JP2677135B2 - Alloy with excellent resistance to stress corrosion cracking - Google Patents
Alloy with excellent resistance to stress corrosion crackingInfo
- Publication number
- JP2677135B2 JP2677135B2 JP4278253A JP27825392A JP2677135B2 JP 2677135 B2 JP2677135 B2 JP 2677135B2 JP 4278253 A JP4278253 A JP 4278253A JP 27825392 A JP27825392 A JP 27825392A JP 2677135 B2 JP2677135 B2 JP 2677135B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- less
- resistance
- stress corrosion
- corrosion cracking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、厚板、丸棒、パイプ等
の形態で高温高圧水環境の下で用いられる合金、特に化
学工業プラントや原子炉の熱交換器伝熱管として使用可
能な、耐食性および耐応力腐食割れ性に優れたNi−Cr合
金に関する。INDUSTRIAL APPLICABILITY The present invention can be used as an alloy used in a high temperature and high pressure water environment in the form of a thick plate, a round bar, a pipe, etc., particularly as a heat exchanger heat transfer tube for a chemical industry plant or a nuclear reactor. , A Ni-Cr alloy excellent in corrosion resistance and stress corrosion cracking resistance.
【0002】[0002]
【従来の技術】高温高圧の環境下に曝される化学プラン
トや原子力プラントの熱交換器における伝熱管用の材料
として、Alloy 690(商品名、60%Ni−30%Cr−9%Fe合
金、すべて重量%) などのNi基合金に代表されるCrが25
〜35重量%(以下、単に%と記す)でNiが40〜70%の合
金が使用されている。このような合金は、例えば特開昭
59−232246号公報や同60−50134 号公報等に開示されて
いる。2. Description of the Related Art Alloy 690 (trade name, 60% Ni-30% Cr-9% Fe alloy, as a material for heat transfer tubes in heat exchangers of chemical plants and nuclear plants exposed to high temperature and high pressure environments, 25% of Cr is typical of Ni-based alloys such as
An alloy containing 35 to 35% by weight (hereinafter simply referred to as%) of Ni and 40 to 70% is used. Such alloys are disclosed in
This is disclosed in, for example, 59-232246 and 60-50134.
【0003】しかしながら、実際のプラントで使用され
る水質環境は 280℃でpHが 9.2〜9.5 というような高温
高アルカリ環境であったりするので、伝熱管と管支持板
との隙間部でアルカリ濃縮が起こることがある。このよ
うな高温で高濃度のアルカリ(NaOH)が存在する環境下で
は、前述の合金であっても耐全面腐食性や耐応力腐食割
れ性が万全ではない。また、コンデンサーリークなどに
よって系内にPb (鉛)が混入した場合には前記の合金で
あっても応力腐食割れが生じる。However, since the water quality environment used in an actual plant is a high temperature and high alkali environment such as a pH of 9.2 to 9.5 at 280 ° C., alkali concentration does not occur in the gap between the heat transfer tube and the tube support plate. It can happen. In such an environment in which a high concentration of alkali (NaOH) is present at a high temperature, even the above-mentioned alloys do not have complete corrosion resistance or stress corrosion cracking resistance. Further, when Pb (lead) is mixed in the system due to a capacitor leak or the like, stress corrosion cracking occurs even in the above alloy.
【0004】このように、現在知られている合金は、高
濃度のアルカリ溶液中では粒界型の応力腐食割れ(以
下、SCCと記すことがある)を生じ、鉛を含有する高
温水(アルカリ溶液を含む)中では粒内型SCCが発生
してしまう。As described above, the currently known alloy causes grain boundary type stress corrosion cracking (hereinafter sometimes referred to as SCC) in a high-concentration alkaline solution, and lead-containing high-temperature water (alkaline). Intragranular SCC occurs in the solution).
