JPS6252134B2 - - Google Patents

Info

Publication number
JPS6252134B2
JPS6252134B2 JP57055846A JP5584682A JPS6252134B2 JP S6252134 B2 JPS6252134 B2 JP S6252134B2 JP 57055846 A JP57055846 A JP 57055846A JP 5584682 A JP5584682 A JP 5584682A JP S6252134 B2 JPS6252134 B2 JP S6252134B2
Authority
JP
Japan
Prior art keywords
knocking
internal combustion
combustion engine
signal
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57055846A
Other languages
Japanese (ja)
Other versions
JPS58170856A (en
Inventor
Satoru Komurasaki
Yoshinobu Morimoto
Yoichi Kadota
Atsushi Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57055846A priority Critical patent/JPS58170856A/en
Priority to FR8305267A priority patent/FR2524557B1/en
Priority to US06/480,647 priority patent/US4508079A/en
Priority to DE19833311968 priority patent/DE3311968A1/en
Publication of JPS58170856A publication Critical patent/JPS58170856A/en
Publication of JPS6252134B2 publication Critical patent/JPS6252134B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • F02P5/1521Digital data processing dependent on pinking with particular means during a transient phase, e.g. starting, acceleration, deceleration, gear change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • F02P5/1523Digital data processing dependent on pinking with particular laws of return to advance, e.g. step by step, differing from the laws of retard
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • F02P5/1528Digital data processing dependent on pinking for turbocompressed engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【発明の詳細な説明】 この発明は内燃機関のノツク抑制装置に関し、
メモリに記憶された制御量を基準に制御を行う方
式に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a knock suppressing device for an internal combustion engine.
This relates to a method of performing control based on a control amount stored in a memory.

最近、内燃機関の効率(燃費)、出力の向上の
ためノツキングを検出し抑制するノツク抑制装置
の開発、採用が盛んである。
Recently, in order to improve the efficiency (fuel efficiency) and output of internal combustion engines, knock suppressing devices that detect and suppress knocking have been actively developed and adopted.

ノツキングは内燃機関の運転条件のうち、点火
時期、吸気温度、吸気湿度、空燃比、及び燃焼室
温度等の多くの要素に左右されて発生する。これ
らの要素のうち、実用上吸気温度、吸気湿度の変
化により大きく影響されて、ノツキングは発生す
る。これら吸気の温度、湿度は季節により変化す
るので、ノツキングの発生状態は季節により変化
する。又、季節は一年を周期として変化するため
ノツキングの発生状態も一年周期で変化する。つ
まり、同一運転状態で短期間において発生したノ
ツキングは同程度であり、発生頻態、大きさに大
差はない。従つて、同一運転状態で発生したノツ
キングを抑制するために必要な制御信号は短期間
においてほぼ同じであり、これらの平均的な制御
信号による基本制御に加えノツキング発生毎のバ
ラツキに対する補正制御を遂次行う制御により、
ノツキングを十分に抑制できる。
Knotting occurs depending on many factors among the operating conditions of the internal combustion engine, such as ignition timing, intake air temperature, intake air humidity, air-fuel ratio, and combustion chamber temperature. Among these factors, knocking is actually greatly influenced by changes in intake air temperature and intake air humidity. Since the temperature and humidity of the intake air change depending on the season, the state in which knocking occurs changes depending on the season. Furthermore, since the seasons change on a yearly basis, the state of occurrence of knotting also changes on a yearly basis. In other words, the knocking that occurs during a short period of time under the same operating conditions is of the same degree, and there is no significant difference in the frequency of occurrence or magnitude. Therefore, the control signals required to suppress knocking that occur under the same operating conditions are almost the same over a short period of time, and in addition to basic control using these average control signals, it is necessary to carry out corrective control for variations in each knocking occurrence. By the next control,
Knocking can be sufficiently suppressed.

本発明は上記ノツキング発生の特徴に鑑み、内
燃機関に発生したノツキングを検出し、この検
出々力に対応して制御信号を発生し、ノツキング
を抑制する帰還制御において、高負荷運転状態に
おいて、該負荷状態および回転数に対応したノツ
キング抑制信号値を記憶しておき、ノツキングの
発生時に記憶した制御信号に加え、発生毎の小さ
なレベル差に対し逐次補正を行い、ノツキング抑
制を応答性よく行おうとするものである。
In view of the above characteristics of knocking, the present invention detects knocking that occurs in an internal combustion engine, generates a control signal in response to the detected force, and performs feedback control to suppress knocking under high load operating conditions. The knocking suppression signal value corresponding to the load condition and rotation speed is stored, and in addition to the control signal stored when knocking occurs, corrections are made sequentially for small level differences each time knocking occurs, in order to suppress knocking with good responsiveness. It is something to do.

