JPS58170856A - Knocking control device for internal-combustion engine - Google Patents

Knocking control device for internal-combustion engine

Info

Publication number
JPS58170856A
JPS58170856A JP57055846A JP5584682A JPS58170856A JP S58170856 A JPS58170856 A JP S58170856A JP 57055846 A JP57055846 A JP 57055846A JP 5584682 A JP5584682 A JP 5584682A JP S58170856 A JPS58170856 A JP S58170856A
Authority
JP
Japan
Prior art keywords
knocking
combustion engine
internal combustion
signal
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57055846A
Other languages
Japanese (ja)
Other versions
JPS6252134B2 (en
Inventor
Satoru Komurasaki
悟 小紫
Yoshinobu Morimoto
森本 義信
Yoichi Kadota
門田 陽一
Atsushi Ueda
敦 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57055846A priority Critical patent/JPS58170856A/en
Priority to FR8305267A priority patent/FR2524557B1/en
Priority to DE19833311968 priority patent/DE3311968A1/en
Priority to US06/480,647 priority patent/US4508079A/en
Publication of JPS58170856A publication Critical patent/JPS58170856A/en
Publication of JPS6252134B2 publication Critical patent/JPS6252134B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • F02P5/1521Digital data processing dependent on pinking with particular means during a transient phase, e.g. starting, acceleration, deceleration, gear change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • F02P5/1523Digital data processing dependent on pinking with particular laws of return to advance, e.g. step by step, differing from the laws of retard
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • F02P5/1528Digital data processing dependent on pinking for turbocompressed engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To reduce the capacity of a memory by a method wherein in an engine control device using a knocking feedback system, a control signal value is stored only in the zone where knocking takes place. CONSTITUTION:A memory 12 is generally used in common with other purpose and a plurality of kinds of data are stored in the memory. Accordingly, it is necessary to design the memory to have a small storing capacity. The memory 12 is so constructed that it operates only in an operation condition in which knocking generates in the engine. As a consequence, the capacity of the memory can be minimized.

Description

【発明の詳細な説明】 この発明は内燃機関のノック抑制装置に関し、メモリに
記憶された制御量を基準に制御を行う方式に係るもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a knock suppressing device for an internal combustion engine, and relates to a method of performing control based on a control amount stored in a memory.

最近、内燃機関の効率(燃費)、出力の向上のためノッ
キングを検出し抑制するノック抑fI!4装置の開発、
採用が盛んである。
Recently, in order to improve the efficiency (fuel efficiency) and output of internal combustion engines, knock suppression fI that detects and suppresses knocking has been introduced! Development of 4 devices,
Recruitment is booming.

ノッキングは内燃機関の運転条件のうち1点火時期、吸
気温度、吸気湿度、空燃比、及び燃焼室温度等の灸(の
要素に左右されて発生する。これらの要素のうち、実用
上吸気温度、吸気湿度の変化により大きく影響されて、
ノッキングは発生する。これら吸気の温度、湿度は季節
により変化するので、ノッキングの発生状態は季節によ
り変化する。又、季節は一年t−周期として変化するた
めノブキングの発生状態も一年周期で変化する。つtシ
、同一運転状態で短期間において発生し九ノッキングは
同程度であり1発生類度、大きさに大差はない、従って
、同一運転状態で発生したノッキング【抑制するために
必要な制御信号は短期間においてほぼ同じでTo!り、
これらの平均的な制御信号による基本制御に加えノッキ
ング発生毎のバフツキに対する補正制御を遂次行う制御
により。
Knocking occurs depending on one of the operating conditions of an internal combustion engine, such as ignition timing, intake air temperature, intake air humidity, air-fuel ratio, and combustion chamber temperature. Among these factors, in practice, intake air temperature, greatly affected by changes in intake air humidity,
Knocking does occur. Since the temperature and humidity of these intake airs change depending on the season, the state in which knocking occurs changes depending on the season. Furthermore, since the seasons change in a yearly t-cycle, the state of occurrence of knob kings also changes in a yearly cycle. However, the knocking that occurs in the same operating condition in a short period of time is of the same degree, and there is no significant difference in the degree and size of the knocking that occurs in the same operating condition. is almost the same in a short period of time and To! the law of nature,
In addition to the basic control based on these average control signals, the system sequentially performs correction control for buffiness every time knocking occurs.

ノッキングを十分に抑制できる。Knocking can be sufficiently suppressed.

