JPS58167951A - Chlorine ion sensor - Google Patents

Chlorine ion sensor

Info

Publication number
JPS58167951A
JPS58167951A JP57048920A JP4892082A JPS58167951A JP S58167951 A JPS58167951 A JP S58167951A JP 57048920 A JP57048920 A JP 57048920A JP 4892082 A JP4892082 A JP 4892082A JP S58167951 A JPS58167951 A JP S58167951A
Authority
JP
Japan
Prior art keywords
chlorine
ion
ion sensor
chlorine ion
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57048920A
Other languages
Japanese (ja)
Inventor
Takuya Maruizumi
丸泉 琢也
Hiroyuki Miyagi
宮城 宏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57048920A priority Critical patent/JPS58167951A/en
Publication of JPS58167951A publication Critical patent/JPS58167951A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To prevent a chlorine ion sensor from being influenced by disturbing ingredients in blood and urine by using such a substance obtained by fixing covalently bonded 4th class ammonium chloride and dodecyl benzene sulfonic acid as an ion sensitive membrane. CONSTITUTION:A field-effect type transistor chlorine ion sensor is composed of a substrate semiconductor made of P type Si on which an n type source 2 and a drain 3 are installed, and further between those two electrodes, an insulation gate composed of silicon dioxide 7, silicon nitride 8 and a chlorine sensitive membrane 9 is provided. The chlorine sensitive membrane 9 is formed by such a method that at first, a thin film 9 of 5mum is formed by coating chloromethyl polystyrene, and on this film 9, 4th class ammonium chloride is fixed, and further sulfonic groups are fixed by dodecyl benzene sulfonic acid solution. The chlorine ion sensor composed like this is not influenced by disturbing organic ingredients in blood and urine and capable of making stable measurements.

Description

【発明の詳細な説明】 本発明は被検液中の塩素イオン111[を測定するため
の塩素イオンセンサに係り、特に血液、尿の塩素1II
I度測定に好適な塩素イオンセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a chlorine ion sensor for measuring chlorine 111 in a sample solution, and particularly to a chlorine ion sensor for measuring chlorine 111 in blood and urine.
The present invention relates to a chloride ion sensor suitable for I-degree measurement.

従来の塩素イオンセンサは、AgCtと*g*8の倣粉
末を混合し、加熱、加圧してディスク状にした固体膜式
の塩素イオン感応膜が広く用いられていた。この塩素イ
オン感応膜は血液、尿等の体液と接する時、感応膜表面
への蛋白、脂質等の吸着等の不所要な界面反応が生じ、
濃度測定誤差が大きくなるという欠点があった。こめた
め従来は、透析膜等の薄膜を感応膜表面に密着被覆し用
いていたが、密着被覆の再現性が悪く、歩留りよく製造
できない欠点があった。更に性能面においても、応答速
度が低下し、分析所要時間の増大という欠点があった。
Conventional chloride ion sensors have widely used solid chloride ion sensitive membranes in which AgCt and *g*8 imitation powders are mixed and heated and pressurized to form a disk shape. When this chloride ion-sensitive membrane comes into contact with body fluids such as blood and urine, unnecessary interfacial reactions such as adsorption of proteins, lipids, etc. to the sensitive membrane surface occur.
There was a drawback that the concentration measurement error became large. Conventionally, a thin film such as a dialysis membrane was closely coated on the surface of the sensitive membrane, but the problem was that the reproducibility of the close coat was poor and production could not be carried out at a high yield. Furthermore, in terms of performance, there were drawbacks such as a decrease in response speed and an increase in the time required for analysis.

