JPS58172619A - Substrate for optical device - Google Patents

Substrate for optical device

Info

Publication number
JPS58172619A
JPS58172619A JP5502282A JP5502282A JPS58172619A JP S58172619 A JPS58172619 A JP S58172619A JP 5502282 A JP5502282 A JP 5502282A JP 5502282 A JP5502282 A JP 5502282A JP S58172619 A JPS58172619 A JP S58172619A
Authority
JP
Japan
Prior art keywords
layer
substrate
optical device
buffer layer
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5502282A
Other languages
Japanese (ja)
Inventor
Takao Kawaguchi
隆夫 川口
Kenzo Ochi
謙三 黄地
Kentaro Setsune
瀬恒 謙太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5502282A priority Critical patent/JPS58172619A/en
Publication of JPS58172619A publication Critical patent/JPS58172619A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/035Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect in an optical waveguide structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a substrate for a miniaturized optical device or a substrate for an optical device suitable for use in optical IC by interposing a buffer layer made of a dielectric having a lower refractive index than a light transmitting layer and small transmission loss between the light transmitting layer and an electrically conductive layer to reduce loss. CONSTITUTION:A light transmitting layer 32 made of a material having a higher refractive index than a transparent substrate 31 and an electrooptical effect is formed on the substrate 31 to manufacture an optical waveguide 30. A buffer layer 33 having a lower refractive index than the layer 32 is formed on the layer 32, and an electrically conductive layer 34 is formed on the layer 33. Since the peripheral part 331 of the layer 33 can be tapered by leaving space 42 between the surface 321 of the layer 32 and a mask 41 having an opening 411 and by carrying out vacuum deposition, sputtering or ion beam sputtering, a substrate for an optical device with no transmission loss of light waves and beams at the peripheral part of the layer 33 is obtd.

Description

【発明の詳細な説明】 本発明は、光デバイス用基板に関するものであり、特に
光IC用の薄膜光デバイス用基板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a substrate for an optical device, and particularly to a substrate for a thin film optical device for an optical IC.

電子回路で電気を導くのに導線を使用するように、また
マイクロ波回路では導波管を使用するように、光信号処
理システムあるいは光ICでは各種の光導波路が用いら
れている。
Just as conductive wires are used to conduct electricity in electronic circuits, and waveguides are used in microwave circuits, various optical waveguides are used in optical signal processing systems or optical ICs.

小形化光デバイスは従来例えば第1図(a) t (b
) 。
Conventionally, miniaturized optical devices, for example, Fig. 1 (a) t (b
).

(C)に示すような、スラブ型(図a)あるいは矩形型
に分類されるリッジ型(図b)そして拡散型(図C)の
導波路を用いて形成していた。この場合、スラブ型で例
えば石英ガラスからなる基板1の−Lvc、硼珪酸ガラ
スからなる薄層2を設ける。
As shown in (C), it was formed using waveguides of slab type (Figure a), ridge type (Figure B) classified as rectangular type, and diffused type (Figure C). In this case, -Lvc of a slab-type substrate 1 made of, for example, quartz glass, and a thin layer 2 made of borosilicate glass are provided.

リッジ型では例えば石英ガラスからなる基板3の」−に
、硼珪酸ガラスからなる薄層4を設ける。また、拡散型
では、例えばLiNbO3単結晶基板5の表面に、Ti
の拡散層からなる導波路6を設ける。
In the ridge type, a thin layer 4 made of borosilicate glass is provided on a substrate 3 made of quartz glass, for example. In addition, in the diffusion type, for example, Ti is placed on the surface of the LiNbO3 single crystal substrate 5.
A waveguide 6 made of a diffusion layer is provided.

