JPS5817397A - Fast breeder power plant - Google Patents

Fast breeder power plant

Info

Publication number
JPS5817397A
JPS5817397A JP56114633A JP11463381A JPS5817397A JP S5817397 A JPS5817397 A JP S5817397A JP 56114633 A JP56114633 A JP 56114633A JP 11463381 A JP11463381 A JP 11463381A JP S5817397 A JPS5817397 A JP S5817397A
Authority
JP
Japan
Prior art keywords
flow rate
coolant
primary
primary system
coolant loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56114633A
Other languages
Japanese (ja)
Other versions
JPH021280B2 (en
Inventor
岩崎 敏夫
亮 開本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56114633A priority Critical patent/JPS5817397A/en
Publication of JPS5817397A publication Critical patent/JPS5817397A/en
Publication of JPH021280B2 publication Critical patent/JPH021280B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Flow Control (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、高速増殖炉発電プラント、特に、1次系およ
び2次系の冷却材ループを有する高速増殖炉尭電プラン
トに関する40である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fast breeder reactor power plant, particularly a fast breeder reactor power plant having primary and secondary coolant loops.

液体金属を冷却材とじズ用い、原子炉と中間熱交換器と
0fllK1次系冷却材ループを有し、中間熱交換器と
蒸気発生器との間に2次系冷却材ループを有する高速増
殖炉見覚プラントでは、プラント出力(電気出力)は主
蒸気条件の変動によ〉影響されるので、これを回避する
丸め、主蒸気条件を一定圧力、一定温度となるよう制御
を行なっている。
A fast breeder reactor that uses liquid metal as a coolant, has a nuclear reactor, an intermediate heat exchanger, a 0fllK primary coolant loop, and a secondary coolant loop between the intermediate heat exchanger and the steam generator. In a power plant, the plant output (electrical output) is affected by fluctuations in the main steam conditions, so rounding is done to avoid this, and the main steam conditions are controlled to be constant pressure and temperature.

し九がって、蒸気発生器の出口における蒸気温度は、プ
ラント出力によらず一定となり、2次系冷却材ループ、
1次系冷却材ループを介して連動する原子炉出口の液体
金属(例えばす)9ウム)の温度は第1図に示すように
プラント出力によらずはぼ一定となる。この図の横軸、
縦軸には、それぞれ、プラント出力(電気出方)、温度
がとってめり、1が原子炉出口ナトリウム温度、2が蒸
気発生器出口蒸気温度を示している。
Therefore, the steam temperature at the outlet of the steam generator is constant regardless of the plant output, and the secondary coolant loop,
As shown in FIG. 1, the temperature of the liquid metal (e.g., 9 um) at the reactor outlet, which is linked via the primary coolant loop, remains approximately constant regardless of the plant output. The horizontal axis of this figure,
The vertical axis shows plant output (electricity output) and temperature, respectively, with 1 indicating the sodium temperature at the reactor outlet and 2 indicating the steam temperature at the steam generator outlet.

このような、プラント出力に対して原子炉出口ナトリウ
ム温度を一定にする制御を行なうKは、1次系、2次系
それぞれの冷却材流量を、原子炉熱出力に#′!は比例
して制御する必要がある。これに対して、原子炉熱出力
とプラント出力とは、はぼ比例するので、1次系、2次
系冷却材流量を、第3図に示すようにプラント出方KP
1は比例して制御することKなる。この図の横軸、縦軸
には、それぞれ、プラント出方(定格値に対する修)。
K, which performs such control to keep the reactor outlet sodium temperature constant with respect to the plant output, adjusts the coolant flow rate of each of the primary and secondary systems to the reactor thermal output. needs to be controlled proportionally. On the other hand, since the reactor thermal output and the plant output are approximately proportional, the primary system and secondary system coolant flow rates are expressed as shown in Figure 3, at the plant outlet KP.
1 means proportional control. The horizontal and vertical axes of this figure show the plant output (modifications to the rated value), respectively.