以下、本発明の一実施例を図に基づいて説明す
る。なお、ノツキング発生の要素は上記の如く数
多くあり、いずれを制御することによつてもノツ
キングを抑制できるが、この説明では最も多く実
用化されている点火時期の制御の場合について説
明する。
Hereinafter, one embodiment of the present invention will be described based on the drawings. As mentioned above, there are many factors that cause knocking to occur, and knocking can be suppressed by controlling any of them, but in this explanation, the case of ignition timing control, which is most often put into practical use, will be explained.

第1図において、1は内燃機関の回転に伴い基
準点火信号を発生する点火信号発生器、2は点火
信号発生器1からの基準点火信号を受け波形整形
及び閉路角制御を行い所望のパルス幅の点火パル
スを出力する波形整形回路。3は波形整形回路2
からの点火パルスの位相を後述の演算器11から
の制御信号に応じて時間的に遅れ側に移相し出力
する移相器、4は移相器3からの点火パルスに対
応して点火コイル5の給電を継続するスイツチ回
路6は内燃機関に取付けられ機関の振動加速度を
検出する加速度センサ、7は加速度センサ6の検
出々力から機関のノツキングに伴ない発生された
ノツキング成分を選別しノツキング強度に応じた
レベルのノツキング信号を出力するノツク検出
器、8は内燃機関の吸気管圧を検出しその圧力に
対応した圧力信号を出力する圧力センサ、9は上
記ノツク検出器7、圧力センサ8からの各々の出
力をそのレベルに応じてデジタル化するAD変換
器、10は点火コイル5の駆動端子の電圧波形を
受け定時間パルスをノツク検出器7と演算器11
に出力する波形整形回路で、演算器11はAD変
換器9を経て入力された圧力センサ8の出力と波
形整形回路10の出力から機関の運転状態を求
め、AD変換器9を経て入力されたノツク検出器
7の出力からノツキング強度を求め、又後述のメ
モリ12から基準制御信号を求め制御信号を出力
する。メモリ12は演算器11に制御され基準制
御信号を記憶する。
In Fig. 1, 1 is an ignition signal generator that generates a reference ignition signal as the internal combustion engine rotates, and 2 is an ignition signal generator that receives the reference ignition signal from the ignition signal generator 1 and performs waveform shaping and closing angle control to obtain a desired pulse width. A waveform shaping circuit that outputs the ignition pulse. 3 is waveform shaping circuit 2
4 is an ignition coil corresponding to the ignition pulse from the phase shifter 3. A switch circuit 6 for continuing the power supply of 5 is an acceleration sensor attached to the internal combustion engine and detects the vibration acceleration of the engine. A knock detector outputs a knocking signal of a level corresponding to the intensity; 8 is a pressure sensor that detects the intake pipe pressure of the internal combustion engine and outputs a pressure signal corresponding to the pressure; 9 is the above-mentioned knock detector 7; pressure sensor 8; An AD converter 10 digitizes each output from the ignition coil 5 according to its level, a knock detector 7 and an arithmetic unit 11 which receive a voltage waveform of the drive terminal of the ignition coil 5 and generate pulses for a fixed period of time.
In the waveform shaping circuit that outputs the output to The knocking intensity is determined from the output of the knock detector 7, and a reference control signal is determined from a memory 12, which will be described later, and the control signal is output. The memory 12 is controlled by the arithmetic unit 11 and stores the reference control signal.

第2図はメモリ12に記憶された基準制御信
号、第3図、第4図及び第5図は第1図各部の動
作波形図である。
FIG. 2 is a reference control signal stored in the memory 12, and FIGS. 3, 4, and 5 are operational waveform diagrams of each part in FIG. 1.