【0005】[0005]
【発明が解決しようとする課題】本発明は、高温で高濃
度のアルカリが存在する環境下でも、また鉛を含有する
高温水 (アルカリ溶液を含む) 環境下においても耐応力
腐食割れ性に優れた合金の提供を目的とする。The present invention has excellent resistance to stress corrosion cracking even in an environment in which a high concentration of alkali is present at high temperature and in a high temperature water (including alkaline solution) containing lead. The purpose is to provide alloys.
【0006】[0006]
【課題を解決するための手段】本発明の要旨は、次の
(1)および(2) にある。The gist of the present invention is as follows.
In (1) and (2).
【0007】(1) 重量%で、C:0.02%以下、Si: 1.0
%以下、Mn: 1.0%以下、Cr:38〜45%、Ni:40〜57
%、Al: 0.5%以下、Ti: 0.5%以下、Mg: 0.1%以
下、N:0.05〜0.30%を含有し、残部がFeおよび不可避
不純物からなる耐応力腐食割れ性および耐孔食性に優れ
た合金。(1) C: 0.02% or less, Si: 1.0% by weight
% Or less, Mn: 1.0% or less, Cr: 38 to 45%, Ni: 40 to 57
%, Al: 0.5% or less, Ti: 0.5% or less, Mg: 0.1% or less, N: 0.05 to 0.30%, and the balance is excellent in stress corrosion cracking resistance and pitting corrosion resistance consisting of Fe and unavoidable impurities. alloy.
【0008】(2) (1)に記載の成分に加えてさらに、M
o、WおよびVの1種または2種以上を合計で 0.5〜5.0
重量%含み、残部がFeおよび不可避不純物からなる耐
応力腐食割れ性および耐孔食性に優れた合金。(2) In addition to the components described in (1), M
0.5-5.0 in total of one or more of o, W and V
An alloy with excellent stress corrosion cracking resistance and pitting corrosion resistance, which contains wt% and the balance is Fe and unavoidable impurities.
【0009】[0009]
【作用】以下、本発明の合金の化学組成について説明す
る。The chemical composition of the alloy of the present invention will be described below.
【0010】合金中のCr含有量が38%以上であるような
極高Cr−高Ni基合金は、表面に耐食的性質を有するCr酸
化物(Cr2O3) の皮膜を形成するので、高濃度アルカリに
よる粒界型SCCも鉛汚染高温水による粒内型SCCも
同時に抑制することができる。さらに本発明の合金は、
Crを38〜45%という高い含有率で含むにもかかわらず、
Mgを少量含有しているので熱間加工性にも優れている。An extremely high Cr-high Ni-based alloy having a Cr content of 38% or more forms a Cr oxide (Cr 2 O 3 ) film having corrosion resistant properties on the surface. It is possible to simultaneously suppress the grain boundary SCC due to the high concentration alkali and the intragranular SCC due to the lead-contaminated high temperature water. Further, the alloy of the present invention is
Despite containing Cr at a high content rate of 38 to 45%,
Since it contains a small amount of Mg, it has excellent hot workability.
【0011】以下、各合金組成の限定理由を説明する。The reasons for limiting the composition of each alloy will be described below.
【0012】炭素(C):0.02%以下 Cは溶接熱の影響によりCr23C6を析出させ、粒界での耐
食性を劣化させるのでできるだけ少ない方がよい。0.02
%は許容上限値である。Carbon (C): 0.02% or less C precipitates Cr 23 C 6 under the influence of welding heat and deteriorates the corrosion resistance at grain boundaries, so it is preferable that the content of C is as small as possible. 0.02
% Is an allowable upper limit value.
【0013】ケイ素(Si)、マンガン(Mn):それぞ
れ 1.0%以下 Si、Mnはいずれも合金の脱酸剤として作用する元素であ
り、それぞれ、ある程度の添加が必要であるが、いずれ
も含有量が 1.0%を超えると合金の溶接性や清浄度を低
下させるので、それぞれの含有量は 1.0%以下とする。Silicon (Si) and manganese (Mn): 1.0% or less each Si and Mn are elements that act as a deoxidizing agent for the alloy. If the content exceeds 1.0%, the weldability and cleanliness of the alloy will deteriorate, so the content of each should be 1.0% or less.
