JP2001003149A - METHOD FOR HEAT TREATING Co BASE ALLOY - Google Patents

METHOD FOR HEAT TREATING Co BASE ALLOY

Info

Publication number
JP2001003149A
JP2001003149A JP11172685A JP17268599A JP2001003149A JP 2001003149 A JP2001003149 A JP 2001003149A JP 11172685 A JP11172685 A JP 11172685A JP 17268599 A JP17268599 A JP 17268599A JP 2001003149 A JP2001003149 A JP 2001003149A
Authority
JP
Japan
Prior art keywords
heat treatment
stellite
less
welding
intergranular corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11172685A
Other languages
Japanese (ja)
Other versions
JP3263378B2 (en
Inventor
Masatoshi Okano
正敏 岡野
Hitoshi Honda
整 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okano Valve Mfg Co Ltd
Original Assignee
Okano Valve Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okano Valve Mfg Co Ltd filed Critical Okano Valve Mfg Co Ltd
Priority to JP17268599A priority Critical patent/JP3263378B2/en
Publication of JP2001003149A publication Critical patent/JP2001003149A/en
Application granted granted Critical
Publication of JP3263378B2 publication Critical patent/JP3263378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Arc Welding In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for heat treating a Co base alloy capable of suppressing deterioration in the intergranular corrosion resistance of a Co base alloy even in the case arc welding such as PTA welding and TIG welding is used. SOLUTION: This method includes a process in which a Co base alloy having chemical components of, by weight, 0.9 to 1.4% C, <=1.0% Mn, 0.4 to 2.0% Si, 26.0 to 32.0% Cr, 3.0 to 6.0% W, <=1.0% Mo, <=3.0% Ni, <=3.0% Fe, and the balance Co with <=0.5% other impurities is welded to a carbon steel and is heated to >=700 deg.C at the point of time in which the content of Fe reaches >=5.0%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Co基合金の熱処
理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for heat-treating a Co-based alloy.

【0002】[0002]

【従来の技術】従来より知られているCo基合金とし
て、その化学成分が重量パーセントで、C:0.9〜
1.4%、Mn:1.0%以下、Si:0.4〜2.0
%、Cr:26.0〜32.0%、W:3.0〜6.0
%、Mo:1.0%以下、Ni:3.0%以下、Fe:
3.0%以下、その他の不純物が0.5%以下であり、
残部がCoからなる合金があり、この合金は、一般に
「ステライトNo.6」という商品名で販売されてお
り、耐食性、耐焼付き摩耗性及び耐キャビテーション性
に優れているため主に弁装置の弁座部分に広く使用され
ている。
2. Description of the Related Art As a conventionally known Co-based alloy, its chemical component is expressed by weight percent and C: 0.9 to 0.9%.
1.4%, Mn: 1.0% or less, Si: 0.4 to 2.0
%, Cr: 26.0 to 32.0%, W: 3.0 to 6.0
%, Mo: 1.0% or less, Ni: 3.0% or less, Fe:
3.0% or less, other impurities are 0.5% or less,
There is an alloy whose balance is made of Co. This alloy is generally sold under the trade name “Stellite No. 6”, and is mainly used in valves of valve devices because of its excellent corrosion resistance, seizing wear resistance and cavitation resistance. Widely used for seats.

【0003】また、更に別のCo基合金として、その化
学成分が重量パーセントで、C:0.2〜0.3%、S
i:0.9〜1.5%、Mn:1.0%以下、Ni:
1.75〜3.25%、Fe:2.0%以下、Cr:2
5.5〜29.0%、Mo:5.0〜6.0%、B:
0.007%以下であり、残部がCoからなる合金があ
り、この合金は、一般に「ステライトNo.21」とい
う商品名で販売されており、耐食性及び耐キャビテーシ
ョン性に優れているため調整弁や絞り弁の弁座部分に使
用されている。
Further, as another Co-based alloy, the chemical composition is C: 0.2-0.3% by weight,
i: 0.9 to 1.5%, Mn: 1.0% or less, Ni:
1.75 to 3.25%, Fe: 2.0% or less, Cr: 2
5.5-29.0%, Mo: 5.0-6.0%, B:
There is an alloy containing 0.007% or less, with the balance being Co. This alloy is generally sold under the trade name “Stellite No. 21” and has excellent corrosion resistance and cavitation resistance. It is used for the valve seat of the throttle valve.