まず、点火信号発生器1〜点火コイル5から成
るイグナイタ部の動作を説明する。点火信号発生
器1は内燃機関の回転に伴い点火信号を発生し、
波形整形回路2は上記点火信号を波形整形、閉路
角制御して所望のパルス幅の点火パルスを出力す
る。上記点火パルスは移相器3を経てスイツチ回
路4に入力され、スイツチ回路4はこの点火パル
スに対応して点火コイル5の給電を継続する。点
火コイル5の給電遮断時に点火電圧が発生され、
内燃機関は点火され運転される。
First, the operation of the igniter section consisting of the ignition signal generator 1 to the ignition coil 5 will be explained. The ignition signal generator 1 generates an ignition signal as the internal combustion engine rotates,
The waveform shaping circuit 2 shapes the waveform of the ignition signal, controls the closing angle, and outputs an ignition pulse with a desired pulse width. The ignition pulse is input to the switch circuit 4 via the phase shifter 3, and the switch circuit 4 continues to supply power to the ignition coil 5 in response to the ignition pulse. An ignition voltage is generated when the power supply to the ignition coil 5 is cut off,
The internal combustion engine is ignited and operated.

圧力センサ8は内燃機関の吸気管圧を検出し、
その圧力に対応した圧力信号を出力する。この圧
力信号はAD変換器9でデジタル化され、内燃機
関の負荷状態を表わす信号として演算器11に入
力される。上記内燃機関の吸気管圧は機関の負荷
状態に敏感に反応し変化するため、この吸気管圧
を検出して得られた圧力センサ8からの圧力信号
のレベルから内燃機関の負荷状態を求めることが
できる。
The pressure sensor 8 detects the intake pipe pressure of the internal combustion engine,
A pressure signal corresponding to that pressure is output. This pressure signal is digitized by the AD converter 9 and input to the calculator 11 as a signal representing the load condition of the internal combustion engine. Since the intake pipe pressure of the internal combustion engine changes sensitively in response to the load state of the engine, the load state of the internal combustion engine is determined from the level of the pressure signal from the pressure sensor 8 obtained by detecting this intake pipe pressure. Can be done.

波形整形回路10は点火コイル5の駆動端子の
電圧に伴つて作動し、点火時期に定時間パルスを
出力する。
The waveform shaping circuit 10 operates in accordance with the voltage at the drive terminal of the ignition coil 5, and outputs a fixed time pulse at the ignition timing.

加速度センサ6は内燃機関に取付けられてい
て、常時内燃機関の振動を検出している。この検
出々力には機関の作動により生じた機械ノイズに
よるノイズ信号(例えば、バルブ弁の作動に伴な
い検出されるノイズ信号)にノツキングに伴ない
発生した振動によるノツキング成分が重畳して含
まれる。
The acceleration sensor 6 is attached to the internal combustion engine and constantly detects vibrations of the internal combustion engine. This detection force includes a knocking component due to vibrations generated due to knocking, superimposed on a noise signal due to mechanical noise generated by engine operation (for example, a noise signal detected due to valve operation). .

ノツク検出器7は上記加速度検出器6からの検
出々力からノツキング信号を選別し、ノツキング
強度に応じたレベルのノツキング信号を出力す
る。このノツキング信号はAD変換器9でデジタ
ル化され、演算器11に入力される。又上記ノツ
ク検出器7の出力は波形整形回路10からの定時
間パルスでリセツトされる。演算器11はAD変
換器9を経て入力された圧力センサ8からの圧力
信号から機関の負荷状態を求め、又波形整形回路
10からの定時間パルスの周期から内燃機関の回
転数を求め、これらから機関の運転状態を判断す
る。又、AD変換器9を経て入力されたノツク検
出器7からのノツキング信号からノツキングの発
生を検出する。
The knocking detector 7 selects a knocking signal from the detected force from the acceleration detector 6, and outputs a knocking signal of a level corresponding to the knocking intensity. This knocking signal is digitized by the AD converter 9 and input to the arithmetic unit 11. Further, the output of the knock detector 7 is reset by a fixed time pulse from the waveform shaping circuit 10. The calculator 11 calculates the engine load condition from the pressure signal from the pressure sensor 8 inputted via the AD converter 9, and calculates the rotational speed of the internal combustion engine from the period of the fixed time pulse from the waveform shaping circuit 10. The operating status of the engine is determined from the Further, the occurrence of knocking is detected from the knocking signal from the knocking detector 7 inputted via the AD converter 9.