また最近MOSFET型(絶縁ゲート電界効果型トラン
ジスタ)塩素イオンセ/すが開発されたが(特許54 
66091)、塩素イオン感応膜としてhgcteムg
tsを分散した有機材料を使用しているため、AgC6
,Agm8と体液中有構成分との不所要な界面反応を本
質的に纏けることが出来ないという欠点がある。またF
ETゲート部へのイオン感応膜の形成が、銀粒子を分散
させ走査機材の塗布により行われるため、極微小ゲート
面への塗布が精度よく行えず、センサの微小化が困難で
あるという欠点があった。
In addition, a MOSFET type (insulated gate field effect transistor) chloride ion sensor has recently been developed (Patent No. 54).
66091), hgctemg as a chloride ion sensitive membrane
Because it uses an organic material in which ts is dispersed, AgC6
, there is a drawback that unnecessary interfacial reactions between Agm8 and components present in body fluids cannot be essentially controlled. Also F
The ion-sensitive film is formed on the ET gate by dispersing silver particles and coating them with scanning equipment, which has the drawback that coating on the extremely small gate surface cannot be performed with high precision, making it difficult to miniaturize the sensor. there were.

本発明の目的は、血液、尿中の妨害成分の影響を受けな
い、精度の肯い微小塩素イオンセンサを提供することに
ある。
An object of the present invention is to provide a highly accurate minute chlorine ion sensor that is not affected by interfering components in blood or urine.

本発明の特徴は、クロルメチル化ポリスチレン、塩素化
ポリスチレンのいずれかを基体とするネガ微電子線レジ
ストを半導体、二酸化珪素、窒化珪素よりなる電界効果
型トランジスタ絶縁ゲート部上に塗布し、4級アンモニ
ウムクロライド及びドデシルベンゼンスルホン酸が共有
結合的に固定化された塩素イオン感応膜を形成すること
にある。
A feature of the present invention is that a negative micro-electron beam resist based on either chloromethylated polystyrene or chlorinated polystyrene is coated on the insulated gate portion of a field effect transistor made of a semiconductor, silicon dioxide, or silicon nitride, and quaternary ammonium The objective is to form a chloride ion sensitive membrane in which chloride and dodecylbenzenesulfonic acid are covalently immobilized.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は本発明の電界効果微トランジスタ塩素イオンセ
ンナの一例の構成を示す断面図である。本ガでは基板半
導体lとして比抵抗10Ω国のpm11111 珪素を用いている。これにフォトエツチング、拡敵によ
りna11ノース2、n#1ドレイン3を形成、更にア
ルミ配Millとの良接触をはかる目的でノース2、ド
レイン3内Kn4″領域を形成する。次に基板半導体1
表面を熱酸化、CVD法により処理し、二酸化珪素、窒
化珪素の各電気絶縁層6.7.8を形成する。またアル
イ蒸着により外部電極引き出し纏11を形成する。次に
ソース2、ドレイン3にはさまれたチャネル領域を除く
表面部分を窒化珪素電気絶縁膜10で被い、センサの耐
水性を確保する。塩素イオン感応膜9は次のように絶縁
膜8上に形成される。先ずクロルメチル化ポリスチレン
を主体とするネガ形電子線レジストが絶縁層8及び10
全面にわたり均一にスピナー塗布される。膜厚はスピナ
ー回転数及び使用レジストの粘度で決定される。感応膜
の厚みは0.5μIIB〜10μmの範囲が好ましい。
FIG. 1 is a sectional view showing the structure of an example of the field effect microtransistor chloride ion sensor of the present invention. In this case, PM11111 silicon with a specific resistance of 10 Ω is used as the substrate semiconductor l. By photo-etching and enlarging, the na11 north 2 and n#1 drain 3 are formed, and furthermore, the Kn4'' region inside the north 2 and drain 3 is formed for the purpose of making good contact with the aluminum interconnection mill.Next, the substrate semiconductor 1
The surface is treated by thermal oxidation and CVD to form electrical insulating layers 6.7.8 of silicon dioxide and silicon nitride. Further, an external electrode lead-out band 11 is formed by aluminum vapor deposition. Next, the surface portion excluding the channel region sandwiched between the source 2 and drain 3 is covered with a silicon nitride electrical insulating film 10 to ensure water resistance of the sensor. The chlorine ion sensitive film 9 is formed on the insulating film 8 as follows. First, a negative electron beam resist mainly composed of chloromethylated polystyrene is applied to the insulating layers 8 and 10.
Spread evenly over the entire surface using a spinner. The film thickness is determined by the spinner rotation speed and the viscosity of the resist used. The thickness of the sensitive film is preferably in the range of 0.5 μm to 10 μm.