【0004】また、使用に際して、ステライトNo.6
は従来よりガス溶接によって母材に溶接されるのが一般
的であるが、ガス溶接技術者の減少や溶接効率の向上と
いった観点から、最近ではプラズマ・トランスファー・
アーク溶接(以下、「PTA溶接」と称する)やティグ
溶接(以下、「TIG溶接」と称する)が採用されてい
る傾向がある。また、ステライトNo.21は従来より
PTA溶接やTIG溶接によって母材に溶接されるのが
殆どである。そして、溶接施工が行われた場合には、後
熱処理が行われ、この熱処理は、溶接によって発生する
熱影響部の軟化と残留応力の除去との双方の効果があっ
て、応力除去焼鈍と称されている。
When using Stellite No. 6
Has been generally welded to the base metal by gas welding, but recently, from the viewpoint of reducing the number of gas welding engineers and improving welding efficiency, plasma transfer
There is a tendency that arc welding (hereinafter, referred to as “PTA welding”) and TIG welding (hereinafter, referred to as “TIG welding”) are employed. In addition, Stellite No. In most cases, 21 is conventionally welded to the base material by PTA welding or TIG welding. When welding is performed, post-heat treatment is performed. This heat treatment has effects of both softening of the heat-affected zone caused by welding and removal of residual stress, and is referred to as stress relief annealing. Have been.

【0005】ここで、一般の炭素鋼同士の溶接施工にお
いては、「電気工作物の溶接に関する技術基準を定める
省令(昭和45年通商産業省令第81号)」にその熱処
理条件として、595℃以上700℃以下の温度範囲で
溶接後熱処理を行うべき旨が規定されている。
Here, in general welding between carbon steels, a heat treatment condition of 595 ° C. or higher is set forth in “Ministerial Ordinance for Specifying Technical Standards for Welding Electric Workpieces” (Ordinance of the Ministry of International Trade and Industry No. 81 of 1970). It is specified that post-weld heat treatment should be performed in a temperature range of 700 ° C. or less.

【0006】したがって、ステライトNo.6やステラ
イトNo.21(以下、まとめて単に「ステライト」と
も称する)といったCo基合金を炭素鋼に溶接する場合
にも、一般的には、上記省令第81号に規定の熱処理条
件を適用し、650℃±25℃の温度範囲で後熱処理さ
れるのが従来からの通例であった。
Therefore, Stellite No. 6 and Stellite No. 6 Also, when a Co-based alloy such as No. 21 (hereinafter, also simply referred to as “stellite”) is welded to carbon steel, generally, the heat treatment conditions specified in the above Ministerial Order No. 81 are applied, and 650 ° C. ± 25. Post-heat treatment in the temperature range of ° C. has conventionally been customary.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、本出願
人による粒界腐食に関する試験によると、上述したPT
A溶接やTIG溶接等の電弧溶接によってステライトを
炭素鋼に溶接する場合には、必然的に母材の溶け込みが
生じ、ステライトのFe含有量が増加し、Fe含有量の
増加に起因して、ステライトの耐粒界腐食性が著しく低
下する問題が確認されている。
However, according to a test on intergranular corrosion by the present applicant, the above-mentioned PT
When welding stellite to carbon steel by electric arc welding such as A welding or TIG welding, the base metal inevitably penetrates, the Fe content of stellite increases, and due to the increase in Fe content, It has been confirmed that the intergranular corrosion resistance of stellite is significantly reduced.

【0008】また、後熱処理においても、炭素鋼同士の
溶接に関する上記省令第81号に規定の温度範囲は、ス
テライトの溶接においては粒界腐食を著しく促進する温
度範囲であることが分かっている。
[0008] In the post-heat treatment, it is known that the temperature range specified in the above ministerial ordinance No. 81 concerning welding of carbon steels is a temperature range in which stellite welding greatly promotes intergranular corrosion.