今、内燃機関にノツキングが発生していると、
演算器11は圧力センサ8からの圧力信号と波形
整形回路10からの定時間パルスより内燃機関の
運転状態を求め、上記ノツキングのレベルに対応
したノツク検出器7からのノツキング信号を対応
させ、高負荷運転状態での基準制御信号として上
記ノツキング信号をメモリ12に記憶させる。内
燃機関にノツキングが発生した高負荷運転状態の
夫々において、上記の運転状態に対応させたノツ
キング信号のメモリ12への記憶を行い、各高負
荷運転状態に対応した基準制御信号のマツプを作
成する。
If knotting is occurring in the internal combustion engine,
The computing unit 11 determines the operating state of the internal combustion engine from the pressure signal from the pressure sensor 8 and the constant time pulse from the waveform shaping circuit 10, and correlates the knocking signal from the knocking detector 7 corresponding to the level of knocking to determine the knocking level. The knocking signal is stored in the memory 12 as a reference control signal in a loaded operating state. In each high-load operating state in which knocking occurs in the internal combustion engine, a knocking signal corresponding to the above-mentioned operating state is stored in the memory 12, and a map of reference control signals corresponding to each high-load operating state is created. .

第2図に上記の運転状態に対応させた基準制御
信号の記憶状態(メモリ12の内容)のマツプ一
例を示す。ここで、運転状態は内燃機関の負荷と
回転数により定められていて、回転はN0から
N4、負荷はL0からL4に分割して定められてい
る。記憶されている基準制御信号は、例えば回転
数N2からN3の範囲において負荷L0からL1の運転
の場合はVR1、負荷L1からL2ではVR2、負荷L2
らL3ではVR3となつていて、負荷の増大に伴いV
R1,VR2,VR3の順に大きくなつている。
FIG. 2 shows an example of a map of the storage states (contents of the memory 12) of the reference control signals corresponding to the above operating states. Here, the operating state is determined by the load and rotation speed of the internal combustion engine, and the rotation ranges from N 0 to
N 4 , the load is determined by dividing it into L 0 to L 4 . The stored reference control signals are, for example, V R1 for operation from load L 0 to L 1 in the rotation speed range N 2 to N 3 , V R2 for load L 1 to L 2 , and V R2 for load L 2 to L 3. In this case, V R3 becomes V R3, and as the load increases, V
The values increase in the order of R1 , VR2 , and VR3 .

ここで、基準制御信号を記憶する上記負荷域は
内燃機関にノツキングが発生する高負荷領域に限
定していて、メモリ12の記憶容量を少なくし、
メモリ12の効率を高めるようにしている。
Here, the load range in which the reference control signal is stored is limited to a high load range where knocking occurs in the internal combustion engine, and the storage capacity of the memory 12 is reduced.
The efficiency of the memory 12 is increased.

次に、第3図、第4図及び第5図の波形図を用
いて説明する。
Next, explanation will be given using waveform diagrams of FIGS. 3, 4, and 5.

波形図においては、Aは波形整形回路2の出
力、Bはノツク検出器7の出力、Cは演算器11
の出力Dは移相器3の出力を示す。
In the waveform diagram, A is the output of the waveform shaping circuit 2, B is the output of the knock detector 7, and C is the output of the arithmetic unit 11.
The output D indicates the output of the phase shifter 3.

第3図は内燃機関にノツキングが発生していな
い場合を示す。
FIG. 3 shows a case where no knocking occurs in the internal combustion engine.

この場合ノツキングが発生していないためノツ
ク検出器7の出力(第3図B)はなく、演算器1
1の出力(第3図c)もない。従つて移相器3で
の移相制御は行われないため、波形整形回路2の
出力の点火パルス(第3図A)と同位相の点火パ
ルス(第3図D)がスイツチ回路4に入力され
る。スイツチ回路4はこの点火パルスに対応して
点火コイル5の給電を継続する。
In this case, since knocking has not occurred, there is no output from the knock detector 7 (Fig. 3B), and the arithmetic unit 1
There is also no output of 1 (Fig. 3c). Therefore, since the phase shifter 3 does not perform phase shift control, the ignition pulse (D in FIG. 3) having the same phase as the ignition pulse output from the waveform shaping circuit 2 (A in FIG. 3) is input to the switch circuit 4. be done. The switch circuit 4 continues to supply power to the ignition coil 5 in response to this ignition pulse.

この結果、基準の時点t1、及びt2で点火コイル
5の給電が遮断され、点火電圧が発生される。
As a result, the power supply to the ignition coil 5 is cut off at the reference times t 1 and t 2 and the ignition voltage is generated.