この種の光導波路は光の伝達のみならず、各種光回路、
例えば光スィッチの形成あるいはこれらを集積化した光
ICの形成に用いられる。特に電界を加えることにより
屈折率の変化か生じる電気光学効果を有する材料で光導
波路を形成し、第2図(a) 、 (b)に示すような
、プリズム結合型(図a)あるいは導波路の端面から直
接光波ビームを入射するヘッドオン型(図b)の光デバ
イス用基板を形成していた。この場、倉、プリズム結合
型(図a)では、例えばL IN b O3単結晶基板
11の表面に、T1の拡散層からなる導波路12を設け
、導波路12の上にプリズム結合部13を除きバッファ
層14を設け、バッファ層14の上に導電性層16を設
ける。またへラドオン型(図b)では例えばL x N
 b Oa単結晶基板21の表面に、Tiの拡散層から
なる導波路22を設け、導波路22上に全ム結合型(図
a)のバッファ層14はメタルマスクあるいはフォトリ
ングラフを用いて形成されるので、バッファ層14の端
面16は滑らかな面を形成することが困難である。特に
メタルマスクで形成した場合端面16の導波路12との
交線部17がメタルマスクの着脱のさいに破損されやす
く滑らかに形成することか難しいので、端面において光
像ビームの伝搬ロスが生じるという欠点がある。
This type of optical waveguide is used not only for light transmission, but also for various optical circuits.
For example, it is used to form optical switches or optical ICs in which these are integrated. In particular, an optical waveguide is formed using a material that has an electro-optic effect that causes a change in refractive index when an electric field is applied, and a prism-coupled type (Figure a) or waveguide as shown in Figures 2 (a) and (b) is used. A head-on type (Fig. b) optical device substrate was formed, in which a light beam is directly input from the end face of the substrate. In this in-place, prism-coupled type (Fig. a), for example, a waveguide 12 made of a T1 diffusion layer is provided on the surface of a L IN b O3 single crystal substrate 11, and a prism coupling part 13 is placed on the waveguide 12. A buffer layer 14 is provided, and a conductive layer 16 is provided on the buffer layer 14. In addition, in the heradon type (Fig. b), for example, L x N
b A waveguide 22 made of a Ti diffusion layer is provided on the surface of the Oa single-crystal substrate 21, and a buffer layer 14 of the all-mum coupling type (Fig. a) is formed on the waveguide 22 using a metal mask or a photorin graph. Therefore, it is difficult to form a smooth end surface 16 of the buffer layer 14. In particular, when forming with a metal mask, the intersection 17 of the end face 16 with the waveguide 12 is easily damaged when the metal mask is attached and removed, and it is difficult to form it smoothly, resulting in a propagation loss of the optical image beam at the end face. There are drawbacks.

また、第1図(b)に示したリッジ型で光デバイス用基
板を構成すると表面に凹凸があるから、特に薄層4の側
面7にバッファ層の端面を形成することが困難で、端面
での光波ビームの伝搬ロスが大きいという欠点がある。
Furthermore, if the substrate for an optical device is constructed in the ridge type shown in FIG. The disadvantage is that the propagation loss of the light wave beam is large.

このだめリッジ型ではヘッドオン型の光デバイス用基板
しか形成できないという欠点がある。しかし、ヘッドオ
ン型では、通常伝搬層の膜厚が数μmにすぎず位置合せ
端面の平坦さに対する要求が厳しく実用的ではない。以
上のように従来の構造ではバッファ層の端面での光波ビ
ームの伝搬ロスのため複数の光デバイスを集積化する場
合、集積度に限界があるという欠点がある。
This ridge type has the disadvantage that only a head-on type optical device substrate can be formed. However, in the head-on type, the film thickness of the propagation layer is usually only a few μm, and the flatness of the alignment end face is strictly required, making it impractical. As described above, the conventional structure has the disadvantage that there is a limit to the degree of integration when a plurality of optical devices are integrated due to the propagation loss of the light wave beam at the end face of the buffer layer.

本発明はこれらの光デバイス用基板の構造と形成方法お
よびその構成材料に改良を加え、従来の光デバイス用基
板の欠点を除去するものである。
The present invention improves the structure and formation method of these optical device substrates, as well as their constituent materials, and eliminates the drawbacks of conventional optical device substrates.

すなわち本発明の目的は、小型光デバイス用基板あるい
は光ICに用いるのに適した光デノくイス用基板の構造
と形成方法とその構成材料を与えることである。
That is, an object of the present invention is to provide a structure, a method for forming an optical denosing chair substrate suitable for use in a small optical device substrate or an optical IC, and its constituent materials.

以下、図面を用い本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail using the drawings.

第3図(a) 、 (b)は本発明の一実施例にかかる
光デバイス用基板を示す。
FIGS. 3(a) and 3(b) show an optical device substrate according to an embodiment of the present invention.