【0009】従って、本発明は、上述した従来の問題を
解決するためになされたものであり、PTA溶接やTI
G溶接等の電弧溶接を用いても、Co基合金の耐粒界腐
食性が低下することを抑制できるCo基合金の熱処理方
法を提供することを目的とする。
Accordingly, the present invention has been made to solve the above-mentioned conventional problems, and has been made in consideration of PTA welding and TI.
An object of the present invention is to provide a heat treatment method for a Co-based alloy that can suppress a decrease in intergranular corrosion resistance of a Co-based alloy even when using arc welding such as G welding.

【0010】[0010]

【課題を解決するための手段】上述の目的を達成するた
め、本発明の熱処理方法は、化学成分が重量パーセント
で、C:0.9〜1.4%、Mn:1.0%以下、S
i:0.4〜2.0%、Cr:26.0〜32.0%、
W:3.0〜6.0%、Mo:1.0%以下、Ni:
3.0%以下、Fe:3.0%以下、その他の不純物が
0.5%以下であり、残部がCoからなるCo基合金
を、炭素鋼に溶接し、Feの含有量が5.0%以上とな
ったときに700℃以上に加熱する工程を含むことを特
徴とする。
In order to achieve the above-mentioned object, according to the heat treatment method of the present invention, the chemical components are as follows: C: 0.9 to 1.4%; Mn: 1.0% or less; S
i: 0.4 to 2.0%, Cr: 26.0 to 32.0%,
W: 3.0-6.0%, Mo: 1.0% or less, Ni:
A Co-based alloy consisting of 3.0% or less, Fe: 3.0% or less, other impurities of 0.5% or less, and the balance being Co, was welded to carbon steel, and the Fe content was 5.0%. % Or more, heating to 700 ° C. or more.

【0011】また、同目的を達成する本発明の別の熱処
理方法は、化学成分が重量パーセントで、C:0.2〜
0.3%、Si:0.9〜1.5%、Mn:1.0%以
下、Ni:1.75〜3.25%、Fe:2.0%以
下、Cr:25.5〜29.0%、Mo:5.0〜6.
0%、B:0.007%以下であり、残部がCoからな
るCo基合金を、炭素鋼に溶接し、Feの含有量が5.
0%以上となったときに700℃以上に加熱する工程を
含むことを特徴とする。
In another heat treatment method of the present invention for achieving the same object, the present invention provides a heat treatment method, wherein the chemical component is C: 0.2 to
0.3%, Si: 0.9 to 1.5%, Mn: 1.0% or less, Ni: 1.75 to 3.25%, Fe: 2.0% or less, Cr: 25.5 to 29 0.0%, Mo: 5.0-6.
0%, B: 0.007% or less, Co-based alloy consisting of Co with the balance being welded to carbon steel, the Fe content being 5.
The method is characterized by including a step of heating to 700 ° C. or more when the temperature becomes 0% or more.

【0012】[0012]

【発明の実施の形態】以下、この発明の実施の形態とし
て、本発明の熱処理を施したステライトの試験材に関し
て説明する。まず、ステライトの溶接において、母材で
ある炭素鋼がステライトに溶け込む量については、PT
A溶接の場合、溶接条件を適切にすることによってFe
量を15%以下に、また、TIG溶接の場合でも30%
以下に管理することが可能である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, as an embodiment of the present invention, a stellite test material subjected to a heat treatment of the present invention will be described. First, in the welding of stellite, the amount of carbon steel, which is the base metal,
In the case of A welding, the welding conditions
Less than 15% and 30% even in TIG welding
The following can be managed.