本−発明は上記ノッキング発生の特徴に鑑み、内燃機関
に発生したノッキングを検出し、この検出々力に対応し
て制御信号を発生し、ノッキングを抑制する帰還制御に
おいて、運転状態に対応した平均的な制御信号を効率よ
く記憶しておき、ノッキングの発生時に記憶し九制御信
号に加え、発生毎の小さなノベμ差に対し逐次補正を行
い、ノッキング抑制を応答性よく行おうとするものであ
る。
In view of the above characteristics of knocking, the present invention detects knocking that occurs in an internal combustion engine, generates a control signal in response to the detected force, and performs feedback control that suppresses knocking based on the average value corresponding to the operating state. The purpose of this system is to efficiently store control signals, store them when knocking occurs, and in addition to the nine control signals, sequentially correct small noise μ differences each time knocking occurs, thereby suppressing knocking with good responsiveness. .

以下、本発明の一実施例を図に基づいて説明する。なお
、ノッキング発生の要素は上記の如く数多くあり、いず
れを制御することによってもノッキングを抑制できるが
、この説明では最も多く実用化されている点火時期の制
御の場合について説明する。
Hereinafter, one embodiment of the present invention will be described based on the drawings. As mentioned above, there are many factors that cause knocking to occur, and knocking can be suppressed by controlling any of them, but in this explanation, the case of ignition timing control, which is most often put into practical use, will be explained.

第1図において、α)は内燃機関の回転に伴い基準点火
信号を発生する点火信号発生器、■は点大信号発生器(
1)からの基準点火信号を受は波形整形及び閉路角制御
を行い所望のパルス幅の点火パルスを出力する波形整形
回路、(勾は波形整形回路@からの点火パルスの位相を
後述の演算器(!1)からの制御信号に応じて時間的に
遅れ側に移相し出力する移相器、(4)は移相II(枠
からの点火パルスに対応して点火コイW (11O給電
を継続するスイッチ回路(・)は内燃機関に取付けられ
機関の振動加速度を検出する加速度セン−?、+71は
加速度センサ(6)の検出々力から機関のノッキングに
伴ない発生され九ノッキング成分を選別しノッキング強
度に応じたレベ〜のノッキング信号を出力するノック検
出器、(8)は内燃機関の吸気管圧を検出しその圧力に
対応した圧力信号を出力する圧力センサ、(9)は上記
ノック検出器(7)、圧力センナ(8)からの各々の出
力をそのレペyに応じてデジタμ化するAD変換器、叫
は点火コイA’ +61の駆動端子の電圧波形を受は定
時間パルスをノック検出器(7)と演算器(Illに出
力する波形整形回路で、演算器(IllはAD変換器(
9)を経て入力され九圧カセンナ(8)の出力と波形整
形回路−の出力から機関の運転状態を求め%AD変換器
(9)を経て入力されたノック検出器(7)の出力から
ノッキング強度を求め、又後述のメモリQZから基準制
御信号を求め制御信号を出力する。メモ9tJ’AIr
l演算器(11)に制御され基準制御信号を記憶する。
In Figure 1, α) is an ignition signal generator that generates a reference ignition signal as the internal combustion engine rotates, and ■ is a high-point signal generator (
1) A waveform shaping circuit receives the reference ignition signal from the waveform shaping circuit and outputs an ignition pulse with a desired pulse width by shaping the waveform and controlling the closing angle. The phase shifter (!1) shifts the phase to the delayed side in time and outputs the output according to the control signal from the phase shifter II (!1). The continuous switch circuit (・) is attached to the internal combustion engine and detects the vibration acceleration of the engine. +71 is used to select nine knocking components generated as the engine knocks from the detected force of the acceleration sensor (6). (8) is a pressure sensor that detects the intake pipe pressure of the internal combustion engine and outputs a pressure signal corresponding to that pressure; (9) is the knock detector that outputs a knocking signal of a level corresponding to the knocking intensity; The AD converter converts each output from the detector (7) and the pressure sensor (8) into digital μ according to its repay, and receives the voltage waveform of the drive terminal of the ignition coil A'+61 for a fixed period of time. A waveform shaping circuit that outputs pulses to a knock detector (7) and an arithmetic unit (Ill), where the arithmetic unit (Ill is an AD converter (
9), the operating state of the engine is determined from the output of the nine-pressure counter (8) and the output of the waveform shaping circuit, and the knocking is detected from the output of the knock detector (7), which is input via the %AD converter (9). The intensity is determined, and a reference control signal is also determined from a memory QZ, which will be described later, and the control signal is output. Memo 9tJ'AIr
It is controlled by an l calculator (11) and stores a reference control signal.

第2図はメモ!J Q21に記憶された基準制御信号。Figure 2 is a memo! J Reference control signal stored in Q21.

第3図、第4図及び第5図は第1図番部の動作波形図で
ある。
FIGS. 3, 4, and 5 are operation waveform diagrams of the part shown in FIG. 1.