流量(定格値に対する値)がとってあり、3.4がそれ
ぞれ1次系冷却材流量、2次系冷却材流量を示してiる
The flow rate (value relative to the rated value) is taken, and 3.4 indicates the primary system coolant flow rate and the secondary system coolant flow rate, respectively.

第3図は、このような、液体金属を冷却材とし、1次系
、2次系の冷却材ループを有し、プラント出力KFtf
f比例して流量制御を行なう従来の高速増殖炉発電プラ
ントの冷却材流量制御システムの系統図である。この図
で%11は原子炉、12は中間熱交換器、lBは1次系
冷却材ループ、14は工次系主循廖ポyグs lBは1
次系ポンプ駆動交流電動機、16は1次系流量針、17
#i1次系流量信号、18は1次系流量プログラム信号
、19は1次系流量制御・% 110は1次系周波数指
令信号、111は1次系可変周波数電源、112は1次
系可変周波数電力を示しており121は過熱器′、22
は蒸発器、23は2次系冷却材ループ、24は2次系主
循看ポング、26は2次系ポンプ駆動交流電動機、26
は2次系流量針、27は2次系流量信号、2Bは2次系
流量グーダラム信号、29は2次系流量制御器、21G
は2次系周波数指令信号、211は2次系可変周波数電
源、211は1次系可変周波数電力を示している。
Figure 3 shows such a plant that uses liquid metal as a coolant, has primary and secondary coolant loops, and has a plant output KFtf.
FIG. 2 is a system diagram of a conventional coolant flow rate control system for a fast breeder reactor power plant that performs flow rate control in proportion to f. In this figure, %11 is the reactor, 12 is the intermediate heat exchanger, 1B is the primary coolant loop, 14 is the main circulation system, and 1B is 1
Secondary pump drive AC motor, 16 is primary system flow rate needle, 17
#i Primary system flow rate signal, 18 is primary system flow rate program signal, 19 is primary system flow rate control/% 110 is primary system frequency command signal, 111 is primary system variable frequency power supply, 112 is primary system variable frequency The power is shown, 121 is the superheater', 22
is an evaporator, 23 is a secondary system coolant loop, 24 is a secondary system main circulation pump, 26 is a secondary system pump driving AC motor, 26
is the secondary system flow rate needle, 27 is the secondary system flow rate signal, 2B is the secondary system flow rate Goodaram signal, 29 is the secondary system flow rate controller, 21G
211 represents a secondary system frequency command signal, 211 represents a secondary system variable frequency power source, and 211 represents a primary system variable frequency power source.

原子炉11と中間熱交換1112とを循環する1材 次系冷へループ13内の冷却材の流量は、1次系流量計
16によって計測され、1次系流量信号17に変換され
1次系流量プログラム信号18とともに1次系流量制御
器19に入力される。1次系流量制御器19q、プラン
ト出方と第2図の直線3に示すような関係をもつ1次系
流量プログラム信号18と1次系流量信号17とKよっ
て、1次系冷却材流量の制御要求に一致した1次系周波
数指令信号110を1次系可変周波数電源111に入力
する。1次系可変周波数電源111は、1次系周波数指
令信号11Gを受けて、1次系可変周波数電力112を
発生させ、1次系ポンプ駆動交流電動機、15に供給す
る。1次系ポンプ駆動交流電動機15は、1次系主循環
ポンプ14に連結畜れ、1次系可変周波数電力112に
よ抄、1次系轡却材流量制御特性に一致した1次系冷却
材流量を得る。
The flow rate of the coolant in the primary system cooling loop 13 that circulates between the reactor 11 and the intermediate heat exchanger 1112 is measured by the primary system flow meter 16, converted to a primary system flow rate signal 17, and transmitted to the primary system. The flow rate program signal 18 is input to the primary system flow rate controller 19 . The primary system flow rate controller 19q, the primary system flow rate program signal 18, the primary system flow rate signal 17, and K, which have a relationship as shown in straight line 3 in FIG. A primary system frequency command signal 110 that matches the control request is input to a primary system variable frequency power supply 111. The primary system variable frequency power supply 111 receives the primary system frequency command signal 11G, generates the primary system variable frequency power 112, and supplies it to the primary system pump drive AC motor 15. The primary system pump driving AC motor 15 is connected to the primary system main circulation pump 14, and is controlled by the primary system variable frequency power 112, and the primary system refrigerant flow rate control characteristic matches the primary system refrigerant flow rate control characteristics. Get the flow rate.