【0013】そこで、ステライトNo.6又はステライ
トNo.21のPTA粉末とFe粉末とを混合し、アル
ゴン雰囲気のアーク炉を用いた鋳造により、ステライト
中のFe含有量が約0〜40%の範囲にある複数の1次
試験材を製作した。図1に、かかる鋳造1次試験材の形
状寸法を示す。すなわち、これらの1次試験材は、上面
の直径が50mm、下面の直径が40mm及び高さが2
0mmの切頭円錐体である。また、以下の表1に、ステ
ライトNo.6粉末とFe粉末との混合による7種類の
1次試験材S0,S5,S10,S15,S20,S3
0及びS40の化学成分を示し、表2に、ステライトN
o.21粉末とFe粉末との混合による6種類の1次試
験材T0,T5,T10,T15,T20,T30との
化学成分を示す。
Therefore, Stellite No. 6 or Stellite No. 6 A plurality of primary test materials having a Fe content in stellite in the range of about 0 to 40% were produced by mixing PTA powder No. 21 and Fe powder and casting using an arc furnace in an argon atmosphere. FIG. 1 shows the dimensions of the cast primary test material. That is, these primary test materials have an upper surface diameter of 50 mm, a lower surface diameter of 40 mm, and a height of 2 mm.
0 mm truncated cone. Also, in Table 1 below, stellite No. 7 types of primary test materials S0, S5, S10, S15, S20, S3 by mixing 6 powder and Fe powder
0 and S40 are shown in Table 2.
o. 21 shows the chemical components of six types of primary test materials T0, T5, T10, T15, T20, and T30 obtained by mixing powder No. 21 and Fe powder.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】これらの1次試験材に、650℃、750
℃及び900℃で4時間の熱処理を施工した。ここで、
熱処理時間は、製品厚さ25mm当たり1時間が一般的
であるため、4時間の熱処理時間は、板厚100mmの
製品の熱処理時間に相当している。そして、熱処理後の
鋳造1次試験材を加工して、図2に示すような直径16
mm、厚さ3mmの円板状の2次試験材を製作する。
[0016] These primary test materials were added at 650 ° C and 750 ° C.
A heat treatment was performed at 4 ° C. and 900 ° C. for 4 hours. here,
Since the heat treatment time is generally one hour per 25 mm of the product thickness, the heat treatment time of four hours corresponds to the heat treatment time of a product having a thickness of 100 mm. Then, the cast primary test material after the heat treatment is processed to have a diameter of 16 as shown in FIG.
A disk-shaped secondary test material having a thickness of 3 mm and a thickness of 3 mm is manufactured.

【0017】熱処理後のこれら2次試験材に対し、JI
S規格G0575に規定するステンレス鋼の硫酸・硫酸
銅の腐食試験方法(以下、「ストラウス試験」と称す
る)を16時間実施し、2次試験材のFe含有量と熱処
理の温度とが粒界腐食性に及ぼす影響について試験を行
った。図3及び4にそれぞれ、ステライトNo.6から
なる試験材及びステライトNo.21からなる試験材に
関する試験結果を示す。
After the heat treatment, these secondary test materials were subjected to JI
The corrosion test method for sulfuric acid and copper sulfate of stainless steel specified in S Standard G0575 (hereinafter referred to as “Strauss test”) was performed for 16 hours, and the Fe content of the secondary test material and the temperature of heat treatment showed intergranular corrosion. A test was conducted on the effect on the properties. 3 and 4 show Stellite No. 6 and Stellite No. 6 21 shows the test results of the test material No. 21.

【0018】図3に示されるように、ステライトNo.
6からなる試験材を650℃で熱処理した場合、Fe含
有量が1%程度では粒界腐食は生じないが、Fe含有量
が5%になると粒界腐食が生じ始め、それよりも更にF
e含有量が増加すると粒界腐食が顕著に進行している。
すなわち、これは、含有されたFeが粒界腐食を著しく
進行させていることを示している。
As shown in FIG.
When the test material composed of No. 6 is heat-treated at 650 ° C., intergranular corrosion does not occur when the Fe content is about 1%, but intergranular corrosion starts to occur when the Fe content is 5%, and further F
As the e content increases, intergranular corrosion remarkably progresses.
That is, this indicates that the contained Fe significantly promotes intergranular corrosion.

【0019】また、750℃で熱処理した場合、Fe含
有量が15%までは粒界腐食が生じなかったが、Fe含
有量が20%では粒界腐食の発生が認められた。
When heat treatment was carried out at 750 ° C., intergranular corrosion did not occur up to an Fe content of 15%, but intergranular corrosion was observed at an Fe content of 20%.

【0020】さらに、900℃で熱処理した場合、Fe
含有量が30%までは粒界腐食が生じなく、Fe含有量
が40%ではじめて粒界腐食の発生が認められた。
Further, when heat-treated at 900 ° C.,
No intergranular corrosion occurred up to a content of 30%, and the occurrence of intergranular corrosion was recognized only when the Fe content was 40%.