第4図はノツキング制御が必要とする運転の場
合の波形図を示す。この場合、時点t3の点火後に
ノツキング制御が必要な運転状態となり、演算器
11はAD変換器9を経て入力された圧力センサ
8からの圧力信号レベル、及び波形整形回路10
からの定時間パルスの周期より上記運転状態を求
め、メモリ12からこの運転状態に対応した基準
制御信号VR4(第4図C)を読み出し出力する。
移相器3はこの基準制御信号VR4を受け、波形整
形回路2からの点火パルス(第4図A)の位相を
角度θだけ時間的に遅れた側に移相した点火パ
ルス(第4図D)を出力する。この点火パルスD
に伴ないスイツチ回路4は点火コイル5の給電を
継続し、基準の時点t4、及びt6より夫々角度θ
だけ遅角した時点t5、及びt7で点火電圧が発生さ
れ、内燃機関は運転される。この結果、ノツキン
グが発生しない内燃機関の運転が行われる。
FIG. 4 shows a waveform diagram for an operation requiring knocking control. In this case, after the ignition at time t3 , the operating state becomes such that knocking control is required, and the computing unit 11 receives the pressure signal level from the pressure sensor 8 input via the AD converter 9, and the waveform shaping circuit 10.
The above-mentioned operating state is determined from the cycle of the constant time pulses from , and a reference control signal V R4 (FIG. 4C) corresponding to this operating state is read out from the memory 12 and output.
The phase shifter 3 receives this reference control signal V R4 and generates an ignition pulse (fourth ignition pulse) that is shifted in phase by an angle θ1 to the side of the ignition pulse (FIG. 4A) from the waveform shaping circuit 2. Figure D) is output. This ignition pulse D
Accordingly, the switch circuit 4 continues to supply power to the ignition coil 5, and from the reference time points t4 and t6 , the angle θ 1
At times t5 and t7 , the ignition voltage is generated and the internal combustion engine is operated. As a result, the internal combustion engine is operated without knocking.

第5図は気筒間の燃焼状態が若干異なり、上記
第4図に示した基準制御信号による制御では若干
の制御不足となる場合の波形図を示す。
FIG. 5 shows a waveform diagram in the case where the combustion conditions between the cylinders are slightly different and the control based on the reference control signal shown in FIG. 4 is slightly insufficient.

点火時点t3直後に演算器11は圧力センサ8か
らの圧力信号のレベル、及び波形整形回路10か
らの定時間パルスの周期から各々機関の負荷及び
回転数を検出し、これら運転状態に対応した基準
制御信号をメモリ12から読み出し、制御信号V
R5(第5図C)を出力する。この制御信号VR5
受け移相器3は、波形整形回路2からの点火パル
ス(第5図A)の位相を角度θだけ時間的に遅
れた側に移相した点火パルス(第5図D)を出力
する。
Immediately after the ignition time t3 , the computing unit 11 detects the load and rotation speed of the engine from the level of the pressure signal from the pressure sensor 8 and the period of the fixed time pulse from the waveform shaping circuit 10, and determines the engine load and rotation speed corresponding to these operating conditions. The reference control signal is read from the memory 12 and the control signal V
Output R5 (Figure 5C). Receiving this control signal V R5 , the phase shifter 3 shifts the phase of the ignition pulse (A in FIG. 5) from the waveform shaping circuit 2 by an angle θ 2 to the side that is delayed in time by an angle θ 2. D) is output.

この点火パルスDに伴いスイツチ回路4は点火
コイル5の給電を行い、基準の時点t9より遅れた
時点t10で点火電圧が発生され、機関は運転され
る。
In response to this ignition pulse D, the switch circuit 4 supplies power to the ignition coil 5, and at time t10 , which is delayed from the reference time t9 , an ignition voltage is generated and the engine is operated.

しかし、今上記角度θだけ遅れた時点t10
点火されたにもかかわらず、燃焼状態が少し変動
していて低いレベルのノツクがひきつづき発生し
た場合ノツク検出器7からノツク信号Kが出力さ
れる。演算器11はこのノツク信号Kを受け、こ
のレベルに対応した補正を上記制御信号VR5に加
えた制御信号VR6を出力する。この結果次の結果
次の点火は基準の点火時期の時点t11より角度θ
遅角した時点t12で行われて補正され、ノツキ
ングは十分に抑制される。従つて、角度θは角
度θより大きく、これらの差、つまりバラツキ
補正角度は(θ−θ)で、これはノツキング
信号Kのレベルに対応する。
However, even though the ignition is now delayed by the above-mentioned angle θ 2 at time t 10 , if the combustion condition is slightly fluctuating and a low-level knock continues to occur, the knock signal K is output from the knock detector 7. Ru. The arithmetic unit 11 receives this knock signal K and outputs a control signal V R6 obtained by adding a correction corresponding to this level to the control signal V R5 . As a result, the next ignition will be at an angle θ from the reference ignition timing time t11 .
The correction is performed at time t12 , which is delayed by three times, and knocking is sufficiently suppressed. Therefore, the angle θ 3 is larger than the angle θ 2 , and the difference between them, that is, the variation correction angle, is (θ 3 −θ 2 ), which corresponds to the level of the knocking signal K.