図に示すように、本実施例の光デバイス用基板は、透明
基板31上にその透明基板31より大きい屈折率を有し
かつ電気光学効果を持つ材料からなる光伝搬層32を設
けた光導波路3oにおいて、少なくとも光伝搬層32上
に光伝搬層32より小さい屈折率を有するバッファ層3
3を設け、さらに少なくともバッファ層33の上に導電
性層34を設けている。
As shown in the figure, the optical device substrate of this embodiment is an optical waveguide in which a light propagation layer 32 made of a material having a larger refractive index than the transparent substrate 31 and having an electro-optic effect is provided on a transparent substrate 31. 3o, a buffer layer 3 having a refractive index smaller than that of the light propagation layer 32 at least on the light propagation layer 32;
3 is provided, and furthermore, a conductive layer 34 is provided at least on the buffer layer 33.

第3図(a) 、 (b)に示すごとく、本発明の実施
例にかかる光デバイス用基板はバッファ層33の周端部
331において、光伝搬層32中を伝搬する光波ビーム
のバッファ層33により被覆された光伝搬層321への
入射位置におけるバッファ層33の周端部331の厚さ
を連続的に変化させテ〜ノくを設けている。また、バッ
ファ層33は第4図に示すように光伝搬層32の表面3
21と開孔部411を有するマスク41との間に空間4
2を設け、蒸着手段たとえば真空蒸着、スパッタ蒸着、
イオンビームスパッタ蒸着などにより周端部331にテ
ーパを有するバッファ層33を形成できるので、従来の
光デバイス用基板に見られたようなバッファ層の周端部
での光波ビームの伝搬ロスのない光デバイス用基板が実
現できる。光伝搬層32とマスフ41との間の空間は0
.01 flから1頗あけるのがよいことを見出した。
As shown in FIGS. 3(a) and 3(b), in the optical device substrate according to the embodiment of the present invention, at the peripheral edge 331 of the buffer layer 33, the buffer layer 33 of the light wave beam propagating in the light propagation layer 32 The thickness of the peripheral end 331 of the buffer layer 33 at the position of incidence on the light propagation layer 321 covered with the light is continuously changed to provide a thickness. Further, the buffer layer 33 is formed on the surface 3 of the light propagation layer 32 as shown in FIG.
21 and a mask 41 having an opening 411.
2, and a vapor deposition means such as vacuum vapor deposition, sputter vapor deposition,
Since the buffer layer 33 having a tapered peripheral edge 331 can be formed by ion beam sputter deposition or the like, there is no propagation loss of the light wave beam at the peripheral edge of the buffer layer as seen in conventional optical device substrates. A device substrate can be realized. The space between the light propagation layer 32 and the mass flow 41 is 0.
.. I found that it is better to leave one space apart from 01 fl.

すなわち、0.01tll以下ではバッファ層の厚さは
例えば0.2μmとするとバッファ層の形成時にバッフ
ァ層とマスクが蒸着物質により接合しマスクを取りばず
すさいにノ(ノファ層の周端部を破損し、光波ビームの
伝搬ロスを生じる。11M以上ではバッファ層の加工精
度が211I11以上となり、光デバイス用基板の小型
化が困難となる。また、リッジ型の光導波路においては
特にスパッタ蒸着によりバッファ層を形成すると第1図
に示した薄層4の側面7にもバッファ層が滑らかに形成
され、光波ビームの伝搬ロスをなくすことができ、リッ
ジ型光導波路でもプリズム結合光デバイス用基板が形成
できることを見出した。
In other words, if the thickness of the buffer layer is, for example, 0.2 μm below 0.01 tll, the buffer layer and the mask will be bonded by the vapor deposited substance during the formation of the buffer layer, and as soon as the mask is removed, If it is more than 11M, the processing accuracy of the buffer layer will be more than 211I11, making it difficult to miniaturize the substrate for optical devices.In addition, in ridge-type optical waveguides, especially due to sputter deposition, When the buffer layer is formed, the buffer layer is also smoothly formed on the side surface 7 of the thin layer 4 shown in FIG. 1, and the propagation loss of the light wave beam can be eliminated. I discovered that it is possible to form

本発明者らは、この種の光デバイス用基板の形成に、最
適の構成材料のあることを見出した。すなわち、第3図
に示すように光伝搬層32に導電性層34を実装する場
合、光波ビームに伝搬ロスを生ずるので光伝搬層32と
導電性層34との間に光伝搬層の屈折率より小さい屈折
率を有する伝搬ロスの少ない誘電体、たとえばS 10
2 (石英)。
The present inventors have discovered that there is an optimal constituent material for forming this type of optical device substrate. That is, when the conductive layer 34 is mounted on the light propagation layer 32 as shown in FIG. A low propagation loss dielectric with a smaller refractive index, e.g. S 10
2 (quartz).