【0021】このようにステライトNo.6からなる試
験材においては、650℃の熱処理では粒界腐食性が著
しく促進されたが、750℃及び900℃のように熱処
理温度が高くなると、粒界腐食感受性はFe含有量が多
い場合でも低くなった。
As described above, Stellite No. In the test material composed of No. 6, the intergranular corrosion was remarkably promoted by the heat treatment at 650 ° C., but when the heat treatment temperature was high, such as 750 ° C. and 900 ° C., the intergranular corrosion susceptibility was low even when the Fe content was large. Got lower.

【0022】同様に、図4に基づいて、ステライトN
o.21からなる試験材について説明する。まず、65
0℃で熱処理した場合、Fe含有量1%程度では粒界腐
食は生じなかったが、Fe含有量が5%になると粒界腐
食性が生じはじめ、それよりも更にFe含有量が増加す
ると粒界腐食は顕著に進行した。
Similarly, based on FIG.
o. The test material 21 is described. First, 65
When heat treatment was performed at 0 ° C., intergranular corrosion did not occur when the Fe content was about 1%. However, when the Fe content became 5%, intergranular corrosion began to occur, and when the Fe content further increased, the grain boundary corrosion increased. Interfacial corrosion progressed significantly.

【0023】また、750℃で熱処理した場合、Fe含
有量が19%までは粒界腐食が生じなかったが、Fe含
有量が33%では粒界腐食の発生が認められた。
In the case of heat treatment at 750 ° C., intergranular corrosion did not occur up to an Fe content of 19%, but intergranular corrosion was observed at an Fe content of 33%.

【0024】さらに、900℃で熱処理した場合、Fe
含有量が33%で0.05mm深さの粒界腐食が生じて
いるものの殆ど粒界腐食性は消失した。
Further, when heat-treated at 900 ° C.,
Although the intergranular corrosion with a content of 33% and a depth of 0.05 mm occurred, the intergranular corrosiveness almost disappeared.

【0025】ステライトの粒界腐食は、ステライトが凝
固する際に晶出する炭化物(以下「1次炭化物」と称す
る)によって生じるものではなく、オーステナイト形ス
テンレス鋼である300系ステンレス鋼と同様に後熱処
理で析出する炭化物(以下「2次炭化物」と称する)の
隣接部にCr欠乏層が生じることが原因となって発生す
る。
The intergranular corrosion of stellite is not caused by carbides (hereinafter referred to as "primary carbides") that crystallize when the stellite solidifies, and similarly to the austenitic stainless steel 300 series stainless steel. This is caused by the formation of a Cr-deficient layer adjacent to a carbide (hereinafter referred to as “secondary carbide”) precipitated by the heat treatment.

【0026】粒界腐食感受性は、420〜650℃に加
熱された場合に認められる。650℃では、図5に概念
的に示されるように、2次炭化物中のCr濃度が高く、
このため2次炭化物に隣接するCr欠乏層のCr濃度が
低く粒界腐食が促進される。しかし、750℃及び90
0℃で析出する2次炭化物のCr濃度は低いため、2次
炭化物に隣接するCr欠乏層のCr濃度が高く、また熱
処理温度が高いためCrの拡散が生じてCr欠乏層が解
消する。
Intergranular corrosion susceptibility is observed when heated to 420-650 ° C. At 650 ° C., the Cr concentration in the secondary carbide is high, as conceptually shown in FIG.
Therefore, the Cr concentration in the Cr-deficient layer adjacent to the secondary carbide is low, and intergranular corrosion is promoted. However, at 750 ° C. and 90
Since the Cr concentration of the secondary carbide precipitated at 0 ° C. is low, the Cr concentration of the Cr-deficient layer adjacent to the secondary carbide is high, and the high heat treatment temperature causes the diffusion of Cr to eliminate the Cr-deficient layer.