まず、点火信号発生器(1)〜点火コイ/l/(51か
ら成るイグナイタ部の動作を説明する0点火信号発生器
(1)は内燃機関の回転に伴い点火信号を発生し。
First, the operation of the igniter section consisting of the ignition signal generator (1) to ignition coil /l/(51) will be explained.The ignition signal generator (1) generates an ignition signal as the internal combustion engine rotates.

波形整形回路Q)は上記点火信号を波形整形、閉路角制
御して所望のパルス幅の点火パルスを出力する。上記点
火パルスは移相器(功を経てスイッチ回路(4)に入力
され、スイッチ回路(4)はこの点火パルスに対応して
点火コイA/ (51の給電t−継続する0点火コイy
(6)の給電遮断時に点火電圧が発生され、内燃機関は
点火され運転される。
The waveform shaping circuit Q) shapes the waveform of the ignition signal, controls the closing angle, and outputs an ignition pulse with a desired pulse width. The above ignition pulse is inputted to the switch circuit (4) via a phase shifter, and the switch circuit (4) responds to the ignition pulse by ignition coil A/ (51 power supply t - continuing 0 ignition coil y
When the power supply is cut off in (6), an ignition voltage is generated, and the internal combustion engine is ignited and operated.

圧力センナ(81は内燃機関の吸気管圧を検出し、その
圧力に対応した圧力信号を出力する。この圧力信号はA
D変換器191でデジタμ化され、内燃機関の負荷状態
を表わす信号として演算器(11)に入力される。上記
内燃機関の吸気管圧は機関の負荷状態に敏感に反応し変
化するため、この吸気管圧上検出して得られた圧力セン
ナ(8)からの圧力信号のレベyから内燃機関の負荷状
態を求めることができる。
The pressure sensor (81 detects the intake pipe pressure of the internal combustion engine and outputs a pressure signal corresponding to the pressure. This pressure signal is
The signal is converted into a digital signal by a D converter 191 and inputted to a computing unit (11) as a signal representing the load condition of the internal combustion engine. The intake pipe pressure of the internal combustion engine mentioned above sensitively responds to and changes depending on the load condition of the engine, so the load condition of the internal combustion engine is determined from the level y of the pressure signal from the pressure sensor (8) obtained by detecting the intake pipe pressure. can be found.

波形整形回路−は点火コイV(6)の駆動端子の電圧に
伴って作動し、点火時期に定時間パルスを出力する。
The waveform shaping circuit operates in accordance with the voltage at the drive terminal of the ignition coil V (6) and outputs a fixed time pulse at the ignition timing.

加速度センナ(8)は内燃機関に取付けられていて。The acceleration sensor (8) is attached to the internal combustion engine.

常時内燃機関の振動を検出している。この検出々力には
機関の作動により生じた機械ノイズによるノイズ信号(
例えば、パμグ弁の作動に伴ない検出されるノイズ信号
)にノッキングに伴ない発生し九振動によるノッキング
成分が重畳して含まれる。
Vibration of the internal combustion engine is constantly detected. This detection force includes noise signals (
For example, a knocking component due to vibration generated due to knocking is superimposed on the noise signal detected as a result of the operation of a pump valve.

ノック検出aI(?lは上記加速度検出器(6)からの
検出々力からノッキング信号を選別し、ノッキング強度
に応じたVべμOノッキング信号を出力する。
The knock detection aI (?l) selects a knocking signal from the detected force from the acceleration detector (6) and outputs a VbeμO knocking signal corresponding to the knocking intensity.

このノッキング信号はAD変換器(9)でデジタμ化さ
れ、演算器(11)に入力される。父上記ノック検出器
(7)の出力は波形整形回路叫からの定時間パルスでリ
セットされる。演算器Cl1lはAD変換器(9)を経
て入力された圧力センサ(3)からの圧力信号から機関
の負荷状轢を求め、又波形整形回路時からの定時間パル
スの周期から内燃機関の回転数を求め、これらから機関
の運転状態を判断する。又、AD変換器(9)を経て入
力されたノック検出器(7)からのノッキング信号から
ノッキングの発生を検出する。
This knocking signal is converted into a digital signal by an AD converter (9) and inputted to an arithmetic unit (11). The output of the knock detector (7) is reset by a fixed time pulse from the waveform shaping circuit. The computing unit Cl1l calculates the load condition of the engine from the pressure signal from the pressure sensor (3) inputted via the AD converter (9), and also calculates the rotation of the internal combustion engine from the period of the fixed time pulse from the waveform shaping circuit. Find the numbers and use these to determine the engine's operating status. Furthermore, the occurrence of knocking is detected from the knocking signal from the knocking detector (7) inputted via the AD converter (9).

