JPS63134859A - Ignition control device for internal combustion engine - Google Patents

Ignition control device for internal combustion engine

Info

Publication number
JPS63134859A
JPS63134859A JP28244386A JP28244386A JPS63134859A JP S63134859 A JPS63134859 A JP S63134859A JP 28244386 A JP28244386 A JP 28244386A JP 28244386 A JP28244386 A JP 28244386A JP S63134859 A JPS63134859 A JP S63134859A
Authority
JP
Japan
Prior art keywords
time
ignition
energization
calculation means
angular position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28244386A
Other languages
Japanese (ja)
Inventor
Hachiro Sasakura
笹倉 八郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP28244386A priority Critical patent/JPS63134859A/en
Publication of JPS63134859A publication Critical patent/JPS63134859A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

PURPOSE:To make a program simpler and operating time shorter, and obtain an ignition control device which can be easily corrected at the time of transient rotational change by making the operations of ignition time and of turning on electricity time only on the basis of time information. CONSTITUTION:MPU 13 receives a signal (the number of pulses formed of ignition period equally divided by Z<n>) from a rotating angle sensor 5 and a signal from a reference position sensor 6 or the like through an input buffer 12, and required time TINT for ignition period is determined on difference in the time of angular pulse at the positions of last and present an upper dead center in a cylinder, and ignition time TSPK is obtained by map retrieval on the state of engine operation, and moreover turning on electricity time TON is determined on battery voltage and rotating speed. Then, angular pulse period can be simply obtained by shifting (n) times the data of the ignition period time determined from residual time subtracted the times TSPK, TON from the time TINT, and a rotating angle position can be determined on the basis of the time. Since the operations of the ignition time and of the turning on electricity time can be made only on the basis of time information, a program can be simply formed, and operation time can be reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主にマイクロコンピュータを用いて内燃機関の
点火制御を行う内燃機関用点火制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ignition control device for an internal combustion engine that mainly uses a microcomputer to control the ignition of the engine.

[従来の技術] 従来この種のものとして、マイクロコンピュータに、内
燃機関の上死点付近を検出する基準位置センサとクラン
ク軸の回転に同期して等間隔のパルスを発生する回転角
度位置センサと、吸入空気量等を検出する負荷状態セン
サなどを入力として点火時期と通電時間とを演算し、点
火信号を出力するものが考えられている(例えば、日本
電装公開技法 整理番号37−062 1’984年9
月15日発行)。
[Prior Art] Conventionally, a microcomputer is equipped with a reference position sensor that detects the vicinity of top dead center of an internal combustion engine, a rotation angle position sensor that generates equally spaced pulses in synchronization with the rotation of the crankshaft, and , a device that calculates the ignition timing and energization time using a load condition sensor that detects the amount of intake air, etc. as input, and outputs the ignition signal is being considered (for example, Nippondenso Publication Technique Reference Number 37-062 1' 9, 984
(published on the 15th of the month).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上述した従来のものでは、回転角度位置セン
サの角度位置信号の発生位置と間隔は角度情報であるの
で、点火角度及び通電角度で演算し、処理すべきタイミ
ングを判定すると共に、その角度情報を時間に変換して
出力するためプログラムが複雑になるのみならず、演算
時間も長くなり、さらには、過渡的な回転変化があった
ときに補正を加えることが困難であるという問題があっ
た。
However, in the conventional device described above, since the generation position and interval of the angular position signal of the rotational angular position sensor are angular information, they are calculated based on the ignition angle and the energization angle, and the timing to be processed is determined, and the angular information is The program is not only complicated because it converts into time and outputs it, but also requires a long calculation time.Furthermore, it is difficult to make corrections when there is a transient change in rotation. .

そこで、本発明はプログラムが簡単になるのみならず、
演i時間も短くなり、さらには、過渡的な回転変化があ
ったときに容易に補正を加えることができることを目的
とするものである。
Therefore, the present invention not only simplifies programming, but also
The purpose of this invention is to shorten the performance time and also to be able to easily make corrections when there is a transient change in rotation.