【0014】クロム(Cr):38〜45% Crは本発明合金の耐全面腐食性および耐SCC性を付与
するために必要不可欠な元素である。この含有量が38%
未満であると、前記のような使用環境において耐食性が
十分でなく、SCCが発生しやすい。一方、Crを45%を
超えて含有すると熱間加工性が大きく低下する。よっ
て、本発明においてはCr含有量を38%以上、45%以下と
する。Chromium (Cr): 38 to 45% Cr is an essential element for imparting general corrosion resistance and SCC resistance of the alloy of the present invention. This content is 38%
If it is less than the above, the corrosion resistance is not sufficient in the above-mentioned use environment, and SCC is likely to occur. On the other hand, if the Cr content exceeds 45%, the hot workability is significantly reduced. Therefore, in the present invention, the Cr content is set to 38% or more and 45% or less.
【0015】ニッケル(Ni):40〜57% Niは耐食性の向上に有効な元素であって、特に耐酸性及
び塩化物イオン( Cl-) を含有する高温水中における耐
SCC性を向上させる。この効果を奏するためにNiは40
%以上必要である。また上限は特に限定されないが、Cr
等他元素の含有量を考慮して57%以下とする。Nickel (Ni): 40-57% Ni is an element effective in improving corrosion resistance, and particularly improves acid resistance and SCC resistance in high temperature water containing chloride ion (Cl − ). Ni is 40 for this effect.
% Is required. Although the upper limit is not particularly limited, Cr
Considering the content of other elements such as 57% or less.
【0016】チタン(Ti): 0.5%以下 Tiは熱間加工性を向上させるのに必要な元素であるが、
0.5%を超えて含有してもその効果は飽和するので上限
は 0.5%とする。Titanium (Ti): 0.5% or less Ti is an element necessary for improving hot workability,
Even if the content exceeds 0.5%, the effect is saturated, so the upper limit is 0.5%.
【0017】アルミニウム(Al): 0.5%以下 AlもSi、Mnと同様、脱酸剤として有効であるが、その含
有量が 0.5%を超えると合金の清浄度を低下させるため
0.5%以下とする。Aluminum (Al): 0.5% or less Al, like Si and Mn, is also effective as a deoxidizing agent, but if its content exceeds 0.5%, the cleanliness of the alloy decreases.
0.5% or less.
【0018】マグネシウム(Mg): 0.1%以下 Mgは少量添加することにより熱間加工性が非常によくな
る。 0.1%を超えて含有してもその効果は飽和するた
め、上限は 0.1%とする。Magnesium (Mg): 0.1% or less By adding a small amount of Mg, hot workability becomes very good. Even if the content exceeds 0.1%, the effect is saturated, so the upper limit is 0.1%.
【0019】窒素(N):0.07%を超え0.30%まで Nは耐孔食性を向上させる元素であり0.07%を超えて含
有させる。また、N添加により耐SCC性の向上に効果
があり強度向上も達成できる。しかし、0.30%を超えて
含有すると溶接欠陥が発生しやすくなるので上限は0.30
%とする。Nitrogen (N): up to 0.07% to 0.30% N is an element for improving pitting corrosion resistance, and is contained in excess of 0.07% . Further, the addition of N has an effect of improving the SCC resistance and can also improve the strength. However, if the content exceeds 0.30%, welding defects tend to occur, so the upper limit is 0.30.
%.