ソーダガラス、ホウ珪酸ガラス+ ’90+α−A12
03゜スピネルの少なくとも一種で構成したバッファ層
32を挿入することにより損失の軽減を図ることができ
ることを確認した。
Soda glass, borosilicate glass + '90+α-A12
It has been confirmed that the loss can be reduced by inserting the buffer layer 32 made of at least one type of 03° spinel.

第3図に示す導電性層34はAu 、Ag 、 Pt 
、Cu 。
The conductive layer 34 shown in FIG. 3 is made of Au, Ag, Pt.
, Cu.

Al 、 Cr 、 Ti 、Mo 、Wの金属の少な
くとも一種で構成すると有効である。この場合、例えば
透明導電膜を用いても同等の効果が得られる。また、導
電性層34は通常の半導体プロセスに用いる例えばフォ
トリソ加工により、電極パターンを形成することが有効
である。
It is effective to use at least one of the following metals: Al, Cr, Ti, Mo, and W. In this case, the same effect can be obtained even if a transparent conductive film is used, for example. Furthermore, it is effective to form an electrode pattern on the conductive layer 34 by, for example, photolithography, which is used in a normal semiconductor process.

本発明の光デバイス用基板の構成とその実現の可能性に
ついて検索した結果、例えば基板にL IN b Os
単結晶基板を用い、Tiの拡散層からなる光伝搬層を設
け:゛ネと、バッファ層に石英S i02ガラスが適し
、電極に例えば蒸着Alが適していることをa認した。
As a result of searching for the structure of the substrate for optical devices of the present invention and the possibility of its realization, it was found that, for example, LIN b Os
Using a single-crystal substrate, a light propagation layer consisting of a Ti diffusion layer was provided, and it was found that quartz Si02 glass was suitable for the buffer layer and, for example, vapor-deposited Al was suitable for the electrode.

すなわち、この種の構成材料では、スパッタリング法お
よび真空蒸着法という薄膜形成技術を導入することによ
り、本発明にかかる構造の光デバイス用基板が実現でき
、光ICなど、光集n化デバイスの実現に有効であるこ
とを確認した。
In other words, with this kind of constituent material, by introducing thin film forming techniques such as sputtering and vacuum evaporation, it is possible to realize a substrate for an optical device having the structure according to the present invention, and it is possible to realize a light concentrating device such as an optical IC. It was confirmed that it is effective.

次に本発明にかかる光デバイス用基板の形成手順と構成
材料要素をさらに詳しく説明する。
Next, the formation procedure and constituent material elements of the optical device substrate according to the present invention will be explained in more detail.

まず、例えばTi拡散のL iN b Os光導波路の
表面にTi拡散層からなる光伝搬層とマスクを0.1間
離して、例えば石英ガラスを0.21tm程度たとえは
高周波スパッタリングで蒸着し、光結合部を除きバッフ
ァ層を設ける。さらに例えばAe膜を例えば0.2μm
真空蒸着し、丈に通常のフォトリソ加工により導電性層
を形成する。この場合元払合部から入射された光波ビー
ムはバッファ層の端部を通過し、バッファ層上に設けた
導電性層に適当な電界を加える光伝搬層の屈折率が電気
光学効果により変化し、光波ビームが制御されて伝搬す
る。具体的にはバッファ層の端□部にバッファ層か例え
ば0.2μmの場合1馴程度の長さにわたって連続的に
膜厚が変化しテーパが形成され、従来のバッファ層の端
部での破損および汚れのためsdBの伝搬ロスであった
ものがo、1dB以下となり、前記実施例の場合非常に
改善されたことが確認できる。
First, for example, on the surface of a Ti-diffused LiN b Os optical waveguide, a light propagation layer made of a Ti-diffused layer and a mask are separated by 0.1, and silica glass is deposited to a thickness of about 0.21 tm, for example by high-frequency sputtering. A buffer layer is provided except for the bonding portion. Furthermore, for example, the Ae film has a thickness of, for example, 0.2 μm.
Vacuum evaporation is performed, and a conductive layer is formed along the length using conventional photolithography. In this case, the light wave beam incident from the pre-transmission part passes through the edge of the buffer layer, and the refractive index of the light propagation layer, which applies an appropriate electric field to the conductive layer provided on the buffer layer, changes due to the electro-optic effect. , a light wave beam is propagated in a controlled manner. Specifically, the thickness of the buffer layer changes continuously over a length of about 1 inch in the case of a buffer layer of 0.2 μm, and a taper is formed at the end of the buffer layer, which causes breakage at the end of the conventional buffer layer. It can be confirmed that the propagation loss of sdB due to dirt and contamination has decreased to less than 1 dB, which is a significant improvement in the case of the above embodiment.