ところで、上記メモリ12は通常他の用途と共
用し異なる複数種のデータを1つのメモリ内に記
憶させている。従つて、メモリ12の記憶容量は
極力少なくし、小容量で可能なように設計する必
要がある。このため、上述の動作説明から明らか
なように、機関にノツキングが発生する高負荷運
転状態においてのみ、メモリ12が作動して記憶
するようにしている。
By the way, the memory 12 is usually used for other purposes, and a plurality of different types of data are stored in one memory. Therefore, it is necessary to reduce the storage capacity of the memory 12 as much as possible and to design it so that it can be used with a small capacity. For this reason, as is clear from the above description of the operation, the memory 12 is operated and stored only in high-load operating conditions where knocking occurs in the engine.

すなわち、ノツキングは機関の負荷状態と関連
して発生するので、上記メモリ12は機関負荷が
所定値以上の高負荷側で作動するように限定し、
記憶容量を少なくし、利用効率を高めている。
That is, since knocking occurs in relation to the load state of the engine, the memory 12 limits the operation to the high load side where the engine load is higher than a predetermined value,
It reduces storage capacity and increases usage efficiency.

上記実施例において、実際の制御量がメモリ1
2から読み出した基準制御信号より所定値以上に
大きく変わつた場合、メモリ12の基準制御信号
値を修正することにより、内燃機関のノツキング
発生状態の大きなな変化に対し基準制御信号を修
正でき、前述のノツキング発生要素の季節的変化
に対する修正が行え、適切な値の基準制御信号を
記憶させておくことができる。また、メモリ12
の基準制御信号の初期値は内燃機関設計値から求
められる値を予め記憶させておいてもよく、これ
らの平均値を一律に記憶させておいてもよく、い
ずれも初期値をゼロとした場合より初期の制御性
を改善できる。
In the above embodiment, the actual control amount is memory 1
2, the reference control signal can be corrected in response to a large change in the knocking state of the internal combustion engine by correcting the reference control signal value in the memory 12. It is possible to make corrections for seasonal changes in knocking occurrence factors, and to store reference control signals with appropriate values. In addition, the memory 12
The initial value of the reference control signal may be a value obtained from the internal combustion engine design value and may be stored in advance, or the average value thereof may be uniformly stored, and in both cases, when the initial value is set to zero. Initial controllability can be further improved.

さらに、上記実施例ではノツク検出器7の出力
のリセツトを点火時期毎に行つているが、これに
限らずノツキング発生後の点火時期に行つてもよ
い。あるいは、検出信号を加算し、ノツキング発
生時の変化量を検出して補正制御するようにもで
き、この場合、出力が所定値になつた時にリセツ
トすればよい。
Further, in the above embodiment, the output of the knock detector 7 is reset at each ignition timing, but the reset is not limited to this and may be reset at the ignition timing after knocking occurs. Alternatively, it is also possible to perform correction control by adding the detection signals and detecting the amount of change when knocking occurs. In this case, it is only necessary to reset when the output reaches a predetermined value.

さらに、ノツキング発生要素は数多くあるが、
これらのうち実施例に示した点火時期制御あるい
は燃料制御による空燃比制御が望ましい。なぜな
らば、点火時期制御、空燃比制御に係る装置は数
多く実用化されていて、実現が容易であるばかり
でなく、低コストで実現できるからである。
Furthermore, although there are many factors that cause knotting,
Among these, air-fuel ratio control using ignition timing control or fuel control as shown in the embodiment is preferable. This is because many devices related to ignition timing control and air-fuel ratio control have been put into practical use, and are not only easy to implement, but can also be implemented at low cost.