今、内燃機関にノッキングが発生していると、演算器(
11)は圧力センサ(8)からの圧力信号と波形整形回
路notからの定時間パルスより内燃機関の運転状態を
求め、上記ノッキングのレベyに対応したノック検出器
(7)からのノッキング信号を対応させ、上記運転状態
での基準制御信号として上記ノッキング信号をメモリO
zに記憶させる。内燃機関にノッキングが発生した運転
状態の夫々において、上記の運転状態に対応させたノッ
キング信号のメモリa21への記憶を行い、各運転状態
に対応した基準制御信号のマツプを作成する。
If knocking is occurring in the internal combustion engine, the calculator (
11) determines the operating state of the internal combustion engine from the pressure signal from the pressure sensor (8) and the fixed time pulse from the waveform shaping circuit not, and calculates the knocking signal from the knock detector (7) corresponding to the knocking level y. The above-mentioned knocking signal is stored in memory O as a reference control signal in the above-mentioned operating condition.
Store it in z. In each operating state in which knocking occurs in the internal combustion engine, a knocking signal corresponding to the above-mentioned operating state is stored in the memory a21, and a map of reference control signals corresponding to each operating state is created.

第2図江上記の運転状態に対応させた基準制御信号の記
憶状態(メモリazの自答)のマツデー例を示す、ここ
で、運転状態は内燃機関の負荷と回転数によシ定められ
ていて、回転数はNoからN4%負荷はり、からし、に
分割して定められている。記憶されている基準制御信号
は1例えば回転数N、からN、の範囲において負荷−か
らLlの運転の場合はvl、 、負荷り、からり、では
V幻、負荷−からL3ではVllとなっていて、負荷の
増大に伴いvl、■□。
Figure 2 shows an example of the storage state of the reference control signal (self-answered in memory az) corresponding to the above operating state. Here, the operating state is determined by the load and rotational speed of the internal combustion engine. Therefore, the number of revolutions is determined by dividing it into No. 4, N4% load, and Mustard. The stored reference control signal is 1, for example, in the range of rotational speed N, to N, in the case of operation from load - to Ll, VL, for load - to L3, V illusion, and for load - to L3, Vll. However, as the load increases, vl, ■□.

■幻の順に大きくなっている。■It gets bigger in order of illusion.

ここで、基準制御信号を記憶する上記負荷域は内燃機関
にノッキングが発生する領域に限定していて、メモリ(
lfiの記憶容量を少なくシ、メモリ+121の効率を
高めるようにしている。
Here, the load range in which the reference control signal is stored is limited to the range where knocking occurs in the internal combustion engine, and the memory (
The storage capacity of lfi is reduced and the efficiency of memory +121 is increased.

次に、第3図、第4図及び第5図の波形図を用いて説明
する。
Next, explanation will be given using waveform diagrams of FIGS. 3, 4, and 5.

波形図において、Qは波形整形回路(匂の出力、@はノ
ック検出器(マ)の出力%0は演算器(Il+の出力0
は移相器(呻の出力を示す。
In the waveform diagram, Q is the output of the waveform shaping circuit (output 0), @ is the output of the knock detector (ma), %0 is the output of the arithmetic unit (output 0 of Il+)
indicates the output of the phase shifter (groan).

第3図は内燃機関にノブキングが発生していない場合を
示す。
FIG. 3 shows a case where no knob king occurs in the internal combustion engine.

この場合ノブキングが発生していないためノック検出f
i(丁)の出力(第3図口19)はなく、演算器(11
)の出力(第3図(C))もない、従って移相器(3)
での移相制御は行われないため、波形整形回路(2)の
出力の点火パルス(第3図口)と同位相の点火パルス(
第3図0)がスイッチ回路(4)に入力される。スイッ
チ回路(4)はこの点火パルスに対応して点火コイ/I
/(6)の給電を継続する。
In this case, since no knob king occurs, knocking is detected f
There is no output of i (gate 19 in Figure 3), and there is no output of the arithmetic unit (11
) (Fig. 3(C)), therefore the phase shifter (3)
Since phase shift control is not performed at
0) in FIG. 3 is input to the switch circuit (4). The switch circuit (4) responds to this ignition pulse to turn on the ignition coil/I.
/(6) Continue power supply.

この結果、基準の時点t1.及びt、で点火コイル(6
)の給電が遮断され、点火電圧が発生される。
As a result, the reference time t1. and t, the ignition coil (6
) is cut off and the ignition voltage is generated.