以上の説明ではバッファ層として石英ガラスについて述
べたが、バッファ層としては光の屈折率が光の伝搬層よ
り小さければよく、石英ガラスに限定されるものでない
。例えは、硼珪酸ガラス。
Although silica glass has been described as the buffer layer in the above description, the buffer layer is not limited to silica glass as long as the refractive index of light is smaller than that of the light propagation layer. An example is borosilicate glass.

ソーダガラスの他、窒化シリコン等でも実用できる。In addition to soda glass, silicon nitride and other materials can also be used.

捷だ本発明者らは光デバイス用基板の光導波路として、
第1図(a)に示す構成のものを用いたが、第1図(b
) 、 (C)に示す光導波路を用いても、本発明の効
果が得られる。
As an optical waveguide for an optical device substrate, the present inventors
The configuration shown in Figure 1(a) was used, but the configuration shown in Figure 1(b) was used.
The effects of the present invention can also be obtained by using the optical waveguides shown in ) and (C).

また本発明者らは第5図に示すように光伝搬層32上に
複数個のバッファ層33を設け、バッファ層上に導電性
層34を設けて光デバイス用基板を形成するとバッファ
層間に光結合部を設けることができ、かつバッファ層の
端部での光の伝搬ロスもないので、光ICなどの光集積
化デバイスの実現に有効であることを確認した。
Furthermore, the present inventors have provided a plurality of buffer layers 33 on a light propagation layer 32 and a conductive layer 34 on the buffer layers to form an optical device substrate as shown in FIG. Since a coupling portion can be provided and there is no light propagation loss at the end of the buffer layer, it has been confirmed that it is effective for realizing optical integrated devices such as optical ICs.

以上の説明から明らかなごとく、本発明にかかる光デバ
イス用基板は従来のバッファ層に見られたような場面で
の伝搬ロスがないので、光デバイスの小型化、集積化、
光IC等の集積化機能デバイス用として有効である。
As is clear from the above description, the substrate for optical devices according to the present invention has no propagation loss as seen in conventional buffer layers, so it is possible to miniaturize and integrate optical devices.
It is effective for integrated functional devices such as optical ICs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b) 、 (c)はそれぞれ薄膜
導波路の構成をホす斜視図、第2図(a) 、 (b)
はそれぞれ従来の光デバイス用基板の斜視図、第3−1
3 (a) 、 (b)はそれぞれ本発明の一実施例で
ある光デバイス用基叛の斜視図および断面図、第4図は
前記光デバイス用基板のバッファ層の形成方法を示す図
、第5図は本発明の他の実施例である光デバイス用基板
の斜視図である。 1.3,5,11.21.31 ・・・・・・基板、1
42333山・・・バッファ′:層、15,24.34
・・・・・・導電性層、32・・・・・・光伝搬層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 簡2図 113図 t (b)
Figures 1 (a), (b), and (c) are perspective views showing the structure of the thin film waveguide, and Figures 2 (a) and (b) respectively.
3-1 are respectively perspective views of conventional optical device substrates.
3(a) and (b) are respectively a perspective view and a sectional view of a substrate for an optical device, which is an embodiment of the present invention, and FIG. 4 is a diagram showing a method for forming the buffer layer of the substrate for an optical device. FIG. 5 is a perspective view of an optical device substrate according to another embodiment of the present invention. 1.3,5,11.21.31...Substrate, 1
42333 mountain...buffer': layer, 15, 24.34
. . . Conductive layer, 32 . . . Light propagation layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 113 Figure t (b)

Claims (6)