中間熱交換器12と過熱器21および蒸発器22とを循
環する2次系冷却材ループ23内の冷却材の流量も1次
系冷却材ループの冷却材の流量制御と全く同一の方法で
行われる。
The flow rate of the coolant in the secondary coolant loop 23 that circulates between the intermediate heat exchanger 12, the superheater 21, and the evaporator 22 is controlled in exactly the same way as the flow rate control of the coolant in the primary coolant loop. be exposed.

このように、従来の高速増殖炉発電プラ/トでは1次系
および2次系の冷却材流量の制御の丸め、1次系および
2次系冷却材ループにそれぞれ1台ずつ、合計2台の可
変周波数電源装置を設置しているので、運転保守面から
4、経済面から屯改善O余地があり、2台設置されては
いても、どちらか一方の可変周波数電源装置に異常が発
生し九場合には、高速増殖炉発電プラントの熱輸送体系
としては成立しなく*ゐため、2台設置の必然性に乏し
かつえ。
In this way, in a conventional fast breeder reactor power generation platform, the control of the coolant flow rates in the primary and secondary systems is rounded, and a total of two units are used, one each for the primary and secondary coolant loops. Since variable frequency power supplies are installed, there is room for improvement from an operational and maintenance standpoint and from an economic standpoint. In such a case, it would not work as a heat transport system for a fast breeder reactor power plant*, so there would be little necessity to install two units.

本発明は、このような問題点を除去し、運転保守性の面
からも、経済性の面からも、信頼性の面から4改畳され
九冷却材流量の制御を行うことので1ゐ高速増殖炉発電
プラントの提供を可能とするもので、原子炉と中間熱交
換器との間、および、中間熱交換器と蒸気発生器との関
に、それぞれ設けられ九冷却材循環ポンプを有する1次
系冷却材ループ、および、2次系冷却材ループと、冷却
材循環ポンプを駆動する交流電動機を1次系および2次
系冷却材ループの冷却材流量がそれぞれの流量制御特性
に従って変るように制御する手段とを有する高速増殖炉
発電プラントにおいて、冷却材材 流量制御手段が、1次系および2次系冷却ループへ の冷却材循環ポンプを駆動する交流電動機を1次系およ
び2次系のうち倒れかの一つの系の冷却材ループの流量
制御特性に従って動作させる高周波電源装置と、1次系
流量制御特性と2次系流量制御特性との差を求め、その
#に基づき、】次第および2次系のうち他の系の冷却材
ループの冷却材循環ポンプを駆動する交流電動機を他の
系の流量制御特性に一致させる制御装置とよりなること
を特徴とすbものである。
The present invention eliminates these problems, and from the viewpoints of operation and maintainability, economy, and reliability, it is possible to improve the speed by controlling the coolant flow rate. This system enables the provision of a breeder reactor power plant, and has nine coolant circulation pumps installed between the nuclear reactor and the intermediate heat exchanger, and between the intermediate heat exchanger and the steam generator. The AC motor that drives the secondary coolant loop, the secondary coolant loop, and the coolant circulation pump is controlled so that the coolant flow rate of the primary and secondary coolant loops changes according to their respective flow control characteristics. In the fast breeder reactor power plant, the coolant flow rate control means controls the AC motor that drives the coolant circulation pump to the primary and secondary cooling loops. The high frequency power supply device operates according to the flow control characteristics of the coolant loop of one of the systems, and the difference between the primary system flow control characteristics and the secondary system flow control characteristics is determined, and based on that #, It is characterized by comprising a control device that causes an AC motor that drives a coolant circulation pump of a coolant loop of another system in the secondary system to match the flow rate control characteristics of the other system.