【0027】ここで、Feが粒界腐食を促進する原因
は、第1に、Feがステライト中に溶け込みステライト
の主元素であるCoと固容体を形成してステライト全体
のCr濃度を低減し、ステライトのマトリックス(基
地)の耐食性を低下させることがある。また、第2に、
この耐食性の低下したマトリックスの中からCr濃度の
高い2次炭化物が析出して、2次炭化物隣接部のCrを
欠乏させ、この部分の耐食性を更に低下させることがあ
る。この場合に650℃では、より高温の熱処理の場合
に比べて2次炭化物のCr濃度が高いためCr欠乏層の
Cr濃度の低下を一層促進する。さらに、第3に、Fe
が含有されるとCrの拡散を遅延させることがある。ま
た、Crの拡散は、低温ではより小さく、高温ではより
大きくなるため、650℃ではそれ以上の熱処理温度の
場合に比べて時間がかかる。
Here, Fe promotes intergranular corrosion. First, Fe dissolves in stellite and forms a solid solution with Co, the main element of stellite, to reduce the Cr concentration in the entire stellite. It may reduce the corrosion resistance of the matrix (base) of stellite. Second,
Secondary carbide having a high Cr concentration precipitates out of the matrix having a reduced corrosion resistance, depleting Cr in a portion adjacent to the secondary carbide, and further reducing the corrosion resistance of this portion. In this case, at 650 ° C., the Cr concentration of the secondary carbide is higher than in the case of the heat treatment at a higher temperature, so that the lowering of the Cr concentration in the Cr-deficient layer is further promoted. Third, Fe
If contained, the diffusion of Cr may be delayed. Further, since the diffusion of Cr becomes smaller at low temperatures and becomes larger at high temperatures, it takes more time at 650 ° C. than at a higher heat treatment temperature.

【0028】このようにして、Fe含有量は、ステライ
トの粒界腐食感受性を高める作用を有している。そし
て、上述したように、Feが含有された場合でも、65
0℃より更に高温の熱処理は、ステライトの粒界腐食感
受性を低減するが、この効果が実質的に認められる熱処
理温度の下限は700℃である。
Thus, the Fe content has the effect of increasing the susceptibility of stellite to intergranular corrosion. And, as described above, even when Fe is contained,
Heat treatment at a temperature higher than 0 ° C. reduces the susceptibility of stellite to intergranular corrosion, but the lower limit of the heat treatment temperature at which this effect is substantially recognized is 700 ° C.

【0029】そして、この熱処理条件は、650℃の熱
処理に比べてステライト溶接部の残留応力の低減にも有
効であり、粒界腐食が発生したことが原因となって生じ
るステライトの割れへの進展を防止することができる。
These heat treatment conditions are also effective in reducing the residual stress in the stellite welded portion as compared with the heat treatment at 650 ° C., and the propagation of stellite into cracks caused by the occurrence of intergranular corrosion occurs. Can be prevented.

【0030】[0030]

【発明の効果】以上説明したように本発明の熱処理方法
によれば、ステライト等のCo基合金の粒界腐食感受性
を低減することができ、PTA溶接やTIG溶接等の電
弧溶接を用いた場合でもCo基合金の耐粒界腐食性の低
下を抑制することができる。
As described above, according to the heat treatment method of the present invention, the intergranular corrosion susceptibility of a Co-based alloy such as stellite can be reduced, and the arc welding such as PTA welding or TIG welding can be used. However, a decrease in intergranular corrosion resistance of the Co-based alloy can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 1次試験材の形状寸法を示す図である。FIG. 1 is a diagram showing the shape and dimensions of a primary test material.

【図2】 2次試験材の形状寸法を示す図である。FIG. 2 is a diagram showing the shape and dimensions of a secondary test material.

【図3】 ステライトNo.6からなる試験材の粒界腐
食試験の結果を示す図である。
FIG. 6 is a diagram showing the results of an intergranular corrosion test of a test material No. 6; FIG.