以上のように、本発明によれば内燃機関の振動
を検出する加速度センサの出力からノツキングに
伴ない生じたノツキング信号を選別し、そのレベ
ルに応じてノツキング発生要素を制御し、ノツキ
ングを抑制する系において、内燃機関の高負荷状
態にあるとき、機関の負荷、回転数等の運転状態
に対応した制御信号値を記憶させておき、ノツキ
ング発生時に運転状態を検出し、その運転状態に
対応した基準制御信号を読み出し、この基準制御
信号によりノツキング発生要素を制御するように
したことにより、上記記憶部の容量を最小の規模
にしてノツキング発生時に適切な制御信号を速か
に出力して制御でき、また、ノツキング発生要素
の変化がある場合にその変化分に相当する補正制
御を加えて行い。遂次補正することにより極めて
適切なノツキング抑制が行える。さらに、上記補
正量が所定値以上に大きくなつた場合に、メモリ
の基準制御信号値を修正することにより、ノツキ
ング発生要素の大きな変動にも対応して常に適切
なノツキング抑制が行えるという実用上優れた効
果が得られるものである。
As described above, according to the present invention, the knocking signals generated due to knocking are selected from the output of the acceleration sensor that detects the vibrations of the internal combustion engine, and the knocking generation elements are controlled according to the level, thereby suppressing knocking. In the system, when the internal combustion engine is in a high load state, control signal values corresponding to the engine load, rotation speed, etc. are memorized, the operating state is detected when knocking occurs, and the control signal value corresponding to the operating state is stored. By reading out the reference control signal and controlling the knocking generation element using this reference control signal, the capacity of the storage section can be minimized and an appropriate control signal can be quickly output and controlled when knocking occurs. In addition, if there is a change in the knocking generation element, correction control corresponding to the change is added. By successive corrections, extremely appropriate knocking suppression can be achieved. Furthermore, when the above-mentioned correction amount becomes larger than a predetermined value, by correcting the reference control signal value in the memory, it is possible to always perform appropriate knocking suppression in response to large fluctuations in knocking-generating factors, which is a practical advantage. It is possible to obtain the following effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロツク図、
第2図は基準制御信号の記憶のマツプ図、第3図
〜第5図は第1図各部の動作波形図である。 図中、1は点火信号発生器、2,10は波形整
形回路、3は移相器、4はスイツチ回路、5は点
火コイル、6は加速度センサ、7はノツク検出
器、8は圧力センサ、9はAD変換器、11は演
算器、12はメモリを示す。
FIG. 1 is a block diagram showing one embodiment of the present invention;
FIG. 2 is a map diagram of the storage of reference control signals, and FIGS. 3 to 5 are operational waveform diagrams of each part of FIG. 1. In the figure, 1 is an ignition signal generator, 2 and 10 are waveform shaping circuits, 3 is a phase shifter, 4 is a switch circuit, 5 is an ignition coil, 6 is an acceleration sensor, 7 is a knock detector, 8 is a pressure sensor, 9 is an AD converter, 11 is an arithmetic unit, and 12 is a memory.

Claims (1)

【特許請求の範囲】[Claims] 1 内燃機関の運転状態を制御し、ノツキング発
生の要因となるノツキング発生要素、前記内燃機
関の振動加速度を検出する加速度センサ、該加速
度センサの出力のノイズ信号を除去しノツキング
信号成分を選別する弁別手段、前記内燃機関の負
荷状態を検出する負荷検出手段、前記内燃機関の
回転数を検出する回転数検出手段、前記負荷検出
手段によつて高負荷状態を検出したとき、該負荷
状態および前記回転数検出手段による回転数に対
応してノツキング抑制信号値を記憶する記憶手
段、及び前記弁別手段の出力と前記記憶手段の記
憶値からノツキング抑制信号を求める制御信号演
算手段、該制御演算手段のノツキング抑制信号に
基づき前記ノツキング発生要素を制御する制御手
段を備えた内燃機関のノツク抑制装置。
1. A knocking generating element that controls the operating state of the internal combustion engine and is a factor in the occurrence of knocking, an acceleration sensor that detects the vibration acceleration of the internal combustion engine, and a discrimination device that removes noise signals from the output of the acceleration sensor and selects knocking signal components. means, load detection means for detecting a load condition of the internal combustion engine, rotation speed detection means for detecting the rotation speed of the internal combustion engine, and when a high load condition is detected by the load detection means, the load condition and the rotation speed are detected. storage means for storing a knocking suppression signal value corresponding to the number of revolutions detected by the number detection means; a control signal calculation means for determining a knocking suppression signal from the output of the discrimination means and the value stored in the storage means; and knocking of the control calculation means. A knock suppressing device for an internal combustion engine, comprising a control means for controlling the knocking generating element based on a suppressing signal.
JP57055846A 1982-03-31 1982-03-31 Knocking control device for internal-combustion engine Granted JPS58170856A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57055846A JPS58170856A (en) 1982-03-31 1982-03-31 Knocking control device for internal-combustion engine
FR8305267A FR2524557B1 (en) 1982-03-31 1983-03-30 KNOWLEDGE CONTROL DEVICE FOR AN INTERNAL COMBUSTION ENGINE
US06/480,647 US4508079A (en) 1982-03-31 1983-03-31 Knocking control system for internal combustion engine
DE19833311968 DE3311968A1 (en) 1982-03-31 1983-03-31 KNOCK CONTROL SYSTEM FOR AN INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57055846A JPS58170856A (en) 1982-03-31 1982-03-31 Knocking control device for internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58170856A JPS58170856A (en) 1983-10-07
JPS6252134B2 true JPS6252134B2 (en) 1987-11-04

Family

ID=13010384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57055846A Granted JPS58170856A (en) 1982-03-31 1982-03-31 Knocking control device for internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58170856A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112A (en) * 1977-06-03 1979-01-05 Hitachi Ltd Combustion control system
JPS5459529A (en) * 1977-10-20 1979-05-14 Nippon Denso Co Ltd Ignition timing controller for engine
JPS5578168A (en) * 1978-12-07 1980-06-12 Nippon Soken Inc Feedback type ignition time control device for internal combustion engine
JPS55156257A (en) * 1979-05-22 1980-12-05 Mitsubishi Motors Corp Ignition timing controller for internal combustion engine
JPS56110539A (en) * 1980-02-01 1981-09-01 Toyota Motor Corp Controlling method for internal combustion engine
JPS56162267A (en) * 1980-05-20 1981-12-14 Mazda Motor Corp Ignition timing controller for engine
JPS5726268A (en) * 1980-07-24 1982-02-12 Toyota Motor Corp Ignition timing control method of internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112A (en) * 1977-06-03 1979-01-05 Hitachi Ltd Combustion control system
JPS5459529A (en) * 1977-10-20 1979-05-14 Nippon Denso Co Ltd Ignition timing controller for engine
JPS5578168A (en) * 1978-12-07 1980-06-12 Nippon Soken Inc Feedback type ignition time control device for internal combustion engine
JPS55156257A (en) * 1979-05-22 1980-12-05 Mitsubishi Motors Corp Ignition timing controller for internal combustion engine
JPS56110539A (en) * 1980-02-01 1981-09-01 Toyota Motor Corp Controlling method for internal combustion engine
JPS56162267A (en) * 1980-05-20 1981-12-14 Mazda Motor Corp Ignition timing controller for engine
JPS5726268A (en) * 1980-07-24 1982-02-12 Toyota Motor Corp Ignition timing control method of internal combustion engine

Also Published As

Publication number Publication date
JPS58170856A (en) 1983-10-07

Similar Documents

Publication Publication Date Title
US4508079A (en) Knocking control system for internal combustion engine
JPS6342111B2 (en)
US4377996A (en) Ignition timing control method and system
US4903210A (en) Method for reducing knocking in internal combustion engine
US4375668A (en) Timing optimization control
JPH0158335B2 (en)
US5001643A (en) Adaptive air flow correction for electronic engine control system
US4625691A (en) Knock suppression system for internal combustion engine
JPS6256342B2 (en)
JPH0660621B2 (en) Knotting control method and apparatus for internal combustion engine
JPS6243056B2 (en)
JPS6252134B2 (en)
JPH0329978B2 (en)
JP4404354B2 (en) Control device for internal combustion engine
JP2843872B2 (en) Engine load parameter calculation device and engine control device
JPH0361022B2 (en)
JPH0256516B2 (en)
JPH05141334A (en) Knocking control device for internal combustion engine
JP5342618B2 (en) Air-fuel ratio control device for internal combustion engine
JPS59224469A (en) Knock restraining device for internal-combustion engine
JPS60195360A (en) Knocking restraining device in internal-combustion engine
JPH0256515B2 (en)
JPS59196952A (en) Knock preventing apparatus for internal-combustion engine
JPS60195359A (en) Knocking restraining device in internal-combustion engine
JP5220908B2 (en) Air-fuel ratio control device for internal combustion engine