本発明は、プラント出力に対する、1次系流量制御特性
と2次系流量制御特性とが、1次系では低いプラント出
力KsI−一ても、流量を多く確保することは原子炉に
とって安全憚となる点と、2次系では低iプラント出力
においても、蒸気発生器出入口温度差が大きくなる点醇
の理由により、前述の如く、完全には一致しないが相傷
しているため、−個の可変周波数電源装置で、1次冷却
材ループおよび2次冷却材ループのポンプ駆動交流電動
機の電源を兼ねられる点に着目してなされたもので、高
速増鴫炉発電プラントの総合的な熱輸送体系の運転保守
性、経済性、信頼性を高めることがでIllゐ。
In the present invention, the primary system flow control characteristics and the secondary system flow control characteristics with respect to the plant output are such that even if the plant output KsI is low in the primary system, securing a large flow rate is a safety concern for the reactor. In the secondary system, even at a low i plant output, the temperature difference between the steam generator inlet and outlet becomes large. This variable frequency power supply was designed with the focus on its ability to serve as a power source for the pump-driving AC motors of the primary and secondary coolant loops, and is a comprehensive heat transport system for fast water enrichment reactor power plants. It is possible to improve the operational maintainability, economy, and reliability of the system.

以下、実施例について説明する。Examples will be described below.

第4図は、一実施例の高速増殖炉発電プラントの冷却材
流量゛制御システムO系統図である。この図で第3図と
同一部分には同一符号が付してあり、31は1次系およ
び2次系冷却材ループに共用の可変周波数電源装置、3
2は可変周波数電力、33は補正演算器、34線流量補
正信号、35は交流電動機付属制御装置、36は交流電
動機補正制御信号を示して−る。
FIG. 4 is a system diagram of a coolant flow rate control system O for a fast breeder reactor power plant according to one embodiment. In this figure, the same parts as in FIG.
Reference numeral 2 indicates a variable frequency power, 33 a correction calculator, 34 a line flow rate correction signal, 35 an AC motor attached control device, and 36 an AC motor correction control signal.

この実施例においては、可変周波数電源装置31は1次
系ポンプ駆動交流電動機1Bと2次系ポンプ駆動交流電
動機2sとの共用電源となり、その周波数制御は1次系
流量制御特性に一致させる。この制御線従来の場合と全
く同様で、1次系冷却材ループの流量は1次系流量制御
特性に一致する。一方、2次系冷却材ループにおいては
、それぞれ1次系流量計16.2次系流量計26によっ
て求められ九1次系流量信号17.2次系流量信号27
および2次系流量ツーlラム信号28を補正演算器33
に入力し、1次系流量制御特性と2次系流量制御特性と
の差を補正し、2次系流量制御特性に一致するような流
量補正信号34を出力させる。交流電動機付属制御装置
35は、流−補正信号34を受けて、交流電動機補正制
御信号36を2次系ポンプ駆動交流電動機24に与える
In this embodiment, the variable frequency power supply device 31 serves as a shared power source for the primary system pump drive AC motor 1B and the secondary system pump drive AC motor 2s, and its frequency control is made to match the primary system flow rate control characteristics. This control line is exactly the same as in the conventional case, and the flow rate of the primary system coolant loop matches the primary system flow rate control characteristic. On the other hand, in the secondary coolant loop, the 91st system flow rate signal 17 and the secondary system flow rate signal 27 are obtained by the primary system flowmeter 16 and the secondary system flowmeter 26, respectively.
and a computation unit 33 that corrects the secondary system flow rate tool ram signal 28.
is input, the difference between the primary system flow rate control characteristic and the secondary system flow rate control characteristic is corrected, and a flow rate correction signal 34 matching the secondary system flow rate control characteristic is output. The AC motor accessory control device 35 receives the flow correction signal 34 and provides an AC motor correction control signal 36 to the secondary pump drive AC motor 24 .