〔問題点を解決するための手段〕[Means for solving problems]

そのため本発明は第1図に示すごとく、内燃機関の基準
角度位置にて信号を発生する基準位置センサと、内燃機
関の点火周期を2″等分割する回転角度パルスを発生す
る回転角度センサと、点火時期及び通電時間を時間で演
算する点火演算手段と、前記基準位置センサの出力信号
に応じて点火周期所要時間を求める点火周期演算手段と
、この点火周期所要時間を0回シフトすることにより前
記回転角度パルス周期所要時間を求める角度パルス周期
計算手段と、前記点火周期所要時間から前記点火演算手
段により演算された点火時期及び通電時間を減算した残
り時間の大きさから通電開始時期直前の前記回転角度位
置を前記角度パルス所要時間計算手段により求めた回転
角度パルス周期所要時間より計算する通電直前角度位置
時間演算手段と、この通電直前角度位置時間演算手段に
より求められた直前回転角度位置から通電開始時期まで
の残りの時間を記憶する通電残り時間記憶手段と、この
通電残り時間記憶手段に記憶された残り時間に従って直
前回転角度位置からの残り時間経過後に通電開始信号を
発生する通電開始信号発生手段と、前記点火周期所要時
間から前記点火演算手段により演算された点火時期を減
算した残り時間の大きさから点火時期直前の前記回転角
変位1を前記角度パルス所要時間計算手段により求めた
回転角度パルス周期所要時間より計算する点火直前角度
位置時間演算手段と、この点火直前角度位置時間演算手
段により求められた直前回転角度位置から点火時期まで
の残りの時間を記憶する点火残り時間記憶手段と、この
点火残り時間記憶手段に記憶された残り時間に従って点
火直前回転角度位置からの残り時間経過後に点火時期信
号を発生する点火時期信号発生手段とを備える内燃機関
用点火制御装置を提供するものである。
Therefore, as shown in FIG. 1, the present invention includes a reference position sensor that generates a signal at a reference angular position of an internal combustion engine, a rotation angle sensor that generates a rotation angle pulse that equally divides the ignition period of the internal combustion engine into 2'', ignition calculation means for calculating the ignition timing and energization time in terms of time; ignition period calculation means for calculating the required ignition cycle time according to the output signal of the reference position sensor; An angular pulse cycle calculating means for calculating the required rotation angle pulse cycle time, and calculating the rotation immediately before the energization start time from the magnitude of the remaining time obtained by subtracting the ignition timing and energization time calculated by the ignition calculation means from the ignition cycle time required. An angular position time calculation means immediately before energization that calculates the angular position from the rotational angle pulse period required time calculated by the angle pulse required time calculation means, and energization starts from the immediately before energization rotational angular position calculated by the angular position time calculation means immediately before energization. energization remaining time storage means for storing the remaining time until the current energization time, and energization start signal generating means for generating the energization start signal after the remaining time from the previous rotation angle position has elapsed according to the remaining time stored in the energization remaining time storage means. and a rotational angle pulse obtained by calculating the rotational angle displacement 1 immediately before the ignition timing by the angle pulse required time calculation means from the magnitude of the remaining time obtained by subtracting the ignition timing calculated by the ignition calculation means from the ignition cycle required time. An angular position time just before ignition calculation means that calculates from the period required time, a remaining ignition time storage means that stores the remaining time from the last rotational angular position calculated by the angular position just before ignition time to the ignition timing; To provide an ignition control device for an internal combustion engine, comprising an ignition timing signal generation means for generating an ignition timing signal after the elapse of the remaining time from a rotation angle position immediately before ignition according to the remaining time stored in a remaining ignition time storage means.

〔作用] これにより、点火周期時間のデータを0回シフトするこ
とにより角度パルス周期が簡単に求められ、回転角度位
置を時間により求めることができて、点火時期及び通電
時間の演算を時間情報のみで実行することができる。
[Operation] As a result, the angular pulse period can be easily determined by shifting the ignition cycle time data 0 times, and the rotational angular position can be determined based on time, and the ignition timing and energization time can be calculated using only time information. It can be executed with

〔実施例〕〔Example〕

以下本発明を図に示す実施例について説明する。 The present invention will be described below with reference to embodiments shown in the drawings.