簿すぎるとピンホールの発生によりセンナ動作が不安定
となる。
If it is too small, pinholes will occur and the sensor operation will become unstable.

粘度30 cpの前記レジストを用い、回転数200O
rpmによシ5μmの薄膜を形成した。次に絶縁層8上
以外の領域を電子密度0.8X10−IC/cd、加速
電圧2017の電子線照射装置により露光した。繕光後
、該半導体表面のIla記レジスト面をトリエチルアミ
ンにより処理し、簿膜9に4級アンモニウムクロライド
を固定化した。更に3Qwt −のドデシルベンゼンス
ルホン##液によりスルホン酸基を薄膜9に固定化した
。この処理は簿膜9に先に固定化した4級アンモニウム
クロライドの分解を生じなめような温和な条件で行われ
ねdならない。最後に鉄中導体表面領域を酸素プラズマ
、硫酸、過酸化水素混合液(2:1)で処理し、絶縁膜
8上表面以外の不要ポリマー膜を除去する。以上の工程
で製作された塩素イオンセンサは脱イオン水で充分く洗
浄したあと、100mM塩化カリウム水溶液に保存する
。第2図は以上の打機で製作された塩素イオンセンサの
使用例を示したものである。塩素イオンセンサ12と液
絡構造の参照電極13を被検液14中に浸漬している。
Using the above resist with a viscosity of 30 cp, the rotation speed was 200 O.
A thin film of 5 μm was formed at rpm. Next, a region other than the top of the insulating layer 8 was exposed to light using an electron beam irradiation device with an electron density of 0.8×10 −IC/cd and an acceleration voltage of 2017. After blanching, the resist surface marked Ila on the semiconductor surface was treated with triethylamine to immobilize quaternary ammonium chloride on the film 9. Furthermore, sulfonic acid groups were immobilized on the thin film 9 using 3Qwt - dodecylbenzenesulfone ## solution. This treatment must be carried out under mild conditions that do not cause decomposition of the quaternary ammonium chloride previously immobilized on the membrane 9. Finally, the surface area of the conductor in iron is treated with a mixed solution of oxygen plasma, sulfuric acid, and hydrogen peroxide (2:1) to remove unnecessary polymer films other than the upper surface of the insulating film 8. The chloride ion sensor manufactured through the above steps is thoroughly washed with deionized water and then stored in a 100mM potassium chloride aqueous solution. FIG. 2 shows an example of the use of the chloride ion sensor manufactured using the above-mentioned punching machine. A chloride ion sensor 12 and a reference electrode 13 having a liquid junction structure are immersed in a test liquid 14.

外部FET15及び演算増幅器16により、塩素センサ
12のドレイン電流を一定にし、塩素イオンセンサ12
のゲート電圧が直読出来る回路構成となっている。セン
サ出力電圧は記録針17により記録される。塩素イオン
磯度既和の被検液14により塩素センサ12の特性を幽
べ、その結果を演算記憶ユニット18に記憶保持する。
The external FET 15 and operational amplifier 16 keep the drain current of the chlorine sensor 12 constant, and the chlorine ion sensor 12
The circuit configuration allows direct reading of the gate voltage. The sensor output voltage is recorded by the recording needle 17. The characteristics of the chlorine sensor 12 are ascertained by the test liquid 14 having a high chlorine ion intensity, and the results are stored and held in the arithmetic storage unit 18.

塩素イオン濃度未知の被検液14に灼して、その出力電
圧を演算記憶ユニットにより演算し、塩素イオン濃度を
プリンター19により打ち出す。
A test liquid 14 whose chloride ion concentration is unknown is cauterized, its output voltage is calculated by an arithmetic and storage unit, and the chloride ion concentration is printed out by a printer 19.