【図4】 ステライトNo.21からなる試験材の粒界
腐食試験の結果を示す図である。
FIG. FIG. 9 is a diagram showing the results of a grain boundary corrosion test of a test material consisting of No. 21;

【図5】 粒界腐食の発生原因を示す模式的な図であ
る。
FIG. 5 is a schematic diagram showing a cause of occurrence of intergranular corrosion.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年6月16日(2000.6.1
6)
[Submission date] June 16, 2000 (2006.1.
6)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0028[Correction target item name] 0028

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0028】このようにして、Fe含有量は、ステライ
トの粒界腐食感受性を高める作用を有している。そし
て、上述したように、Feが含有された場合でも、65
0℃より更に高温の熱処理は、ステライトの粒界腐食感
受性を低減するが、この効果が実質的に認められる熱処
理温度の下限は700℃である。従って、本発明では、
Feの含有量が5.0%以上となったときに700℃以
上に加熱する。
Thus, the Fe content has the effect of increasing the susceptibility of stellite to intergranular corrosion. And, as described above, even when Fe is contained,
Heat treatment at a temperature higher than 0 ° C. reduces the susceptibility of stellite to intergranular corrosion, but the lower limit of the heat treatment temperature at which this effect is substantially recognized is 700 ° C. Therefore, in the present invention,
700 ° C or less when the Fe content becomes 5.0% or more
Heat on.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 650 C22F 1/00 650C 691 691A 694 694B Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C22F 1/00 650 C22F 1/00 650C 691 691A 694 694B

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 化学成分が重量パーセントで、C:0.
9〜1.4%、Mn:1.0%以下、Si:0.4〜
2.0%、Cr:26.0〜32.0%、W:3.0〜
6.0%、Mo:1.0%以下、Ni:3.0%以下、
Fe:3.0%以下、その他の不純物が0.5%以下で
あり、残部がCoからなるCo基合金を、炭素鋼に溶接
し、Feの含有量が5.0%以上となったときに700
℃以上に加熱する工程を含む熱処理方法。
1. The method according to claim 1, wherein the chemical components are in weight percent and C: 0.1.
9 to 1.4%, Mn: 1.0% or less, Si: 0.4 to
2.0%, Cr: 26.0-32.0%, W: 3.0-2.0%
6.0%, Mo: 1.0% or less, Ni: 3.0% or less,
When a Co-based alloy containing 3.0% or less of Fe and 0.5% or less of other impurities and the balance of Co is welded to carbon steel, and the Fe content becomes 5.0% or more. To 700
A heat treatment method including a step of heating to at least C.
【請求項2】 化学成分が重量パーセントで、C:0.
2〜0.3%、Si:0.9〜1.5%、Mn:1.0
%以下、Ni:1.75〜3.25%、Fe:2.0%
以下、Cr:25.5〜29.0%、Mo:5.0〜
6.0%、B:0.007%以下であり、残部がCoか
らなるCo基合金を、炭素鋼に溶接し、Feの含有量が
5.0%以上となったときに700℃以上に加熱する工
程を含む熱処理方法。
2. The chemical composition, in weight percent, C: 0.
2 to 0.3%, Si: 0.9 to 1.5%, Mn: 1.0
% Or less, Ni: 1.75 to 3.25%, Fe: 2.0%
Hereinafter, Cr: 25.5 to 29.0%, Mo: 5.0 to 5.0
6.0%, B: 0.007% or less, the balance is Co-based alloy consisting of Co is welded to carbon steel, and when the Fe content is 5.0% or more, the temperature is increased to 700 ° C or more. A heat treatment method including a heating step.
JP17268599A 1999-06-18 1999-06-18 Heat treatment method for Co-based alloy Expired - Fee Related JP3263378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17268599A JP3263378B2 (en) 1999-06-18 1999-06-18 Heat treatment method for Co-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17268599A JP3263378B2 (en) 1999-06-18 1999-06-18 Heat treatment method for Co-based alloy

Publications (2)

Publication Number Publication Date
JP2001003149A true JP2001003149A (en) 2001-01-09
JP3263378B2 JP3263378B2 (en) 2002-03-04

Family

ID=15946471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17268599A Expired - Fee Related JP3263378B2 (en) 1999-06-18 1999-06-18 Heat treatment method for Co-based alloy

Country Status (1)