これKよって、可変周波数電源装置310周波数特性は
1次系流量制御特性であるが、交流電動機付属制御装置
35によシ補正される丸め、2次系冷却材ループ23の
冷却材流量は2次系流量制御特性に一致する。第S図は
第4図の具体例を示すもので、第4図と同一部分には同
一符号が付しである。この具体例では可変周波数電源に
電動機4!と流体継手42と交流発電機43とから構成
される流体継手可変周波数電源装置44を用い、流量制
御器として流体継手すくい管駆動装置45を用り、2次
系ポンプ駆動交流電動I!25に付属する制御装置とし
て交り電動機2次抵抗制御装置46を用いている。
Therefore, although the frequency characteristic of the variable frequency power supply device 310 is a primary system flow rate control characteristic, the coolant flow rate of the secondary system coolant loop 23 is rounded and corrected by the AC motor attached control device 35, and the coolant flow rate of the secondary system coolant loop 23 is a secondary system flow rate control characteristic. Matches the system flow control characteristics. FIG. S shows a specific example of FIG. 4, and the same parts as in FIG. 4 are given the same reference numerals. In this specific example, there are 4 electric motors in the variable frequency power supply! A fluid coupling variable frequency power supply device 44 consisting of a fluid coupling 42 and an alternating current generator 43 is used, a fluid coupling scoop pipe drive device 45 is used as a flow rate controller, and a secondary pump driving AC electric I! As a control device attached to 25, an alternating motor secondary resistance control device 46 is used.

このように、仁の実施例の大容量可変周波数電源装置に
は、既に軽水冷却原子炉発電プラント用として実用化さ
れている流体継手可変周波数電源装置を用iることがで
きゐ、tた、2次系ポンプ駆動交流電動機に付属する2
次抵抗制御装置の回転数制御箱S屯7G−Zoo%の範
囲において可能であるため、高速増殖炉発電プラントに
適用可能である。
In this way, the large-capacity variable frequency power supply device of Jin's embodiment can use a fluid coupling variable frequency power supply device that has already been put into practical use for light water-cooled nuclear reactor power plants. 2 attached to the secondary pump drive AC motor
Since it is possible in the range of 7G-Zoo% of the rotation speed control box of the resistance control device, it is applicable to fast breeder reactor power plants.

このように、実施例の高速増殖炉発電プラントにおいて
は、従来1次系および2次系のそれぞれの冷却材ループ
に設置されていた可変周波数電源装置を共用するように
し九丸め、可変周波数電源のメンテナンスを軽減で自運
転保守性が向上する。
In this way, in the fast breeder reactor power plant of the example, the variable frequency power supply device, which was conventionally installed in each coolant loop of the primary system and the secondary system, is shared. Self-operation maintainability is improved by reducing maintenance.

を九、可変周波数電源の共用化に伴匹、流量制御系のト
ータルコストを低減でき、上演性が向上する。可変周波
数電源の配量スペースに余裕が生まれる。総合的な熱輸
送体系として、信頼性が向上し、効率的な運用がはかれ
る轡の効果が得られる。
(9) By sharing the variable frequency power source, the total cost of the flow control system can be reduced and performance performance can be improved. This creates more space for variable frequency power supply. As a comprehensive heat transport system, reliability is improved and efficient operation is achieved.

なお、実施例においては、可変周波数電源装置の周波数
制御において、1次系の流量制御特性に一致させた場合
にりいて説明し九が、2次系の流量制@特性に一致させ
、1次流量制御を、1次系流量制御特性と2次系流量制
御特性との差を補正演算器により演算し、この流量補正
信号で、1次系ポンプ駆動交流電動機に付属させた制御
装置を作動させ、1次系流量制御特性に一致させるよう
にしてもよく、この場合も前述の場合と同様に作用し、
同等の効果を得ることができる。
In addition, in the example, the case where the frequency control of the variable frequency power supply device is made to match the flow rate control characteristics of the primary system will be explained. Flow rate control is performed by calculating the difference between the primary system flow rate control characteristics and the secondary system flow rate control characteristics using a correction calculator, and using this flow rate correction signal, a control device attached to the primary system pump drive AC motor is operated. , may be made to match the primary system flow rate control characteristics, and in this case also works in the same manner as in the above case,
You can get the same effect.