次に血清中有機成分の妨害を本塩素イオンセンナについ
て調べた。映度既知の妨害物溶液を被検液として図2に
示し九濃度測定装置を用い、検討した。正常血清中の各
妨害成分濃度と上記被検液濃度を表1にまとめた。全て
の場合、o、smM塩素イオン等価濃度以上の妨害を受
けず、本センサが血清中塩素イオン濃[1111j定に
好適であることが確認され友。
Next, we investigated the interference of organic components in serum with this chloride ion senna. An interference solution with a known intensity was used as a test solution, and the concentration measurement device shown in FIG. 2 was used for investigation. Table 1 summarizes the concentration of each interfering component in normal serum and the concentration of the above-mentioned test solution. In all cases, there was no interference above smM chloride ion equivalent concentration, confirming that this sensor is suitable for determining serum chloride ion concentrations.

本発明によれば、血液、尿等中の有機妨害成分の影響を
受けない、高安定な塩素イオンセンサを歩留りよく、安
価に製造出来る。また、イオン感応膜形成を電子線レジ
ストを用い作成するため、いかなる形状の感応膜も容易
に、かつ再現性よく製作でき、塩素センナの微小化をは
かることができる。
According to the present invention, a highly stable chlorine ion sensor that is not affected by organic interfering components in blood, urine, etc. can be manufactured at a high yield and at low cost. Furthermore, since the ion-sensitive film is formed using an electron beam resist, a sensitive film of any shape can be easily manufactured with good reproducibility, and chlorine senna can be miniaturized.

表1Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電界効果形トランジスタ塩素イオ
ンセンサの一実施列の構成を示す断面図を示す、第2図
は塩素イオン濃度測定装置説明図を示す。 1・・・p形珪素、2.3・・・n形珪素、4.5・・
・n0形珪素、6.8.10・・・窒化珪素、7・・・
二酸化珪素、9・・・感応性ポリマー膜、11・・・ア
ルミ蒸着線、12・・・塩素イオンセンサ、13・・・
参照電極、14・・・被検液、1s・・・FET、16
・・・演算増幅器、17・・・紀鍮針、18・・・記憶
演算器、19・・・プリンター。 (閏J
FIG. 1 shows a sectional view showing the configuration of one row of a field effect transistor chloride ion sensor according to the present invention, and FIG. 2 shows an explanatory diagram of a chloride ion concentration measuring device. 1...p-type silicon, 2.3...n-type silicon, 4.5...
・n0 type silicon, 6.8.10... silicon nitride, 7...
Silicon dioxide, 9... Sensitive polymer film, 11... Aluminum vapor deposited wire, 12... Chlorine ion sensor, 13...
Reference electrode, 14... Test liquid, 1s... FET, 16
...Operation amplifier, 17... Kishu needle, 18... Memory calculator, 19... Printer. (Leap J

Claims (1)

【特許請求の範囲】 1、半導体、電気絶縁材料、イオン感応膜の3層−造よ
り成るイオン感応電界効釆鷹トランジスタにおいて、該
イオン感応膜として4級アンモニウムクaライド及びド
デシルベンゼンスルホン酸が共有結合的に固定化された
ポリマーフィルムを設けたことを゛特徴とする塩素イオ
ンセンナ。 2 上記電気絶縁材料として二酸化珪素、値化珪素の2
層購造体を用いることを特徴とする特許請求第1項に基
づく塩素イオンセンナ。 ふ 上記塩素イオン感応ポリマーフィルムとして、クロ
ルメチル化ポリスチレン、塩素化ポリスチレンのいずれ
かを基体とするネガ形電子線レジストを使用したことを
特徴とする特許請求第1項に着づ〈塩素イオンセンサ。
[Claims] 1. An ion-sensitive field effect transistor consisting of a three-layer structure of a semiconductor, an electrically insulating material, and an ion-sensitive film, in which quaternary ammonium quaride and dodecylbenzenesulfonic acid are used as the ion-sensitive film. A chloride ion senna characterized by having a covalently fixed polymer film. 2. 2 of silicon dioxide and valued silicon as the electrical insulating material.
A chloride ion senna according to claim 1, characterized in that a layered structure is used. (F) A chlorine ion sensor according to claim 1, wherein a negative electron beam resist having either chloromethylated polystyrene or chlorinated polystyrene as a base is used as the chlorine ion-sensitive polymer film.
JP57048920A 1982-03-29 1982-03-29 Chlorine ion sensor Pending JPS58167951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57048920A JPS58167951A (en) 1982-03-29 1982-03-29 Chlorine ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57048920A JPS58167951A (en) 1982-03-29 1982-03-29 Chlorine ion sensor