【特許請求の範囲】[Claims] (1)透明基板上に前記透明基板より大きい屈折率を有
しかつ電気光学効果をもつ材料からなる光伝搬層を設け
、かつ前記光伝搬層上に前記光伝搬層より小さい屈折率
を有するバッファ層を設け、さらに前記バッファ層上に
導電性層を設けたことを特徴とする光デバイス用基板。
(1) A light propagation layer made of a material having a refractive index larger than the transparent substrate and having an electro-optic effect is provided on a transparent substrate, and a buffer having a refractive index smaller than the light propagation layer is provided on the light propagation layer. 1. A substrate for an optical device, characterized in that a conductive layer is provided on the buffer layer.
(2)バッファ層の周端部の厚さを連続的に変化させ前
記周端部がテーパを有するようにしたことを特徴とする
特許請求の範囲第1項記載の光デバイス用基板。
(2) The substrate for an optical device according to claim 1, wherein the thickness of the peripheral edge of the buffer layer is continuously changed so that the peripheral edge has a taper.
(3)バッファ層が光伝搬層上に浮かせて配置したマス
クの開孔部を通し蒸着により形成されたバッファ層であ
ることを特徴とする特許請求の範囲第1項記載の光デバ
イス用基板。
(3) The substrate for an optical device according to claim 1, wherein the buffer layer is a buffer layer formed by vapor deposition through an opening of a mask placed floating above the light propagation layer.
(4)バッファ層が石英、ソーダガラス、ポウ珪酸カラ
ス+−Mg O、a A 1203.スピネルのうちの
少なくとも一種で構成されたことを特徴とする特許請求
の範囲第1項記載の光デバイス用基板。
(4) Buffer layer is quartz, soda glass, porosilicate glass+-MgO, a A 1203. The optical device substrate according to claim 1, characterized in that the substrate is made of at least one type of spinel.
(5)導電性層がAu、Ag、Pt、Cu、Al1.C
r、Ti。 Mo、Wのうちの少なくとも一種で構成されたことを特
徴とする特許請求の範囲第1項記載の光デバイス用基板
(5) The conductive layer is Au, Ag, Pt, Cu, Al1. C
r, Ti. The optical device substrate according to claim 1, characterized in that the substrate is made of at least one of Mo and W.
(6)導電性層がパターン加工を施されたことを特徴と
する特許請求の範囲第1項記載の光デバイス用基板。
(6) The optical device substrate according to claim 1, wherein the conductive layer is patterned.
JP5502282A 1982-04-01 1982-04-01 Substrate for optical device Pending JPS58172619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5502282A JPS58172619A (en) 1982-04-01 1982-04-01 Substrate for optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5502282A JPS58172619A (en) 1982-04-01 1982-04-01 Substrate for optical device

Publications (1)

Publication Number Publication Date
JPS58172619A true JPS58172619A (en) 1983-10-11

Family

ID=12987036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5502282A Pending JPS58172619A (en) 1982-04-01 1982-04-01 Substrate for optical device

Country Status (1)

Country Link
JP (1) JPS58172619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375725A (en) * 1986-09-15 1988-04-06 ポラロイド コ−ポレ−シヨン Planar type waveguide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375725A (en) * 1986-09-15 1988-04-06 ポラロイド コ−ポレ−シヨン Planar type waveguide

Similar Documents

Publication Publication Date Title
EP0585565B1 (en) Optical waveguide device and manufacturing method of the same
US5785874A (en) Optical waveguide device bonded through direct bonding and a method for fabricating the same
US20030228088A1 (en) All optical switch fabricated by a thin film process
JPS58172619A (en) Substrate for optical device
US5687265A (en) Optical control device and method for making the same
JPS5944004A (en) Substrate for thin-film optical circuit
JPS5930507A (en) Substrate for optical circuit
JPS59176731A (en) Optical switch
JPS58173704A (en) Optical focusing device
JP2580127B2 (en) Waveguide polarizer
JPS5944607B2 (en) thin film optical switch array
JP3018787B2 (en) Manufacturing method of optical waveguide
JPH08179143A (en) Optical waveguide and its production
JPS62257133A (en) Waveguide type deflector
JPS60177304A (en) Optical attenuator
JPS6269247A (en) Optical switch
JPH06281899A (en) Branch interferring optical waveguide device
JPS59198432A (en) Waveguide type optical switch
JPS6173908A (en) Photocoupling element
JP3275888B2 (en) Optical waveguide device
JPH04159515A (en) Production of optical waveguide type control element
JP2624199B2 (en) Light control device and manufacturing method thereof
JPH0760236B2 (en) Optical switch element
JPS6086529A (en) Manufacture of optical wave guide switch
JPS6234126A (en) Optical waveguide type device