以上の如く、本発明の高速増殖炉発電プラントは、運転
保守の面からも、経済性の面からも、信頼性の面から屯
改善された冷却材流量の制御を行うことができ、産業上
の効果の大なるものである。
As described above, the fast breeder reactor power plant of the present invention can control the coolant flow rate with improved reliability in terms of operation and maintenance, economy, and industrial efficiency. The effect is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、高速増殖炉発電プラントにおけるプラント出
力(電気出力)と原子炉出ロナトリウム温fおよび蒸気
発生器出口蒸気温度との関係を示す線図、第2図は、同
じくプラント出力と1次系冷却芦流量および2次系冷却
材流量との関係を示す線図、第3図は、従来の高速増殖
炉発電プラントの冷却材流量制御システムの系統図、第
4図は、本発明の高速増殖炉発電プラントの一実施例の
冷却材流量制御システムの系統図、第5図は同じく1!
部の具体例を示す系會図である。 11・―原子炉、12・・・中間熱交換器、13・・・
1次系冷却材ループ、14−・・1次系主機歩ポンプ、
15−1次系ポンプ駆動交流電動機、16・・・1次系
流量計、19−・・流量制御器、22・・・蒸発器、2
3・・・2次系冷却材ループ、24・・・2次系主循環
ポンプ、21−2次系ポンプ駆動交流電動機、26・・
・2次系流量計、31・・・可変周波数電源、33・・
・補正演算器、35・・・交流電動機付属制御装′)F
 1 図 7°りン/−,ttt々・ltカッ 第2図 γランLi:力 (度#にtsrすfJ/[)算 δ 
Figure 1 is a diagram showing the relationship between plant output (electrical output), reactor output sodium temperature f, and steam generator outlet steam temperature in a fast breeder reactor power plant, and Figure 2 is a diagram showing the relationship between plant output and 1 A diagram showing the relationship between the secondary system cooling reed flow rate and the secondary system coolant flow rate. Fig. 3 is a system diagram of the coolant flow control system of a conventional fast breeder reactor power plant. Fig. 4 is a diagram showing the relationship between the secondary system coolant flow rate and the secondary system coolant flow rate. The system diagram of the coolant flow control system of one embodiment of a fast breeder reactor power plant, Figure 5, is also 1!
It is a system diagram showing a specific example of the department. 11... Nuclear reactor, 12... Intermediate heat exchanger, 13...
Primary system coolant loop, 14-... Primary system main pump,
15--Primary system pump driving AC motor, 16--Primary system flow meter, 19--Flow rate controller, 22--Evaporator, 2
3...Secondary system coolant loop, 24...Secondary system main circulation pump, 21-Secondary system pump drive AC motor, 26...
・Secondary system flowmeter, 31...Variable frequency power supply, 33...
・Correction calculator, 35...AC motor attached control device')F
1 Figure 7 ° phosphorus/-, ttt etc. lt Ka Figure 2 γ Run Li: Force (tsr fJ/[) calculation δ
figure

Claims (1)