Country Link
JP (1) JP3263378B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007797A1 (en) * 2005-07-13 2007-01-18 Mitsubishi Materials Corporation Cobalt- or iron-base alloy excellent in the resistance to corrosion from molten lead-free solder and members of lead-free soldering apparatus which are made of the alloy
JP2007023315A (en) * 2005-07-13 2007-02-01 Mitsubishi Materials Corp Co-BASED ALLOY EXCELLENT IN EROSION RESISTANCE TO MOLTEN LEAD-FREE SOLDER, AND LEAD-FREE-SOLDERING DEVICE MEMBER MADE FROM THE CO-BASED ALLOY
JP2012166237A (en) * 2011-02-15 2012-09-06 Kubota Corp Coated member, and overlaying structure
CN104141066A (en) * 2014-07-08 2014-11-12 株洲富力达硬质合金有限公司 Cobalt-base alloy material and manufacturing method thereof
CN107598351A (en) * 2017-09-13 2018-01-19 浙江富春江水电设备有限公司 The cylindrical large area plasma overlaying method of Stellite cobalt-base alloys

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007797A1 (en) * 2005-07-13 2007-01-18 Mitsubishi Materials Corporation Cobalt- or iron-base alloy excellent in the resistance to corrosion from molten lead-free solder and members of lead-free soldering apparatus which are made of the alloy
JP2007023315A (en) * 2005-07-13 2007-02-01 Mitsubishi Materials Corp Co-BASED ALLOY EXCELLENT IN EROSION RESISTANCE TO MOLTEN LEAD-FREE SOLDER, AND LEAD-FREE-SOLDERING DEVICE MEMBER MADE FROM THE CO-BASED ALLOY
JP2012166237A (en) * 2011-02-15 2012-09-06 Kubota Corp Coated member, and overlaying structure
CN104141066A (en) * 2014-07-08 2014-11-12 株洲富力达硬质合金有限公司 Cobalt-base alloy material and manufacturing method thereof
CN107598351A (en) * 2017-09-13 2018-01-19 浙江富春江水电设备有限公司 The cylindrical large area plasma overlaying method of Stellite cobalt-base alloys
CN107598351B (en) * 2017-09-13 2023-10-03 中国原子能科学研究院 Large-area plasma surfacing method for outer circle of Stellite cobalt-based alloy

Also Published As

Publication number Publication date
JP3263378B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
EP1392873B1 (en) Method of producing stainless steels having improved corrosion resistance
AU2002256261A1 (en) Method of producing stainless steels having improved corrosion resistance
JP2014084493A (en) AUSTENITIC Fe-Ni-Cr ALLOY FOR COATED TUBE EXCELLENT IN WELDABILITY
EP3693487A1 (en) Austenitic stainless steel
JP3263378B2 (en) Heat treatment method for Co-based alloy
JP2021183720A (en) Ni-BASED ALLOY TUBE AND WELDED JOINT
JPH0711366A (en) Alloy excellent in hot workability and corrosion resistance in high temperature water
JPS5910426B2 (en) Fully austenitic stainless steel with excellent crevice corrosion resistance and hot workability.
JP2004315936A (en) Extremely low carbon-based acid-proof dew point corrosion steel having excellent intergranular fracture resistance
JPH0195895A (en) Stainless steel wire for gas shielded arc welding
JP2893236B2 (en) Overlay welding method with excellent hydrogen embrittlement resistance and hot cracking resistance
JP2007197821A (en) Austenitic stainless steel
JP2797981B2 (en) High strength austenitic steel welding material and method for producing the same
JP2637039B2 (en) Valve seats for fluids containing seawater and chloride
JP2005008925A (en) Mo-CONTAINING AUSTENITIC STAINLESS STEEL AND ITS MANUFACTURING METHOD
JPS59229457A (en) Ni-base high-cr alloy having excellent resistance to stress corrosion cracking
JPS629186B2 (en)
JPS62224493A (en) Wire for welding 9cr-2mo steel
JPH0613157B2 (en) Welding material for high Si austenitic stainless steel
JPH09184013A (en) Production of hot rolled molybdenum-containing austenitic stainless steel plate excellent in nitric acid corrosion resistance
JP2622516B2 (en) Welding material for heat resistant steel with excellent creep strength
JP2021183719A (en) Ni-BASED ALLOY TUBE AND WELDED JOINT
JPH06299233A (en) Heat treatment method for carbon steel having excellent stress corrosion crack resistance to high temperature and high pressure water
JPS583942A (en) Ni alloy with superior embrittlement resistance at intermediate temperature
JPS59197394A (en) Steel wire for welding heat-resisting steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3263378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees