著しく劣化する
。よって本発明でけCr含有量を25〜35%に限定す
る。
Si, Mn: These are all deoxidizing elements, ht:
ht is also a deoxidizing element, but in the lifting platform of the present invention, it is a desired component and when added, tlO,o1~Cr: Cr
#'i is an essential element for improving corrosion resistance; if it is less than 25, the corrosion resistance required in the present invention cannot be ensured. On the other hand, when the number of cycles exceeds 35, hot workability deteriorates significantly. Therefore, in the present invention, the Cr content is limited to 25 to 35%.

p、s:これらの元素は一般に熱間加工性を害するが、
0.030 g1以下では熱間加工に何ら実質的な作用
を及ぼすことがないため本発明ではそれぞれ0.030
1以下に限定する。
p, s: These elements generally impair hot workability, but
If the amount is less than 0.030 g1, it will not have any substantial effect on hot working, so in the present invention, each amount is 0.030 g1 or less.
Limited to 1 or less.

Ti : Ti tiO,01m以上添加することによ
って熱間加工性を向上だせるが、一方、1.0%を越え
て添加してもその効果が飽和するためTiは0.01〜
1.0 %とする。
Ti: Hot workability can be improved by adding 0.01m or more of Ti, but on the other hand, the effect is saturated even if it is added in excess of 1.0%, so if Ti is added from 0.01% to
1.0%.

N : NFi耐食性を劣化させる元素であり、またC
rの粒界析出を促進するため本発明でit、o、020
嗟以下に制限する。
N: An element that deteriorates NFi corrosion resistance, and C
In the present invention, it, o, 020 is used to promote grain boundary precipitation of r.
Please limit it to below.

Fs:F@は熱間加工性を確保する次めに6.0チ以上
の添加を必要とするが10%を越えると耐簀性の低下が
みられるのでF・6.θ〜10LsK限定する。
Fs: F@ requires addition of 6.0 g or more to ensure hot workability, but if it exceeds 10%, a decrease in cage resistance is seen, so F.6. θ~10LsK is limited.

Nl:Nit:l耐食性向上に有効な元素であ夛特にN
aOHを含む高@高圧水中(アルカリ環境下)における
耐応力腐食割れ性を向上させるためにNi≧50−が必
要である。
Nl:Nit:l is an effective element for improving corrosion resistance, especially N.
Ni≧50- is required to improve stress corrosion cracking resistance in high @ high pressure water containing aOH (under alkaline environment).

かかる組成を有する合金は次いで最終焼鈍および恒温熱
処理つまり安定化熱処理に付す。すなわち、螢に詳述す
るX軸をC含有量(%)、Y軸を最終焼鈍温度(℃)と
する第1図のグラフにおいて、ム(0,015,950
)、B(0,05,1000)。
The alloy having such a composition is then subjected to a final annealing and isothermal or stabilization heat treatment. That is, in the graph of FIG. 1 where the X axis is the C content (%) and the Y axis is the final annealing temperature (℃), the
), B(0,05,1000).

C(0,05,900)お!びD (0,815,85
0)の4点で囲まれる範囲内のC含有量によって決まる
最終焼鈍温度で熱処理を行う。
C (0,05,900) Oh! and D (0,815,85
Heat treatment is performed at a final annealing temperature determined by the C content within the range surrounded by the four points 0).

第1図において、内線DAより低C含有量すなわちC1
O,01S−以下ではすてに説明したよう円 K、母材における耐応力腐食割れ性が低く実質的でなく
、直線BCより高いC含有量すなわちC量0.05−以
上では耐応力腐食割れ性が劣化するのでC111tO,
015チ〜0.05襲の範囲がよい。また、直#ABよ
シ高温で焼鈍すると、母材において応力腐食割れ感受性
が上昇し、一方、IIIIDCより低温で焼鈍すると再
結晶が十分に行なわれない。故に直11AB、BC,C
D、Dムの4[11に囲まれる範囲内が適当である。
In Figure 1, C1 has a lower C content than extension DA.
O,01S- As explained below, the stress corrosion cracking resistance in the circle K is low and not substantial in the base material, and the stress corrosion cracking resistance is higher than that of the straight line BC, that is, stress corrosion cracking resistance is higher than the C content of 0.05- or more. C111tO,
A range of 0.015 to 0.05 is good. Further, when direct #AB is annealed at a high temperature, the stress corrosion cracking susceptibility increases in the base metal, while when annealed at a temperature lower than IIIDC, recrystallization is not sufficiently performed. Therefore, direct 11AB, BC, C
The appropriate range is within the range surrounded by 4[11] of D and D.

つづいて、Cr炭化物を粒内に十分に析出させ、Cr欠
乏層を修復させる恒温熱処理を600℃から850℃の
温度域内に限定するのは、soo℃未満でけCr欠乏層
の修復に長時間を要して操業経済上不利であるためであ
り、850uを越えるとこの炭化物の析出が少なく先の
効果が飽和してしまいむしろ使用中に固溶Cが炭化物と
して粒界に析出するために、Cr欠乏層を生じ耐応力腐
食割れ性が劣化するためである。次いで恒温熱処理時間
を0.5〜100時間Kla定したのtiNi基合金の
Cの含有量の違いあるいは焼鈍条件の違いによってその
処理時間に差が生じるためであり、そして、その処理時
間はCr欠乏層が修復されるに十分な時間とする。いず
れにしても粒内及び一部粒界kCr縦化物が十分に析出
するに必要なだけ恒温熱処理する。なおCr欠乏層の修
復の完了を判定するKFi紋熱処熱部室I!まで100
℃/minよシ速い速度で冷却した材料を沸騰65 %
 HNOI液中に48時間浸漬し、そして腐食速度が0
.5f/m”hr以下であれば十分な修復がなされてい
ると考える。
Next, the isothermal heat treatment to sufficiently precipitate Cr carbides in the grains and repair the Cr-depleted layer is limited to a temperature range of 600 to 850 degrees Celsius. This is because it is disadvantageous in terms of operational economy as it requires a large amount of carbide, and if it exceeds 850u, the precipitation of this carbide is small and the above effect is saturated, and rather, solid solution C precipitates at the grain boundaries as carbide during use. This is because a Cr-depleted layer is formed and stress corrosion cracking resistance deteriorates. Next, the constant temperature heat treatment time was determined to be 0.5 to 100 hours because the treatment time varies depending on the C content of the TiNi-based alloy or the annealing conditions. Allow sufficient time for the layer to heal. In any case, the isothermal heat treatment is carried out as long as necessary to sufficiently precipitate the intragranular and partially intergranular kCr longitudinals. In addition, the KFi heat treatment chamber I, which determines the completion of repair of the Cr-deficient layer! up to 100
Boiling material cooled at a rate as fast as ℃/min to 65%
Immersed in HNOI solution for 48 hours and the corrosion rate was 0.
.. If it is less than 5f/m''hr, it is considered that sufficient repair has been made.

さら”K本発明による熱処理法の実施例をもって、前記
限定理由およびその効果をさらに明らかKする。なお以
下の実施−1は単に本発明を説明する喪めに示すのであ
って、本発明がそれにのみ制限されるものでないことは
当業者にとっては明らかであろう。
Furthermore, the reason for the limitation and the effects thereof will be further clarified with examples of the heat treatment method according to the present invention.The following Example-1 is merely shown to explain the present invention, and the present invention does not apply thereto. It will be clear to those skilled in the art that the invention is not limited to the following.

!1!施例   ′ 第1表に合金組成を示す各種供ν材を17kt真空炉で
溶製し7、得られた鋳塊に従来法に従って鍛造、熱間圧
延そして熱処理を施してから301s冷間加丁し最終焼
鈍を875〜1000℃で行ない、さらに850℃〜6
00℃の恒温熱処理を行なった。各供試材から2−(厚
)×lO■(幅)×75■(長さ)の応力腐食IJれ試
験片を採取した。
! 1! Example 'Various materials whose alloy compositions are shown in Table 1 were melted in a 17kt vacuum furnace7, and the resulting ingots were forged, hot rolled, and heat treated according to conventional methods, and then cold cut for 301 seconds. Final annealing is performed at 875-1000°C, and further annealing is performed at 850°C-6.
A constant temperature heat treatment at 00°C was performed. A stress corrosion IJ test piece measuring 2-(thickness) x 1O (width) x 75 (length) was taken from each test material.

それらをオー、トクレープ(高i!高圧秤器)を用いて
318℃で501NaOH(苛性ソーダ)#!液液中2
000時間の浸漬試験に供[7た。試験験、応力腐食割
れの深さを顕微鏡で糊足した。
501NaOH (caustic soda) #! at 318°C using a tocrepe (high i! high pressure scale). liquid in liquid 2
It was subjected to a immersion test for 7,000 hours. During the test, the depth of stress corrosion cracking was measured using a microscope.

このようにして得られた結果を第2表Kまとめて示す。The results thus obtained are summarized in Table 2K.

さらにこれらのデータを焼鈍条件および恒温熱処理条件
をもとに整理すると第1図および第2図のグラフが得ら
れる。
Further, when these data are organized based on annealing conditions and constant temperature heat treatment conditions, the graphs shown in FIGS. 1 and 2 are obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼鈍温度とcmとに関連させて最大割りl5 れ深さをプロットしたグラフ:第2図は恒温熱処理温度
と保持時間とに関連させて最大割れ深さをプロットした
グラフである。 出願人代理人 弁理士 広 瀬 章 −幕l 図 452 図      最人套1猷・呆さ保才へ晴呵4
qch フ 一2;
Figure 1 is a graph plotting the maximum crack depth in relation to annealing temperature and cm; Figure 2 is a graph plotting maximum crack depth in relation to isothermal heat treatment temperature and holding time. Applicant's agent Patent attorney Akira Hirose - Makul Figure 452
qch Fuichi 2;

Claims (1)

【特許請求の範囲】 C:0.OI5’ 〜0.0501G、Si:1.01
以下。 Mn :  1−0%以下、   P:0.03011
以下。 s : 0.030 %以下T Cr : 25〜35
1G +N : 0.02 OL11以下、 Ti :
 0.01〜1.0 S #Fe :  6.0〜10
.0 ’Ikさらに所望により、At:0.01〜1.
O%。 残部不可避不純物を含むNiから成るNi−Cr合金を
添付図面の第1図のA(0,015,95Q)。 B (0,05、1000) 、 C(0,05、90
0)およびD (0,015、850)の各点で回着れ
る幹囲内の条件下で焼鈍しさらに添付図面の第2図のE
(0,5,850)、F(100,850)。 G(100,600)およびH(1,600)の各点で
囲まれる幹囲内の条件下で600〜850℃の温度範囲
KO,5〜100時間保持することを特徴とする、耐応
力腐食割れ性を改善するNi −Cr 合金の熱処理法
[Claims] C: 0. OI5' ~0.0501G, Si:1.01
below. Mn: 1-0% or less, P: 0.03011
below. s: 0.030% or less TCr: 25-35
1G +N: 0.02 OL11 or less, Ti:
0.01~1.0 S #Fe: 6.0~10
.. 0'Ik Further, if desired, At: 0.01 to 1.
O%. A (0,015,95Q) in FIG. 1 of the accompanying drawings shows a Ni-Cr alloy consisting of Ni containing the remaining unavoidable impurities. B (0,05,1000), C (0,05,90
0) and D (0,015,850) under conditions within the circumference of the trunk, and further
(0,5,850), F(100,850). Stress corrosion cracking resistant, characterized by being maintained in the temperature range KO of 600 to 850°C for 5 to 100 hours under conditions within the trunk area surrounded by each point of G (100,600) and H (1,600) Heat treatment method for Ni-Cr alloy to improve properties.
JP5963782A 1982-04-12 1982-04-12 Heat treatment of ni-cr alloy Granted JPS58177444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5963782A JPS58177444A (en) 1982-04-12 1982-04-12 Heat treatment of ni-cr alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5963782A JPS58177444A (en) 1982-04-12 1982-04-12 Heat treatment of ni-cr alloy

Publications (2)

Publication Number Publication Date
JPS58177444A true JPS58177444A (en) 1983-10-18
JPH0372705B2 JPH0372705B2 (en) 1991-11-19

Family

ID=13118935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5963782A Granted JPS58177444A (en) 1982-04-12 1982-04-12 Heat treatment of ni-cr alloy

Country Status (1)

Country Link
JP (1) JPS58177444A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245758A (en) * 1984-05-18 1985-12-05 Sumitomo Metal Ind Ltd Stress corrosion cracking resistant nickel base alloy and its manufacture
JPS61217561A (en) * 1985-03-25 1986-09-27 Sumitomo Metal Ind Ltd Manufacture of ni-base alloy
JPH06128671A (en) * 1992-10-16 1994-05-10 Sumitomo Metal Ind Ltd Alloy excellent in resistance to stress corrosion cracking
JPH09217156A (en) * 1986-09-25 1997-08-19 Inco Alloys Internatl Inc Tubular body made of nickel base alloy and heat treatment therefor
JP4433230B2 (en) * 2008-05-22 2010-03-17 住友金属工業株式会社 High-strength Ni-base alloy tube for nuclear power and its manufacturing method
KR101130829B1 (en) 2009-03-19 2012-04-12 한국원자력연구원 Method of Preventing Initiation of Primary Water Stress Corrosion Cracking of Ni-base Alloy for Nuclear Power Plant
WO2012121390A1 (en) * 2011-03-10 2012-09-13 三菱重工業株式会社 Material for nuclear power device, heat transfer tube for steam generator, steam generator, and nuclear power plant

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245758A (en) * 1984-05-18 1985-12-05 Sumitomo Metal Ind Ltd Stress corrosion cracking resistant nickel base alloy and its manufacture
JPH0317888B2 (en) * 1984-05-18 1991-03-11 Sumitomo Metal Ind
JPS61217561A (en) * 1985-03-25 1986-09-27 Sumitomo Metal Ind Ltd Manufacture of ni-base alloy
JPH0547622B2 (en) * 1985-03-25 1993-07-19 Sumitomo Metal Ind
JPH09217156A (en) * 1986-09-25 1997-08-19 Inco Alloys Internatl Inc Tubular body made of nickel base alloy and heat treatment therefor
JPH06128671A (en) * 1992-10-16 1994-05-10 Sumitomo Metal Ind Ltd Alloy excellent in resistance to stress corrosion cracking
JP4433230B2 (en) * 2008-05-22 2010-03-17 住友金属工業株式会社 High-strength Ni-base alloy tube for nuclear power and its manufacturing method
JPWO2009142228A1 (en) * 2008-05-22 2011-09-29 住友金属工業株式会社 High-strength Ni-base alloy tube for nuclear power and its manufacturing method
KR101130829B1 (en) 2009-03-19 2012-04-12 한국원자력연구원 Method of Preventing Initiation of Primary Water Stress Corrosion Cracking of Ni-base Alloy for Nuclear Power Plant
WO2012121390A1 (en) * 2011-03-10 2012-09-13 三菱重工業株式会社 Material for nuclear power device, heat transfer tube for steam generator, steam generator, and nuclear power plant

Also Published As

Publication number Publication date
JPH0372705B2 (en) 1991-11-19

Similar Documents

Publication Publication Date Title
EP0109350B1 (en) Nickel-chromium alloy
JPS58177444A (en) Heat treatment of ni-cr alloy
US2237872A (en) Heat treatment
JPH0711366A (en) Alloy excellent in hot workability and corrosion resistance in high temperature water
EP0076574B1 (en) Heat treatment of controlled expansion alloys
JPH0114991B2 (en)
JPH0225515A (en) Treatment for preventing stress corrosion cracking brough about by irradiation with radioactive rays in austenite stainless steel
JPS649379B2 (en)
JPS6050134A (en) Alloy for heat exchanger tube
JPS629665B2 (en)
US4715909A (en) Nickel-chromium alloy in stress corrosion cracking resistance
JPS5952699B2 (en) Method for producing Ni-based alloy containing Cr
JP2001003149A (en) METHOD FOR HEAT TREATING Co BASE ALLOY
JPS5817823B2 (en) Heat treatment method for Ni-based alloy containing Cr
JPH05112842A (en) Ni-cr alloy low in exposing property and good in alkali corrosion resistance
JPS59110767A (en) Austenite stainless steel
JPH0375278B2 (en)
JPH0153340B2 (en)
JPH0132290B2 (en)
JPS59211545A (en) Nickel alloy with superior stress corrosion cracking resistance
JPS59107068A (en) Treatment in weld zone of nickel alloy
JPS5864364A (en) Manufacture of ni-cr alloy with superior corrosion resistance
JP2677135B2 (en) Alloy with excellent resistance to stress corrosion cracking
JPH03100148A (en) Heat treatment for high cr-ni-base alloy
JPH06128671A (en) Alloy excellent in resistance to stress corrosion cracking