第2図は制御装置全体の接続構成を示したものであり、
10は制御ユニット本体で、マイクロコンビュータを構
成するマイクロ・プロセッシング・ユニット(以下MP
Uと略す)13を使用して内燃機関の運転状態を判別し
、あらかじめ記憶させた運転状態に対応した点火時期を
選定して出力バッファ14を介して電子スイッチ20に
点火信号を供給する構成としである。
Figure 2 shows the connection configuration of the entire control device.
10 is a control unit main body, which is a micro processing unit (hereinafter referred to as MP) that constitutes a microcomputer.
(abbreviated as U) 13 to determine the operating state of the internal combustion engine, select the ignition timing corresponding to the operating state stored in advance, and supply the ignition signal to the electronic switch 20 via the output buffer 14. It is.

30はイグニション・コイルで、その1次、2次コイル
の共有端子は直流電源+V、に接続してあり、1次コイ
ルの他端は電子スイッチ20に接続してあり、2次コイ
ルの他端は図示しない高圧分配器を介して点火プラグに
接続しである。
30 is an ignition coil, the common terminal of the primary and secondary coils is connected to the DC power supply +V, the other end of the primary coil is connected to the electronic switch 20, and the other end of the secondary coil is connected to the DC power supply +V. is connected to the spark plug via a high-pressure distributor (not shown).

11はアナログの入力電圧をディジタル値に変換するア
ナログ−ディジタル変換器(ADC)で、ディジタル変
換結果をMPU13に通信する構成としである。
Reference numeral 11 denotes an analog-to-digital converter (ADC) that converts an analog input voltage into a digital value, and is configured to communicate the digital conversion result to the MPU 13.

また、変位板とポテンショメータとを組み合わせて内燃
機関の吸気量を検出する吸気量センサ1、バッテリ電源
端子の電圧を検出するバッテリ電圧検出回路2、ポテン
ショメータをスロットル弁の回転軸に設けたスロットル
開度センサ4、サーミスタと基準抵抗を組み合わせた冷
却水温度センサ3等のアナログ入力信号端がADCII
の入力端に接続しである。
In addition, there is an intake air amount sensor 1 that detects the intake air amount of the internal combustion engine by combining a displacement plate and a potentiometer, a battery voltage detection circuit 2 that detects the voltage of the battery power terminal, and a throttle opening sensor that has a potentiometer installed on the rotating shaft of the throttle valve. The analog input signal terminal of sensor 4, cooling water temperature sensor 3, which combines a thermistor and reference resistance, etc. is ADCII.
Connect to the input end of the

I2はディジタルの入力電圧をレベル変換する入力バッ
ファで、クランク軸の回転角に同期してパルスを発生す
る回転角度センサ5、同じくクランク軸の例えば各気筒
の上死点(TDC)直前等の角度にてパルスを発生する
基準位置センサ6、各種スイッチ7(アイドル、エアコ
ン、バルブ等)の電圧レベル信号が接続してあり、MP
U13の規格に電圧レベルを変換して供給する構成とし
ている。
I2 is an input buffer that converts the level of digital input voltage, and a rotation angle sensor 5 that generates pulses in synchronization with the rotation angle of the crankshaft. A reference position sensor 6 that generates pulses is connected to the voltage level signals of various switches 7 (idle, air conditioner, valve, etc.).
The configuration is such that the voltage level is converted and supplied to the U13 standard.

回転角度センサ5は点火周期、即ち4サイクル・エンジ
ンの場合では720°CAを気筒数で割った値で、4気
筒なら180°CAである間を2″(n=2)で等分割
したパルス数となる様に構成しである。
The rotation angle sensor 5 calculates the ignition period, which is a value obtained by dividing 720° CA by the number of cylinders in the case of a 4-cycle engine, and 180° CA in the case of a 4-cylinder engine, which is a pulse equally divided by 2'' (n = 2). It is structured so that it becomes a number.

上記の構成に於いてMPU13が内燃機関の運転状態を
判別して点火時期を演算し、その結果に応じて点火信号
を出力する手順を第3図のフローチャートに基づき第4
〜5図のタイミングチャートを使って説明する。
In the above configuration, the MPU 13 determines the operating state of the internal combustion engine, calculates the ignition timing, and outputs the ignition signal according to the result.
This will be explained using the timing chart in Figure 5.

第4図は低速定常時のタイミングチャートで、6Sは基
準位置センサ6のエツジの出力位置を示しており、各気
筒のTDC直前付近を示している。
FIG. 4 is a timing chart at low speed steady state, and 6S indicates the edge output position of the reference position sensor 6, which is near just before the TDC of each cylinder.

5Sは回転角度センサのエツジの出力位置を示しており
、点火周期を22で等分割し、その内の1パルスがTD
C付近を示すよう配置しである。
5S indicates the output position of the edge of the rotation angle sensor, and the ignition period is divided equally into 22, one pulse of which is TD.
It is arranged to show the vicinity of C.

MPU13は基準位置センサ6のパルスを受は付けた後
の回転角度センサ5のパルスが入力した時点を上死点位
置として記憶し、第3図(A)のフローチャートに従っ
て点火信号の演算を行う。
The MPU 13 stores the time point when the pulse from the rotation angle sensor 5 is input after receiving the pulse from the reference position sensor 6 as the top dead center position, and calculates the ignition signal according to the flowchart in FIG. 3(A).

101では前回の上死点位置の角度パルスの時刻と今回
の上死点位置の角度パルスの時刻との差から点火周期所
要時間TINTを求め、102ではあらかじめ回転速度
と負荷とに応じて最適な点火時期を求めておき、上死点
位置からの進み、または遅れ時間に変換してマツプに記
憶しておいた値を運転状態に応じて選択して点火時間T
、□を得ると共に、103でバッテリ電圧に応じた通電
時間と回転速度に応じた通電補正時間を加算して通電時
間TONを求める。104では先に求めたT、HTから
T、PKとTいを減算した残り時間の大きさから、TI
N?÷2zをTIN〒の2進データをn=2回桁下げす
る(右ヘシフトする)ことにより1パルス間隔として求
めた値を減算し、負にならない範囲を見つけて、回転角
度パルスの上死点位置からの回数で表されるCCRKを
通常直前処理角度として記憶する。また、点火直前処理
角度も同様に求める。105では該各処理角度CCRK
からの通電及び点火の残り所要時間をTDLVとしてそ
れぞれ記憶する。このときT DLVの絶対値がプログ
ラムの実行に要する時間T”、4sxより短い場合は1
パルス間隔の時間を加算して前出ししCCRKを修正す
る。このようにして点火信号の処理にかかわる演算を全
て時間データで行うと共にパルス間隔を2”で等分割し
た事によりプログラムを簡略できる。
In step 101, the required ignition cycle time TINT is determined from the difference between the time of the angle pulse at the previous top dead center position and the time of the angle pulse at the current top dead center position, and in step 102, the optimum time TINT is determined in advance according to the rotational speed and load. Determine the ignition timing, convert it into advance or delay time from top dead center position, and select the value stored in the map according to the driving condition to set the ignition time T.
. In step 104, TI is calculated from the remaining time obtained by subtracting T, PK, and T from T and HT obtained earlier.
N? Subtract ÷2z from the value obtained as one pulse interval by lowering the binary data of TIN〒 twice (shifting it to the right), find a range that does not become negative, and calculate the top dead center of the rotation angle pulse. CCRK expressed as the number of times from the position is normally stored as the immediately preceding processing angle. In addition, the ignition immediately preceding processing angle is also determined in the same manner. At 105, each processing angle CCRK
The remaining time required for energization and ignition are respectively stored as TDLV. At this time, if the absolute value of T DLV is shorter than the time required to execute the program T'', 4sx, 1
Add the pulse interval time and correct the CCRK. In this way, all calculations related to ignition signal processing are performed using time data, and the pulse interval is equally divided by 2'', thereby simplifying the program.

第4図に於いてCMPとあるのは、角度パルス入力時に
ラッチされた時刻が通電開始時期又は点火時期に対する
直前処理角度CCRK時期である時、夫々にTDLvを
OCR(アウトプット・コンベア・レジスタ)にセット
する値と、その後TC(フリーラン・タイマー・カウン
タ)との差時間を示し、OCRの内容が一致するとあら
かじめ設定した出力レベルが出力ポートにセットされ、
01JTの如く点火信号を作成できることを示している
In Fig. 4, CMP means that when the time latched at the time of inputting the angle pulse is the energization start time or the immediately preceding processing angle CCRK time with respect to the ignition time, the TDLv is OCR (output conveyor register). It shows the difference time between the value to be set and the subsequent TC (free run timer counter), and if the OCR contents match, the preset output level is set to the output port,
This shows that it is possible to create an ignition signal like 01JT.

次に低速からの加速時について第5図のタイミングチャ
ートで説明する。6S及び5Sは第4図と同様であるが
、加速によりパルス間隔が変化してゆく。TDCの次の
回転角度センサ5のパルスが入力した時点で、第3図(
B)のフローチャートに従って通電開始時期の補正計算
を行う。201では直前の上死点位置の角′度パルス時
刻と今回の角度パルス入力時刻との差からパルス周期所
要時間T□N1を求め、210では上死点の次の九度位
置かを判別し、異なっていれば他のルーチンヘバスする
。上死点の次の角度位置である場合は220で出力ポー
トの状態を見て既に通電状態である場合、即ち高速回転
のような状態では他のルーチンヘパスする。221では
1点火前のTPINTiと今回のT、、、4アi+1 
との差時間T DLYを求める。
Next, the acceleration from low speed will be explained with reference to the timing chart of FIG. 6S and 5S are similar to those shown in FIG. 4, but the pulse interval changes due to acceleration. When the next pulse from the rotation angle sensor 5 of the TDC is input, as shown in Fig. 3 (
Correct calculation of the energization start timing is performed according to the flowchart in B). At step 201, the pulse period required time T□N1 is determined from the difference between the angle pulse time at the previous top dead center position and the current angle pulse input time, and at step 210, it is determined whether the position is the next nine degrees from the top dead center. , to other routines if they are different. If it is the angular position next to the top dead center, the state of the output port is checked at 220, and if it is already energized, that is, if it is in a state of high speed rotation, it passes to another routine. In 221, TPINTi before 1 ignition and T this time...4Ai+1
Find the time difference T DLY.

222では先に求めたTl1lL、からTl1lLvx
CCRKを引いてT’nty ’を求め、このTDLV
′をTDt、Yの代わりに記憶更新する。230では更
新されたT DLYが正か負か判別し、正ならバスする
。負の場合は231で更新されたT DLVにTPIN
Ti、lを加算してT’oty ”を求めると共にCC
RKを1つ前へ修正記憶し、TDLV ’をToLvと
して再度記憶更新する。このようにして加速時の速度変
化に対しても通電時間を簡単な処理プログラムで確保す
る事が出来る。
222, Tl1lL obtained earlier, Tl1lLvx
Subtract CCRK to find T'nty', and calculate this TDLV
' is stored and updated in place of TDt,Y. At 230, it is determined whether the updated T_DLY is positive or negative, and if it is positive, it is passed as a bus. If negative, set TPIN to updated T DLV with 231
Add Ti and l to find T'oty'' and CC
The RK is modified and stored one position earlier, and the storage is updated again with TDLV' as ToLv. In this way, the energization time can be secured with a simple processing program even when the speed changes during acceleration.

なお、通電時間の加速時の補正をより正確に行うため、
第3図(B)のフローチャートにおいて、221でT 
、L、をさらに2fiで割算して1回転角度パルス当り
の時間差T、L、 ’を求め、222でTDLYからT
DLV +TDLT’ X (CCRK  1 )を引
いてT。LV′を求めて、このT’ot、v ’をTD
L7の代わりに記憶更新するようにしてもよい。
In addition, in order to more accurately correct the acceleration of the energization time,
In the flowchart of FIG. 3(B), at 221, T
, L, is further divided by 2fi to find the time difference T, L, ' per one rotation angle pulse, and at 222, T from TDLY.
Subtract DLV +TDLT' X (CCRK 1) and get T. Find LV' and convert this T'ot,v' to TD
Memory updating may be performed instead of L7.

また、上述した実施例においては、基準位置センサ6は
各気筒のTDCを判別する位置としているが、所定の約
束された角度位置を判別出来れば良い。又、特定気筒の
所定角度位置を判別する構成としても良い。
Further, in the above-described embodiment, the reference position sensor 6 is located at a position for determining the TDC of each cylinder, but it is sufficient if it can determine a predetermined, guaranteed angular position. Alternatively, a configuration may be adopted in which a predetermined angular position of a specific cylinder is determined.

また、回転角度センサ5は図例では点火周期を4等分と
したが、8又は16等分とすれば演算は容易であるので
、21′1等分であれば良い。
Furthermore, although the rotation angle sensor 5 divides the ignition period into four equal parts in the illustrated example, calculation is easy if the ignition period is divided into eight or sixteen equal parts, so it may be divided into 21'1 equal parts.

また、加速の補正を1点火周期当り1回のみ補正する構
成としたが、2回以上補正しても良いがプログラム負担
は増加する。
Furthermore, although the configuration is such that the acceleration is corrected only once per ignition cycle, the acceleration may be corrected two or more times, but the program load increases.

また、上述した実施例においては 加速時の補正を通電
開始時期のみ実行するようにしたが、点火時期に対して
も加速時の補正をするようにしてもよい。
Further, in the above-described embodiment, correction during acceleration is performed only at the energization start time, but correction may also be performed on the ignition timing during acceleration.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明においては、点火周期時間のデ
ータを0回シフトすることにより角度パルス周期が簡単
に求められ、回転角度位置を時間により求めることがで
きて、点火時期及び通電時間の演算を時間情報のみで実
行することができるから、プログラムが簡単で演算時間
も短くすることができると共に、過渡的な回転変動があ
った場合にも容易に補正を加えることができるという優
れた効果がある。
As described above, in the present invention, the angular pulse period can be easily determined by shifting the ignition cycle time data 0 times, the rotational angular position can be determined by time, and the ignition timing and energization time can be calculated. Because it can be executed using only time information, the program is simple and the calculation time can be shortened, and it also has the excellent effect of being able to easily make corrections in the event of transient rotational fluctuations. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の特許請求の範囲対応図、第2図は本発
明装置の一実施例を示すブロック図、第3図(A) 、
 (B)は第2図図示MPUの作動説明に供するフロー
チャート、第4図及び第5図は第2図図示装置の作動説
明に供するタイミングチャートである。 5・・・回転角度センサ、6・・・基準位置センサ、1
3・・・マイクロコンピュータを構成するMPU、20
・・・電子スイッチ、30・・・点火コイル。
FIG. 1 is a diagram corresponding to the claims of the present invention, FIG. 2 is a block diagram showing an embodiment of the device of the present invention, and FIG. 3(A),
(B) is a flowchart for explaining the operation of the MPU shown in FIG. 2, and FIGS. 4 and 5 are timing charts for explaining the operation of the device shown in FIG. 2. 5... Rotation angle sensor, 6... Reference position sensor, 1
3...MPU, 20 that constitutes a microcomputer
...Electronic switch, 30...Ignition coil.

Claims (1)

【特許請求の範囲】[Claims] 内燃機関の基準角度位置にて信号を発生する基準位置セ
ンサと、内燃機関の点火周期を2^n等分割する回転角
度パルスを発生する回転角度センサと、点火時期及び通
電時間を時間で演算する点火演算手段と、前記基準位置
センサの出力信号に応じて点火周期所要時間を求める点
火周期演算手段と、この点火周期所要時間をn回シフト
することにより前記回転角度パルス周期所要時間を求め
る角度パルス周期計算手段と、前記点火周期所要時間か
ら前記点火演算手段により演算された点火時期及び通電
時間を減算した残り時間の大きさから通電開始時期直前
の前記回転角度位置を前記角度パルス所要時間計算手段
により求めた回転角度パルス周期所要時間より計算する
通電直前角度位置時間演算手段と、この通電直前角度位
置時間演算手段により求められた直前回転角度位置から
通電開始時期までの残りの時間を記憶する通電残り時間
記憶手段と、この通電残り時間記憶手段に記憶された残
り時間に従って直前回転角度位置からの残り時間経過後
に通電開始信号を発生する通電開始信号発生手段と、前
記点火周期所要時間から前記点火演算手段により演算さ
れた点火時期を減算した残り時間の大きさから点火時期
直前の前記回転角度位置を前記角度パルス所要時間計算
手段により求めた回転角度パルス周期所要時間より計算
する点火直前角度位置時間演算手段と、この点火直前角
度位置時間演算手段により求められた直前回転角度位置
から点火時期までの残りの時間を記憶する点火残り時間
記憶手段と、この点火残り時間記憶手段に記憶された残
り時間に従って点火直前回転角度位置からの残り時間経
過後に点火時期信号を発生する点火時期信号発生手段と
を備える内燃機関用点火制御装置。
A reference position sensor that generates a signal at a reference angular position of the internal combustion engine, a rotation angle sensor that generates a rotation angle pulse that divides the ignition cycle of the internal combustion engine into 2^n equal parts, and a time-based calculation of ignition timing and energization time. ignition calculation means; ignition period calculation means for determining the required ignition cycle time according to the output signal of the reference position sensor; and an angle pulse for determining the rotation angle pulse period time by shifting the ignition cycle time n times. cycle calculation means; and the angle pulse required time calculation means, which calculates the rotation angle position immediately before the energization start time from the magnitude of the remaining time obtained by subtracting the ignition timing and energization time calculated by the ignition calculation means from the ignition cycle time. An angular position time calculation means immediately before energization is calculated from the rotational angle pulse period required time determined by the energization immediately before energization angular position time calculation means, and an energization method that stores the remaining time from the immediately preceding rotational angular position calculated by the angular position time immediately before energization calculation means to the time when energization is started. remaining time storage means; energization start signal generating means for generating an energization start signal after the remaining time from the immediately preceding rotation angle position has elapsed according to the remaining time stored in the energization remaining time storage means; An angular position time immediately before ignition calculated from the rotational angle pulse period required time determined by the angle pulse required time calculation means to calculate the rotational angle position just before the ignition timing from the remaining time after subtracting the ignition timing calculated by the calculation means. a calculation means, a remaining ignition time storage means for storing the remaining time from the immediately preceding rotational angular position to the ignition timing obtained by the immediately before ignition angular position time calculation means, and a remaining time stored in the remaining ignition time storage means. ignition timing signal generating means for generating an ignition timing signal after the remaining time from the rotation angle position just before ignition has elapsed according to the ignition timing signal generation means for an internal combustion engine.
JP28244386A 1986-11-26 1986-11-26 Ignition control device for internal combustion engine Pending JPS63134859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28244386A JPS63134859A (en) 1986-11-26 1986-11-26 Ignition control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28244386A JPS63134859A (en) 1986-11-26 1986-11-26 Ignition control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS63134859A true JPS63134859A (en) 1988-06-07

Family

ID=17652484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28244386A Pending JPS63134859A (en) 1986-11-26 1986-11-26 Ignition control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS63134859A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587030A (en) * 1991-03-27 1993-04-06 Delco Electronics Corp Method and device for spark timing control
JP2012052509A (en) * 2010-09-03 2012-03-15 Yanmar Co Ltd Engine system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587030A (en) * 1991-03-27 1993-04-06 Delco Electronics Corp Method and device for spark timing control
JP2012052509A (en) * 2010-09-03 2012-03-15 Yanmar Co Ltd Engine system

Similar Documents

Publication Publication Date Title
US4347570A (en) Method and apparatus for controlling ignition coil energization
US4379333A (en) Method and system for operating a power-producing machine at maximum torque under varying operating conditions
US4873958A (en) Engine ignition timing control system
JPS6248066B2 (en)
US4747382A (en) Ignition timing control system for internal combustion engines
US4510910A (en) Ignition timing control method and apparatus for internal combustion engines
US4996958A (en) Ignition timing controlling apparatus for internal combustion engine
JPH063192Y2 (en) Ignition timing control device for internal combustion engine
JP4375685B2 (en) Engine control device
JPS63134859A (en) Ignition control device for internal combustion engine
JP3892052B2 (en) Engine control device
JPH0765556B2 (en) Ignition control device for internal combustion engine
US4702211A (en) Ignition timing control method for internal combustion engines
JPS61279772A (en) Ignition control device of internal-combustion engine
JPH0223268A (en) Ignition timing control device for internal combustion engine
JPH0610818A (en) Knocking control device for internal combustion engine
JPH06137242A (en) Air-fuel ratio control device of engine
JP2586435B2 (en) Knocking control device for internal combustion engine
JPS61218774A (en) Ignition controller for internal-combustion engine
JPS63129168A (en) Ignition timing controller for internal combustion engine
JPH05141334A (en) Knocking control device for internal combustion engine
JPH06294371A (en) Internal combustion engine ignition device
JP2625763B2 (en) Ignition timing control device for internal combustion engine
JPH01116282A (en) Ignition control method for internal combustion engine
JPS62197670A (en) Ignition timing control device for internal combustion engine