【0020】モリブデン(Mo)、タングステン
(W)、バナジウム(V):必要に応じて、これらのう
ちの1種または2種以上を合計で 0.5〜5.0 % これらの元素は耐孔食性の向上に有効な元素である。C
r、Nの含有により耐孔食性は向上しているが、これら
の元素のそれぞれ1種の含有量、または2種以上の合計
含有量が 0.5%を超えると、表面の不働態皮膜が強化さ
れて孔食の発生をより確実に防止できる。したがって、
耐応力腐食割れ性に加えて耐孔食性を必要とするときに
は、これらの元素の1種類以上を合計含有量が 0.5%以
上となるように添加するのが良い。一方、これらの元素
の合計含有量が 5.0%を超えると耐孔食性向上の効果が
飽和するだけでなく、熱間加工性が著しく劣化するので
好ましくない。Molybdenum (Mo), Tungsten (W), Vanadium (V): If necessary, one or more of these are added in a total amount of 0.5 to 5.0%. These elements improve pitting corrosion resistance. It is an effective element. C
Although the pitting corrosion resistance is improved by the inclusion of r and N, if the content of each of these elements, or the total content of two or more of them, exceeds 0.5%, the passive film on the surface is strengthened. It is possible to more reliably prevent the occurrence of pitting corrosion. Therefore,
When pitting corrosion resistance is required in addition to stress corrosion cracking resistance, it is advisable to add one or more of these elements so that the total content becomes 0.5% or more. On the other hand, if the total content of these elements exceeds 5.0%, not only the effect of improving the pitting corrosion resistance is saturated, but also the hot workability is significantly deteriorated, which is not preferable.
【0021】本発明合金は、通常のステンレス鋼と同様
に、1000〜1200℃での固溶化処理を施して使用する。The alloy of the present invention is used after being subjected to a solution treatment at 1000 to 1200 ° C., like ordinary stainless steel.
【0022】[0022]
【実施例】表1(1)および表1(2) (以下まとめて単に表1
と記す)に示す化学組成を有する合金を真空溶解にて溶
製した後、鍛造、熱間圧延を施して厚さ7mmの板材と
し、次いで冷間圧延によって 4.9mmの厚みとした。[Examples] Table 1 (1) and Table 1 (2)
An alloy having the chemical composition shown in (1) is melted by vacuum melting, forged and hot rolled to obtain a plate material having a thickness of 7 mm, and then cold rolled to a thickness of 4.9 mm.
【0023】表1の合金 No.1〜15は本発明の合金であ
り、 No.16〜19が比較合金である。Alloys Nos. 1 to 15 in Table 1 are alloys of the present invention, and Nos. 16 to 19 are comparative alloys.
【0024】これらの合金を1100℃の温度に 0.5時間加
熱した後、水冷して固溶化熱処理を行った。腐食試験で
は、溶接部の熱影響を考慮してさらに 650℃で2時間の
熱処理を施し空冷した材料を試験片として用いた。After heating these alloys to a temperature of 1100 ° C. for 0.5 hours, they were water-cooled and solution heat treated. In the corrosion test, a material that was heat-treated at 650 ° C for 2 hours and air-cooled was used as a test piece in consideration of the heat effect of the welded portion.
【0025】これらの合金を用いて高温水中において、
(a) アルカリSCC試験、(b) 鉛含有高温水SCC試
験、(c) 孔食試験を行った。Using these alloys in high temperature water,
(a) Alkaline SCC test, (b) Lead-containing high temperature water SCC test, (c) Pitting corrosion test were conducted.
【0026】(a) アルカリSCC試験 厚さ2mm×幅10mm×長さ40mmのSCC試験片を製作し、
エメリー紙 320番で研磨した後、U字型に曲げてボル
ト、ナットで拘束しオートクレーブ内において 350℃の
脱気した50%のNaOH水溶液中に1000時間浸漬した後の試
験片を切断し、樹脂を埋め込んで断面を光学顕微鏡で割
れ深さを測定した。その測定結果を表2に示す。この表
から、本発明の合金の割れ深さは比較例の合金に比べて
著しく低減していることが分かる。(A) Alkaline SCC test An SCC test piece having a thickness of 2 mm, a width of 10 mm and a length of 40 mm is manufactured,
After polishing with emery paper No. 320, bend it into a U shape, restrain it with bolts and nuts, and soak it in a degassed 50% NaOH aqueous solution at 350 ° C for 1000 hours in an autoclave. Was embedded and the crack depth of the cross section was measured with an optical microscope. Table 2 shows the measurement results. From this table, it can be seen that the crack depth of the alloy of the present invention is remarkably reduced as compared with the alloy of the comparative example.