第4図はノッキング制御が必要とする運転の場合の波形
図を示す、この場合、時点t、の点火後にノッキング制
御が必要な運転状態となり、演算器(11)はAD変換
器(9)を経て入力された圧力センサ(8)からの圧力
信号レベp、及び波形整形回路[株]からの定時間パル
スの周期より上記運転状態を求め、メモリ(I21から
この運転状態に対応した基準制御信号VR4(第4図0
)を読み出し出力する。移相器(3)はこの基準制御信
号vR4を受け、波形整形回路@)からの点火パルス(
第4図■)の位相を角度θ1だけ時間的に遅れた側に移
相した点火パルス(第4図口)を出力する。この点火パ
ルス0に伴いスイッチ回路(4)は点火コイA/(組の
給電を継続し、基準の時点tい及びt、より夫々角度θ
1だけ遅角した時点jls及び11で点火電圧が発生さ
れ、内燃機関は運転される。この結果、ノッキングが発
生しない内燃機関の運転が行われる。
FIG. 4 shows a waveform diagram for an operation that requires knocking control. In this case, the operating state that requires knocking control occurs after ignition at time t, and the arithmetic unit (11) controls the AD converter (9). The above-mentioned operating state is determined from the pressure signal level p from the pressure sensor (8) inputted via the pressure sensor (8) and the period of the fixed-time pulse from the waveform shaping circuit Co., Ltd., and the reference control signal corresponding to this operating state is stored from the memory (I21). VR4 (Fig. 4 0
) is read and output. The phase shifter (3) receives this reference control signal vR4 and outputs the ignition pulse (
The ignition pulse (Fig. 4) whose phase is shifted by an angle θ1 to the side temporally delayed by the angle θ1 is output. With this ignition pulse 0, the switch circuit (4) continues to supply power to the ignition coil A/(set), and from the reference time points t and t, the switch circuit (4)
At times jls and 11 when the angle is retarded by 1, the ignition voltage is generated and the internal combustion engine is operated. As a result, the internal combustion engine is operated without knocking.

第S図は気筒間の燃焼状態が若干異なり、上記第4図に
示し九基準制御信号による制御では若干の制御不足とな
る場合の波形図を示す。
FIG. S shows a waveform diagram in the case where the combustion conditions between the cylinders are slightly different and the control based on the nine reference control signals shown in FIG. 4 is slightly insufficient.

点火時点t、直後に演算器(111は圧力センサ(8)
からの圧力信号のレベμ、及び波形整形回路時からの定
時間パルスの周期から各々機関の負荷及び回転数を検出
し、これら運転状態に対応した基準制御信号をメモ91
!fiから読み出し、制御信号V幻(第5図口)t−出
力する。この制御信号Vlを受は移相器(′4は、波形
整形回路(2)からの点火パルス(第5図口)の位相を
角度I!だけ時間的に遅れた側に移相した点火パルス(
第5図0)を出力する。
Immediately after the ignition time t, a computing unit (111 is a pressure sensor (8)
The load and rotation speed of the engine are detected from the level μ of the pressure signal from the waveform shaping circuit and the period of the fixed time pulse from the waveform shaping circuit, and the reference control signal corresponding to these operating conditions is memorized in memo 91.
! It reads from fi and outputs the control signal V (Fig. 5) t-. This control signal Vl is received by a phase shifter ('4 is an ignition pulse that shifts the phase of the ignition pulse (portion in Figure 5) from the waveform shaping circuit (2) by an angle I! (
Figure 5 0) is output.

こo点火パルス0に伴いスイッチ回路(4)は点火コイ
μ(M+の給電を行い、基準の時点t、より遅れた時点
tmで点火電圧が発生され、機関は運転される。
In response to the ignition pulse 0, the switch circuit (4) supplies power to the ignition coil μ (M+), and ignition voltage is generated at a reference time t and a later time tm, and the engine is operated.

しかし、今上記角度θ、だけ遅れた時点t〆点火された
にもかかわらず燃焼状類が少し変動していて低いVべ〃
のノックがひきつづき発生した場合ノック検出器(?l
からノック信号Kが出力される。
However, even though the ignition was ignited at the time t, which was delayed by the above angle θ, the combustion status was slightly fluctuating and the Vbeta was low.
If knocking continues to occur, the knock detector (?l
A knock signal K is output from.

演算器(Illはこのノック信号Kt−受け、このレベ
μに対応した補正を上記制御信号v1.に加えた制御信
号vRJを出力する。この結果次の点火は基準の点火時
期の時点t3より角度0.遅角した時点t1で行われて
補正され、ノッキングは十分に抑制される。
The arithmetic unit (Ill) receives this knock signal Kt- and outputs a control signal vRJ which is obtained by adding a correction corresponding to this level μ to the control signal v1. As a result, the next ignition is started at an angle starting from the reference ignition timing time t3. 0. Correction is performed at the retarded time point t1, and knocking is sufficiently suppressed.

従って、角度θ、は角度θ3より大きく、これらの差。Therefore, the angle θ is greater than the angle θ3, and the difference between them.

つまクパラツキ補正角度は(θm−’j)で、これはノ
ッキング信号にのレベμに対応する。
The toe clutter correction angle is (θm-'j), which corresponds to the level μ of the knocking signal.

、ところで、上記メモリα力は通常他の用途と共用し異
なる複数種のデータを1つのメモリ内に記憶させている
。従って、メモリ(11Jの記憶容量は極力少なくシ、
小溶量で可能なように設計する必要がある。このため、
上述の動作説明□から明らかなように1機関にノッキン
グが発生する運転状態においてのみ、メモリ(lzが作
動して記憶するようにしている。
By the way, the above-mentioned memory α is usually used for other purposes, and a plurality of different types of data are stored in one memory. Therefore, the storage capacity of the memory (11J) is as small as possible.
It is necessary to design it so that it can be dissolved in a small amount. For this reason,
As is clear from the above-mentioned operation explanation □, the memory (lz) is operated and stored only in operating conditions where knocking occurs in one engine.

通常、ノッキングは機関の負荷状態と関連して発生する
ので、上記メモリα力は機関負荷が所定値以上の高負荷
側で作動するように限定し、記憶容量を少なくシ、利用
効率を高めるのが望ましい。
Normally, knocking occurs in relation to the load condition of the engine, so the above memory α force is limited to operating when the engine load is higher than a predetermined value, thereby reducing the memory capacity and increasing utilization efficiency. is desirable.

上記実施例において、実際の制御量がメモ!J 021
から読み出した基準制御信号より所定値以上に大きく変
わった場合、メモリα2の基準制御信号値を修正するこ
とにより、内燃機関のノッキング発生状態の大きな変化
に対し基準制御信号を修正でき、前述のノッキング発生
要素の季節的変化に対する修正が行え、適切な値の基準
制御信号を記憶させておくことができる。tた。メモリ
α2の基準制御信号の初期値は内燃機関設計値から求め
られる値を予め記憶させておいてもよく、これらの平均
値上−律に記憶させておいてもよく、いずれも初期値を
ゼワとした場合よp初期の制御性を改善できる。
In the above example, the actual control amount is memorized! J021
If the reference control signal read out from the reference control signal has changed significantly by a predetermined value or more, by correcting the reference control signal value in the memory α2, the reference control signal can be corrected in response to a large change in the state of occurrence of knocking in the internal combustion engine. Corrections can be made for seasonal changes in the generating elements, and reference control signals with appropriate values can be stored. It was. The initial value of the reference control signal in the memory α2 may be a value calculated from the internal combustion engine design value, or may be stored in accordance with the average value of these values. It is possible to improve the controllability at the initial stage of p compared to the case where the

さらに、上記実施例ではノック検出器(7)の出力のリ
セットを点火時期毎に行っているが、これに限らずノッ
キング発生後の点火時期に行ってもよい、あるいは、検
出信号を加算し、ノッキング発生時の変化量を検出して
補正制御するようにもで′き、この場合、出力が所定値
になった時にリセットすればよい。
Further, in the above embodiment, the output of the knock detector (7) is reset at each ignition timing, but the reset is not limited to this, and may be performed at the ignition timing after knocking occurs, or by adding the detection signals, It is also possible to perform correction control by detecting the amount of change when knocking occurs; in this case, it is only necessary to reset when the output reaches a predetermined value.

さらに、ノッキング発生要素は数多くあるが、これらの
うち実施例に示した点火時期制御あるいは燃料制御によ
る空燃比制御が望ましい、なぜならば、点火時期制御、
空燃比制御に係る装置は数多く実用化されていて、実現
が容易であるばかりでなく、低コストで実現できるから
である。
Furthermore, although there are many factors that cause knocking, air-fuel ratio control using ignition timing control or fuel control as shown in the embodiment is preferable because ignition timing control,
This is because many devices related to air-fuel ratio control have been put into practical use, and are not only easy to implement, but can also be implemented at low cost.

以上のように、本発明によれば内燃機関の振動を検出す
る加速度センサの出力からノッキングに伴ない生じたノ
ッキング信号を選別し、そのレペμに応じてノッキング
発生要素を制御し、ノッキングを抑制する系において、
内燃機関にノッキングが発生する運転状態に限定して機
関の負荷、回転数等の運転状態に対応して制御信号値を
記憶□させておき、ノッキング発生時に運転状態を検出
し、その運転状態に対応した基準制御信号を読み出し、
この基準制御信号によりノッキング発生要素を制御する
ようにしたことにより、上記記憶部の容量を最小の規模
にしてノッキング発生時に適切な制御信号を速かに出力
して制御でき、ま友、ノッキング発生要素の変化がある
場合にその変化分に相当する補正制御を加えて行い、遂
次補正することによp極めて適切なノッキング抑制が行
える。
As described above, according to the present invention, the knocking signal generated due to knocking is selected from the output of the acceleration sensor that detects the vibration of the internal combustion engine, and the knocking generation element is controlled according to the repetition μ, thereby preventing the knocking. In the suppressing system,
Control signal values are memorized in accordance with engine load, rotation speed, and other operating conditions, limited to operating conditions where knocking occurs in the internal combustion engine, and the operating condition is detected when knocking occurs, and the control signal value is adjusted to that operating condition. Read the corresponding reference control signal,
By controlling the knocking generation elements using this reference control signal, it is possible to minimize the capacity of the storage section and quickly output and control appropriate control signals when knocking occurs. When there is a change in an element, a correction control corresponding to the change is added and successive corrections are performed, thereby achieving extremely appropriate knocking suppression.

さらに、上記補正量が所定値以上に大きくなった場合に
、メモνの基準制御信号値を修正することにより、ノッ
キング発生要素の大きな変動にも対応して常に適切なノ
ッキング抑制が行えるという実用1優れた効果が得られ
るものである。
Furthermore, when the above-mentioned correction amount becomes larger than a predetermined value, by correcting the reference control signal value in the memo ν, it is possible to always appropriately suppress knocking in response to large fluctuations in the factors that cause knocking. Excellent effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、jg2図
は基準制御信号の記憶のマツプ図、第3図〜第5図は第
1図番部の動作波形図である。 図中、■は点大信号発生器、(2)、 +10)は波形
整形回路、(3)は移相器、(4)はスイッチ回路、(
6)は点火スイ&、flllは加速度センナ、(7)は
ノック検出器。 (8)は圧力センサ、 191はAD変換器、 (Il
lは演算器。 a3はメモリを示す。 第1図 第2図 II玉 第3図      第4図 第5図 手続補正帯(自発) 昭和57年11月17 日 特許庁長官殿 1、  事件(7)表示特願昭IS?−55846号2
、発明の名称 内燃機関のノック抑制装置 3、補正をする者 代表者片山仁へ部 5、補正の対象 明細書の発明の詳細な説明の欄。 6、補正の内容 明細書第10頁第14行のrvm」を「ViaJと補正
する。 以上
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. In the figure, ■ is a point large signal generator, (2), +10) is a waveform shaping circuit, (3) is a phase shifter, (4) is a switch circuit, (
6) is the ignition switch &, flll is the acceleration sensor, and (7) is the knock detector. (8) is a pressure sensor, 191 is an AD converter, (Il
l is an arithmetic unit. a3 indicates memory. Figure 1 Figure 2 II ball Figure 3 Figure 4 Figure 5 Procedural amendment band (spontaneous) November 17, 1980 Mr. Commissioner of the Patent Office 1, Case (7) Displayed Patent Application Showa IS? -55846 No. 2
, Title of the invention: Knock suppression device for internal combustion engine 3, Representative Hitoshi Katayama of the person making the amendment, Department 5, Detailed description of the invention in the specification to be amended. 6. Amend "rvm" on page 10, line 14 of the specification of amendment to "ViaJ."

Claims (1)

【特許請求の範囲】[Claims] を内燃機関の振動加速度を検出する加速度センサ、該加
速度センナの出力のノイズ信号を除去しノッキング信号
成分を選別する弁別手段、前記内燃機関の負荷状態を検
出する負荷検出手段、前記内燃機関の回転数を検出する
回転数検出手段、前記負荷状類と前記回転数に対応して
ノッキング抑制信号値を記憶する記憶手段、及び前記弁
別手段の出力と前記記憶手段の記憶値からノッキング抑
制信号を求める制御信号演算手段を備え、前記記憶手段
は前記内燃機関の負荷が所定値以上の高負荷において作
動するようにして成る内燃機関のノック抑制装置。
an acceleration sensor for detecting vibration acceleration of an internal combustion engine, a discrimination means for removing a noise signal output from the acceleration sensor and selecting a knocking signal component, a load detection means for detecting a load state of the internal combustion engine, and a rotation of the internal combustion engine. a rotation speed detection means for detecting the number of revolutions, a storage means for storing a knock suppression signal value corresponding to the load type and the rotation speed, and a knock suppression signal is determined from the output of the discrimination means and the stored value of the storage means. A knock suppressing device for an internal combustion engine, comprising a control signal calculation means, wherein the storage means is configured to operate when the load of the internal combustion engine is a high load equal to or higher than a predetermined value.
JP57055846A 1982-03-31 1982-03-31 Knocking control device for internal-combustion engine Granted JPS58170856A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57055846A JPS58170856A (en) 1982-03-31 1982-03-31 Knocking control device for internal-combustion engine
FR8305267A FR2524557B1 (en) 1982-03-31 1983-03-30 KNOWLEDGE CONTROL DEVICE FOR AN INTERNAL COMBUSTION ENGINE
DE19833311968 DE3311968A1 (en) 1982-03-31 1983-03-31 KNOCK CONTROL SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
US06/480,647 US4508079A (en) 1982-03-31 1983-03-31 Knocking control system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57055846A JPS58170856A (en) 1982-03-31 1982-03-31 Knocking control device for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58170856A true JPS58170856A (en) 1983-10-07
JPS6252134B2 JPS6252134B2 (en) 1987-11-04

Family

ID=13010384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57055846A Granted JPS58170856A (en) 1982-03-31 1982-03-31 Knocking control device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58170856A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112A (en) * 1977-06-03 1979-01-05 Hitachi Ltd Combustion control system
JPS5459529A (en) * 1977-10-20 1979-05-14 Nippon Denso Co Ltd Ignition timing controller for engine
JPS5578168A (en) * 1978-12-07 1980-06-12 Nippon Soken Inc Feedback type ignition time control device for internal combustion engine
JPS55156257A (en) * 1979-05-22 1980-12-05 Mitsubishi Motors Corp Ignition timing controller for internal combustion engine
JPS56110539A (en) * 1980-02-01 1981-09-01 Toyota Motor Corp Controlling method for internal combustion engine
JPS56162267A (en) * 1980-05-20 1981-12-14 Mazda Motor Corp Ignition timing controller for engine
JPS5726268A (en) * 1980-07-24 1982-02-12 Toyota Motor Corp Ignition timing control method of internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112A (en) * 1977-06-03 1979-01-05 Hitachi Ltd Combustion control system
JPS5459529A (en) * 1977-10-20 1979-05-14 Nippon Denso Co Ltd Ignition timing controller for engine
JPS5578168A (en) * 1978-12-07 1980-06-12 Nippon Soken Inc Feedback type ignition time control device for internal combustion engine
JPS55156257A (en) * 1979-05-22 1980-12-05 Mitsubishi Motors Corp Ignition timing controller for internal combustion engine
JPS56110539A (en) * 1980-02-01 1981-09-01 Toyota Motor Corp Controlling method for internal combustion engine
JPS56162267A (en) * 1980-05-20 1981-12-14 Mazda Motor Corp Ignition timing controller for engine
JPS5726268A (en) * 1980-07-24 1982-02-12 Toyota Motor Corp Ignition timing control method of internal combustion engine

Also Published As

Publication number Publication date
JPS6252134B2 (en) 1987-11-04

Similar Documents

Publication Publication Date Title
US4425890A (en) Spark timing control apparatus for use with a internal combustion engine
US4508079A (en) Knocking control system for internal combustion engine
US4903210A (en) Method for reducing knocking in internal combustion engine
US4377996A (en) Ignition timing control method and system
JPS6342111B2 (en)
JPS5949429B2 (en) Starting ignition timing control device
KR100261931B1 (en) Process for the adaptive knock control of an internal combustion engine
JPH0120301B2 (en)
US4286560A (en) Method and apparatus for controlling an ignition timing
JPS58170856A (en) Knocking control device for internal-combustion engine
US4625691A (en) Knock suppression system for internal combustion engine
US4702211A (en) Ignition timing control method for internal combustion engines
JPS6243056B2 (en)
US5101795A (en) Fuel injection system for an internal combustion engine, having compensation for changing dynamic operating conditions
US4696272A (en) Ignition timing control method for internal combustion engines at idle
JPH0329978B2 (en)
US4696273A (en) Ignition timing control method for internal combustion engines
JPH0361022B2 (en)
JPH0256516B2 (en)
JP2634278B2 (en) Internal combustion engine fuel injection device
JPS59224469A (en) Knock restraining device for internal-combustion engine
JPH05141334A (en) Knocking control device for internal combustion engine
JPS62247177A (en) Ignition timing controller for internal combustion engine
JPS63134859A (en) Ignition control device for internal combustion engine
JPH0310962B2 (en)