Publications (1)

Publication Number Publication Date
JPS58167951A true JPS58167951A (en) 1983-10-04

Family

ID=12816682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57048920A Pending JPS58167951A (en) 1982-03-29 1982-03-29 Chlorine ion sensor

Country Status (1)

Country Link
JP (1) JPS58167951A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798664A (en) * 1985-12-25 1989-01-17 Terumo Kabushiki Kaisha Ion sensor
US4816118A (en) * 1986-01-24 1989-03-28 Terumo Corporation Ion-sensitive FET sensor
US4839020A (en) * 1986-05-26 1989-06-13 Terumo Kabushiki Kaisha Gas sensor
US5061976A (en) * 1986-11-20 1991-10-29 Terumo Kabushiki Kaisha Fet electrode with carbon gate
US5139626A (en) * 1985-10-02 1992-08-18 Terumo Corporation Ion concentration measurement method
WO2009151473A1 (en) * 2008-06-10 2009-12-17 University Of Florida Research Foundation, Inc. Chlorine detection

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139626A (en) * 1985-10-02 1992-08-18 Terumo Corporation Ion concentration measurement method
US4798664A (en) * 1985-12-25 1989-01-17 Terumo Kabushiki Kaisha Ion sensor
US4816118A (en) * 1986-01-24 1989-03-28 Terumo Corporation Ion-sensitive FET sensor
US4839020A (en) * 1986-05-26 1989-06-13 Terumo Kabushiki Kaisha Gas sensor
US5061976A (en) * 1986-11-20 1991-10-29 Terumo Kabushiki Kaisha Fet electrode with carbon gate
US8835984B2 (en) 2007-09-18 2014-09-16 University Of Florida Research Foundation, Inc. Sensors using high electron mobility transistors
WO2009151473A1 (en) * 2008-06-10 2009-12-17 University Of Florida Research Foundation, Inc. Chlorine detection
US8836351B2 (en) 2008-06-10 2014-09-16 University Of Florida Research Foundation, Inc. Chloride detection

Similar Documents

Publication Publication Date Title
US4739380A (en) Integrated ambient sensing devices and methods of manufacture
US4354308A (en) Method for manufacture of a selective chemical sensitive FET transducer
Huang et al. Improvement of integrated Ag/AgCl thin-film electrodes by KCl-gel coating for ISFET applications
Chen et al. Amperometric needle-type glucose sensor based on a modified platinum electrode with diminished response to interfering materials
JPH03503677A (en) reference electrode
JPS5819984B2 (en) Chemically sensitive field effect transistor device
US7435610B2 (en) Fabrication of array pH sensitive EGFET and its readout circuit
Hanazato et al. Glucose sensor based on a field-effect transistor with a photolithographically patterned glucose oxidase membrane
Tsukada et al. Long-life multiple-ISFETs with polymeric gates
US7638157B2 (en) Method of fabricating electrode assembly of sensor
US20040035699A1 (en) Method and fabrication of the potentiometric chemical sensor and biosensor based on an uninsulated solid material
KR900000578B1 (en) Enzyme sensor
JPS58167951A (en) Chlorine ion sensor
Li et al. Elimination of neutral species interference at the ion-sensitive membrane/semiconductor device interface
JP3108499B2 (en) Microelectrode cell for electrochemical detection and method for producing the same
JP4587539B2 (en) Apparatus for detecting analytes in samples based on organic materials
JPS62245150A (en) Field-effect transistor
US8148756B2 (en) Separative extended gate field effect transistor based uric acid sensing device, system and method for forming thereof
JPS59176662A (en) Semiconductor sensor
JPS63208753A (en) Immune sensor and immune detection
JPH02268265A (en) Electrode cell having minute hole for electrochemical measurement and manufacture thereof
JPH0469338B2 (en)
TWI342392B (en) Ph-ion selective field effect transistor (ph-isfet) with a miniaturized silver chloride reference electrode
Bergveld et al. From conventional membrane electrodes to ion-sensitive field-effect transistors
JPH02249962A (en) Fet sensor