【0027】(b) Pb含有高温水SCC試験 アルカリSCC試験と同じUベンド試験片を、 0.1モル
/リットルのPbOを含む4%のNaOH脱気水溶液(325℃)
の中に1000時間浸漬して、発生した割れの深さを光学顕
微鏡で測定した。その結果を表2に併記する。(B) Pb-containing high-temperature water SCC test The same U-bend test piece as in the alkaline SCC test was prepared by using a 4% NaOH degassed aqueous solution (325 ° C.) containing 0.1 mol / liter of PbO.
The sample was dipped in the flask for 1000 hours, and the depth of the generated crack was measured with an optical microscope. The results are also shown in Table 2.
【0028】表2から分かるように、本発明の合金は応
力腐食割れの深さが5μm以下であり、比較例として挙
げた合金と比べて著しく小さい。As can be seen from Table 2, the alloy of the present invention has a depth of stress corrosion cracking of 5 μm or less, which is significantly smaller than the alloys given as the comparative examples.
【0029】(c) 孔食試験 厚さ2mm、幅30mm、長さ40mmの板状試験片を製作し、エ
メリー紙 320番で研磨した後、500ppmの塩化物イオンを
含む4%のNa2SO4脱気水溶液〔 325℃、pH 3.0(H2SO4で
pH調整) 〕中に1000時間浸漬して浸漬後の孔食発生状況
を光学顕微鏡で観察した。その結果を表2に併記する。(C) Pitting corrosion test A plate-shaped test piece having a thickness of 2 mm, a width of 30 mm and a length of 40 mm was produced, and after polishing with emery paper No. 320, 4% Na 2 SO containing 500 ppm of chloride ion was prepared. 4 Degassed aqueous solution (325 ° C, pH 3.0 (with H 2 SO 4
pH adjustment)], and the occurrence of pitting corrosion after immersion was observed with an optical microscope. The results are also shown in Table 2.
【0030】Cr含有量が38%未満の合金(No.18、1
9)、N含有量が0.07%以下の合金(No.18)およびC含
有量が0.02%を超えている合金(No.16、17) において
は孔食が多数発生して十分な耐食性を得られていないこ
とがわかる。Alloys with a Cr content of less than 38% (No. 18, 1
9), alloys with N content of 0.07% or less (No.18) and alloys with C content of more than 0.02% (No.16, 17) generate a lot of pitting corrosion to obtain sufficient corrosion resistance. You can see that it has not been done.
【0031】[0031]
【表1(1)】 [Table 1 (1)]
【0032】[0032]
【表1(2)】 [Table 1 (2)]
【0033】[0033]
【表2】 [Table 2]
【0034】[0034]
【発明の効果】実施例からも分かる通り、本発明の合金
は濃厚なアルカリ環境下における耐応力腐食割れ(SC
C)性に優れると共に、鉛を含有している高温水中にお
いても耐SCC性に優れる。また、本発明の合金は上記
耐アルカリSCC性、耐鉛含有高温SCC性と共に耐孔
食性にも優れたものである。As can be seen from the examples, the alloys of the present invention are resistant to stress corrosion cracking (SC) in a concentrated alkaline environment.
In addition to being excellent in C) property, it has excellent SCC resistance even in high temperature water containing lead. Further, the alloy of the present invention is excellent in pitting corrosion resistance as well as the above-mentioned alkali SCC resistance and lead-containing high temperature SCC resistance.
【0035】従って、本発明合金は化学プラントや原子
力プラントの熱交換器伝熱管等の材料として適してい
る。Therefore, the alloy of the present invention is suitable as a material for heat exchanger tubes in heat exchangers of chemical plants and nuclear plants.