【特許請求の範囲】[Claims] L 原子炉°と中間熱交換器との間、および、前記中間
熱交換器と蒸気発生器との間に1それぞれ設けられ冷却
材循環ポンプを有する1次系冷却材ループ、および、2
次系冷却材ループと、前記冷却材循環ポンプを駆動する
交流電動機を、前記1次系および前記2次系冷却材ルー
プの冷却材流量がそれぞれの流量制御特性に従って変る
ように制御する手段とを有する高速増殖炉発電プラン)
kお−て、前記冷却材流量制御手段が、前記1次系およ
び2次系冷却材ループの冷却材循環ポンプを駆動する交
流電動機を、前記1次系および2次系のうち何れか一つ
OSO冷却材ループの流量制御特性に従って動作させる
高周波電源装置と、前記1次系流量制御特性と2次系流
量制御特性との差を求め、そのIIK基づき、前記1次
系および2次系のうち他の系の冷却材ループの冷却材循
環ポンプを駆動する交流電動機を前記他の系の流量側@
特性に一致させる制御装置とよpなることを特徴とする
高速増殖炉見覚プラント。
L A primary coolant loop having a coolant circulation pump, which is provided between the nuclear reactor and the intermediate heat exchanger, and between the intermediate heat exchanger and the steam generator, and 2
means for controlling an AC motor that drives a secondary coolant loop and the coolant circulation pump so that the coolant flow rate of the primary coolant loop and the secondary coolant loop varies according to their respective flow rate control characteristics; fast breeder reactor power generation plan)
k-The coolant flow rate control means controls the AC motor that drives the coolant circulation pump of the primary system and secondary system coolant loop to one of the primary system and secondary system. The high frequency power supply device operates according to the flow control characteristics of the OSO coolant loop, and the difference between the primary system flow control characteristics and the secondary system flow control characteristics is determined, and based on the IIK, the difference between the primary system and secondary system flow control characteristics is determined. Connect the AC motor that drives the coolant circulation pump of the coolant loop of the other system to the flow rate side of the other system.
A fast breeder reactor observation plant characterized by a control device for matching characteristics.
JP56114633A 1981-07-22 1981-07-22 Fast breeder power plant Granted JPS5817397A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56114633A JPS5817397A (en) 1981-07-22 1981-07-22 Fast breeder power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56114633A JPS5817397A (en) 1981-07-22 1981-07-22 Fast breeder power plant

Publications (2)

Publication Number Publication Date
JPS5817397A true JPS5817397A (en) 1983-02-01
JPH021280B2 JPH021280B2 (en) 1990-01-10

Family

ID=14642711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56114633A Granted JPS5817397A (en) 1981-07-22 1981-07-22 Fast breeder power plant

Country Status (1)

Country Link
JP (1) JPS5817397A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835382A (en) * 1981-08-27 1983-03-02 大同特殊鋼株式会社 Scrap preheater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI88985C (en) * 1991-08-29 1993-07-26 Telenokia Oy Method of forming a group call in a cell radio system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835382A (en) * 1981-08-27 1983-03-02 大同特殊鋼株式会社 Scrap preheater
JPS6229708B2 (en) * 1981-08-27 1987-06-27 Daido Steel Co Ltd

Also Published As

Publication number Publication date
JPH021280B2 (en) 1990-01-10

Similar Documents

Publication Publication Date Title
CN110985331A (en) Intelligent pump and active disturbance rejection control method thereof
EP3984798A2 (en) Combined cooling system for motor and motor controller
CN113363532A (en) Control method of fuel cell cooling system
JPS5817397A (en) Fast breeder power plant
JPH08338207A (en) Exhaust heat recovery device
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JP2020197468A (en) High-temperature gas furnace system and heat storage system
JP2531755B2 (en) Water supply control device
JP3941825B2 (en) Thermal power plant operating system
CN218524364U (en) Heat exchange system and air conditioner
CN214642195U (en) Constant temperature and pressure drilling machine and milling machine circulating cooling system
JP3603145B2 (en) Operating device for seawater pump
CN219624522U (en) Industrial water cooling system of thermal power plant
CN213928650U (en) Prevent nanometer fluid and deposit high-efficient wind power generation water cooling system
JP2726463B2 (en) Fuel cell power generation system
JP3258998B2 (en) Operation control method for cogeneration system
JPS5819240B2 (en) Fast breeder reactor inlet sodium temperature control method and device
RU9017U1 (en) AUTOMATED PUMP DRIVE FOR HEAT POWER INSTALLATION
JP3301784B2 (en) Control method of heat storage tank in combined heat and power system
CN116927897A (en) Operation control system and method for cold end system of generator set
JPS6238894A (en) Operation control device of circulation water pump
JPS60211269A (en) Control system of refrigerator system
JP3378325B2 (en) Control device for electromagnetic pump
RU2160873C1 (en) Regulator device
CN117346211A (en) Peak regulating system of electric heating pump of central heating secondary network