Claims (2)
下、Mn: 1.0%以下、Cr:38〜45%、Ni:40〜57%、A
l: 0.5%以下、Ti: 0.5%以下、Mg: 0.1%以下、
N:0.07%を超え0.30%までを含有し、残部がFeおよび
不可避不純物からなる耐応力腐食割れ性および耐孔食性
に優れた合金。1. By weight%, C: 0.02% or less, Si: 1.0% or less, Mn: 1.0% or less, Cr: 38 to 45%, Ni: 40 to 57%, A
l: 0.5% or less, Ti: 0.5% or less, Mg: 0.1% or less,
N: An alloy containing more than 0.07% and up to 0.30% with the balance being Fe and unavoidable impurities and having excellent stress corrosion cracking resistance and pitting corrosion resistance.
o、WおよびVの1種または2種以上を合計で 0.5〜5.0
重量%含み、残部がFeおよび不可避不純物からなる耐
応力腐食割れ性および耐孔食性に優れた合金。2. In addition to the component according to claim 1, M
0.5-5.0 in total of one or more of o, W and V
An alloy with excellent stress corrosion cracking resistance and pitting corrosion resistance, which contains wt% and the balance is Fe and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4278253A JP2677135B2 (en) | 1992-10-16 | 1992-10-16 | Alloy with excellent resistance to stress corrosion cracking |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4278253A JP2677135B2 (en) | 1992-10-16 | 1992-10-16 | Alloy with excellent resistance to stress corrosion cracking |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06128672A JPH06128672A (en) | 1994-05-10 |
JP2677135B2 true JP2677135B2 (en) | 1997-11-17 |
Family
ID=17594763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4278253A Expired - Fee Related JP2677135B2 (en) | 1992-10-16 | 1992-10-16 | Alloy with excellent resistance to stress corrosion cracking |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2677135B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62260037A (en) * | 1986-05-06 | 1987-11-12 | Nippon Kokan Kk <Nkk> | Corrosion-resisting high-chromium alloy |
-
1992
- 1992-10-16 JP JP4278253A patent/JP2677135B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06128672A (en) | 1994-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6766887B2 (en) | High-strength stainless seamless steel pipe for oil wells and its manufacturing method | |
JP4484093B2 (en) | Ni-base heat-resistant alloy | |
EP0109350B1 (en) | Nickel-chromium alloy | |
JP3104622B2 (en) | Nickel-based alloy with excellent corrosion resistance and workability | |
JP4462005B2 (en) | High strength stainless steel pipe for line pipe with excellent corrosion resistance and method for producing the same | |
WO2017154754A1 (en) | Welded metal and welded structure containing said welded metal | |
US3932175A (en) | Chromium, molybdenum ferritic stainless steels | |
JPH0711366A (en) | Alloy excellent in hot workability and corrosion resistance in high temperature water | |
JP3382834B2 (en) | Filler for Ni-base high Cr alloy | |
JP2677135B2 (en) | Alloy with excellent resistance to stress corrosion cracking | |
JP3733902B2 (en) | Low alloy ferritic heat resistant steel | |
JPH0987786A (en) | High molybdenum nickel base alloy and alloy pipe | |
JP3329262B2 (en) | Welding materials and welded joints with excellent resistance to reheat cracking | |
US4374666A (en) | Stabilized ferritic stainless steel for preheater and reheater equipment applications | |
JPH06128671A (en) | Alloy excellent in resistance to stress corrosion cracking | |
JPH06179952A (en) | Austenitic stainless steel for soda recovering boiler heat transfer pipe | |
JP3263378B2 (en) | Heat treatment method for Co-based alloy | |
JPS58177444A (en) | Heat treatment of ni-cr alloy | |
JPS60131958A (en) | Production of precipitation strengthening type ni-base alloy | |
JP2002018593A (en) | Welding material for low alloy heat resistant steel and weld metal | |
JPH0233781B2 (en) | ||
JP2002069588A (en) | Ferritic heat-resisting steel | |
JP2756545B2 (en) | Austenitic stainless steel with excellent corrosion resistance in hot water | |
JP2834982B2 (en) | Alloy with excellent hot workability and corrosion resistance in high temperature water | |
GB1570026A (en) | Iron-nickel-chromium alloys |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |